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Bet on Sparsity Principle
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Bet on Sparsity Principle

Use a procedure that does well in sparse problems,
since no procedure does well in dense problems.1

▶ We often don’t have enough data to estimate so many
parameters

▶ Even when we do, we might want to identify a relatively
small number of predictors (k < N) that play an important
role

▶ Faster computation, easier to understand, and stable
predictions on new datasets.

1The elements of statistical learning. Springer series in statistics, 2001.
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How would you schedule a meeting of 20 people?
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Doctors Bet on Sparsity Also
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Motivating Dataset: Two Problems
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Problem 1: Which Predictors Affect the Response
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Problem 2: Observations are not Independent
▶ Observations are correlated, but this information is unknown
▶ However it can be estimated from the data
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GAW20 Dataset

Genetic Analysis Workshop (GAW20, March 4-7, 2017, San Diego,
US)

1GOLDEN project: Genetics of Lipid Lowering Drugs and Diet Network Study
11 / 41



GAW20 Dataset

▶ Our contribution in GAW20
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Motivation

▶ Our contribution in GAW20 consisted of investigation of
causal relationship between DNA methylation (exposure)
within some genes and ∆HDL (outcome)

▶ DNA methylation in these genes has been shown association
with HDL

▶ We used Mendelian randomization to explore causal
relationship

▶ We used SNPs around the analyzed genes as Instrumental
Variables (IVs) to interrogate the causal relationship
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Challenges in GAW20 Data Sets

▶ GAW20 SNPs data was high-dimensional
▶ There was a need for data regularization in order to select

SNPs strongly associated with the exposure
▶ Penalized LS regression can be used (Lasso, SCAD, MCP or

Elastic net)

▶ But, data consists of families !
▶ In the GAW20, all penalized regression methods

▶ either did not control for the family structure
▶ or used two-stage adjustment for the family structure

(including our group)
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Population structure in genetic association studies

1Marchini et al. Nature genetics (2004)
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Kinship Matrix: Measuring Genetic Similarity

▶ Let kinship be a list of SNPs used to estimate the kinship
matrix

▶ Let Xkinship be a standardized n× q genotype matrix.
▶ A kinship matrix (Φ) can be computed as

Φ = 1
q− 1XkinshipX⊤

kinship (1)
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Two Stage Procedure

▶ Step 1: Fit a null LMM with a single random effect

Y = P + ε

P ∼ N (0, ησ2Φ) ε ∼ N (0, (1− η)σ2I)

▶ σ2 is the phenotype total variance
▶ η ∈ [0, 1] is the phenotype heritability (narrow sens)
▶ Y|(η, σ2) ∼ N (0, ησ2Φ + (1− η)σ2I)

▶ Step 2: Use residuals from Step 1 as new independent
response
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Two step procedure

X_kinship
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Two step procedure

͠
Y P

E+

X_kinship

X_kinshipX_kinship T
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Two step procedure

͠
Y P

E1+Step 1:

Step 2: Residuals 
from Step 1 ͠ + E2+

▶ In association testing, it is known to suffer from huge power loss (Oualkacha et al. Gene. Epi. (2013))
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Our proposal
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Proposal

Aim:
We believe that performing variable selection and controlling for
familial and/or hidden relationships simultaneously in
high-dimensional settings, are likely to be of great interest to the
genetics community

Proposal:
We propose, ggmix, a one stage procedure which simultaneously
controls for structured populations and performs variable selection
in Linear Mixed Models (LMMs)
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ggmix: One step procedure

͠

Y P

E+

X

+

2Bhatnagar et al. Revision submitted (2019+)
3R package: sahirbhatnagar.com/ggmix
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Data and Model
▶ Phenotype: Y = (y1, . . . , yn) ∈ Rn

▶ SNPs: X = (X1; . . . , Xn)T ∈ Rn×p, where p≫ n
▶ Twice the Kinship matrix or Realized Relationship matrix:

Φ ∈ Rn×n

▶ Regression Coefficients: β = (β1, . . . , βp)T ∈ Rp

▶ Polygenic random effect: P = (P1, . . . , Pn) ∈ Rn

▶ Error: ε = (ε1, . . . , εn) ∈ Rn

▶ We consider the following LMM with a single random effect:

Y = Xβ + P + ε

P ∼ N (0, ησ2Φ) ε ∼ N (0, (1− η)σ2I)

▶ σ2 is the phenotype total variance
▶ η ∈ [0, 1] is the phenotype heritability (narrow sens)
▶ Y|(β, η, σ2) ∼ N (Xβ, ησ2Φ + (1− η)σ2I)
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Likelihood
▶ The negative log-likelihood is given by

−ℓ(Θ) ∝ n
2 log(σ2) + 1

2 log (det(V)) + 1
2σ2 (Y− Xβ)T V−1 (Y− Xβ)

V = ηΦ + (1− η)I

▶ Assume the spectral decomposition of Φ

Φ = UDU⊤

▶ U is an n× n orthogonal matrix and D is an n× n diagonal matrix
▶ One can write

V = U(ηD + (1− η)I)U⊤ = UWU⊤

with W = diag (wi)n
i=1, wi = ηDii + (1− η)
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Likelihood

▶ Projection of Y (and columns of X) into Span(U) leads to a
simplified correlation structure for the transformed data:
Ỹ = U⊤Y

▶ Ỹ|(β, η, σ2) ∼ N (X̃β, σ2W), with X̃ = U⊤X

▶ The negative log-likelihood can then be expressed as

−ℓ(Θ) ∝ n
2 log(σ2) + 1

2

n∑
i=1

log (wi) + 1
2σ2

(
Ỹ− X̃β

)T W−1 (
Ỹ− X̃β

)
▶ For fixed σ2 and η, solving for β is a weighted least squares

problem
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Ỹ− X̃β

)
▶ For fixed σ2 and η, solving for β is a weighted least squares

problem

27 / 41



Penalized Maximum Likelihood Estimator

▶ Define the objective function:

Qλ(Θ) = −ℓ(Θ) + λ
∑

j
pj(βj)

▶ pj(·) is a penalty term on β1, . . . , βp

▶ An estimate of the model parameters Θ̂λ is obtained by

Θ̂λ = arg min
Θ

Qλ(Θ)

28 / 41



Block Relaxation (De Leeuw, 1994)
To solve for the optimization problem we use a block relaxation
technique
Set k← 0, initial values for the parameter vector Θ(0) and ϵ;
for λ ∈ {λmax, . . . , λmin} do

repeat

For j = 1, . . . , p, β
(k+1)
j ← arg min

βj
Qλ

(
β

(k)
−j , η(k), σ2 (k)

)
η(k+1) ← arg min

η
Qλ

(
β(k+1), η, σ2 (k)

)
σ2 (k+1) ← arg min

σ2
Qλ

(
β(k+1), η(k+1), σ2

)
k← k + 1

until convergence criterion is satisfied:
||Θ(k+1) −Θ(k)||2 < ϵ;

end
Algorithm 1: Block Relaxation Algorithm
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Coordinate Gradient Descent Method

▶ We take advantage of smoothness of ℓ(Θ)
▶ We approximate Qλ(Θ) by a strictly convex quadratic

function (using gradient)
▶ We use CGD to calculate a descent direction
▶ To achieve the descent property for the objective function, we

employ further line search

Theorem [Convergence] 1:
If {Θ(k), k = 0, 1, 2, . . .} is a sequence of iterates generated by the
iteration map of Algorithm 1, then each cluster point (i.e. limit
point) of {Θ(k), k = 0, 1, 2, . . .} is a stationary point of Qλ(Θ)

1Tseng P& Yun S. Math. Program., Ser. B, (2009)
30 / 41



Coordinate Gradient Descent Method

▶ We take advantage of smoothness of ℓ(Θ)
▶ We approximate Qλ(Θ) by a strictly convex quadratic

function (using gradient)
▶ We use CGD to calculate a descent direction
▶ To achieve the descent property for the objective function, we

employ further line search

Theorem [Convergence] 1:
If {Θ(k), k = 0, 1, 2, . . .} is a sequence of iterates generated by the
iteration map of Algorithm 1, then each cluster point (i.e. limit
point) of {Θ(k), k = 0, 1, 2, . . .} is a stationary point of Qλ(Θ)

1Tseng P& Yun S. Math. Program., Ser. B, (2009)
30 / 41



Choice of the tuning parameter

▶ We use the BIC:

BICλ = −2ℓ(β̂, σ̂2, η̂) + c · d̂fλ

▶ d̂fλ is the number of non-zero elements in β̂λ plus two 1

▶ Several authors 2 have used this criterion for variable selection
in mixed models with c = log n

▶ Other authors 3 have proposed c = log(log(n)) ∗ log(n)

1Zou et al. The Annals of Statistics, (2007)
2Bondell et al. Biometrics (2010)
3Wang et al. JRSS(Ser. B), (2009)
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Results
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Simulation Results

1% Causal SNPs

No overlap All causal SNPs
in kinship

Metric Method 10% 30% 10% 30%

twostep 0.84 (0.05) 0.84 (0.05) 0.76 (0.09) 0.77 (0.08)
lasso 0.86 (0.05) 0.85 (0.05) 0.86 (0.05) 0.86 (0.05)TPR at FPR=5%
ggmix 0.86 (0.05) 0.86 (0.05) 0.85 (0.05) 0.86 (0.05)

twostep 338 (71) 339 (68) 289 (62) 285 (55)
lasso 282 (51) 281 (52) 285 (50) 284 (54)Model Size
ggmix 43 (7) 43 (8) 44 (8) 43 (9)

twostep 1.42 (0.10) 1.41 (0.10) 1.44 (0.33) 1.40 (0.22)
lasso 1.39 (0.09) 1.38 (0.09) 1.40 (0.08) 1.38 (0.08)RMSE
ggmix 1.22 (0.10) 1.20 (0.10) 1.23 (0.11) 1.23 (0.12)

twostep 2.97 (0.60) 2.92 (0.60) 3.60 (5.41) 3.21 (3.46)
lasso 2.76 (0.46) 2.69 (0.47) 2.82 (0.48) 2.75 (0.48)Estimation Error
ggmix 2.11 (1.28) 2.04 (1.22) 2.21 (1.24) 2.28 (1.34)
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Real data applications

1. UK Biobank
▶ 10,000 LD-pruned SNPs (Essentially un-correlated variables)

to predict standing height in 18k related individuals
▶ Standing height is highly polygenic (many variables associated

with response)

2. GAW20 Simulated dataset
▶ 50,000 SNPs (all on chromosome 1) to predict high-density

lipoproteins in 679 related individuals
▶ Not much correlation between causal SNP and others
▶ Very sparse signals (only 1 causal variant)

3. Mouse Crosses
▶ Find loci associated with mouse sensitivity to mycobacterial

infection
▶ 189 samples, and 625 microsatellite markers
▶ Highly correlated variables
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Results: UK Biobank
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Results: GAW20

Method Median number RMSE (SD)
of active variables

(Inter-quartile range)
twostep 1 (1 - 11) 0.3604 (0.0242)
lasso 1 (1 - 15) 0.3105 (0.0199)
ggmix 1 (1 - 12) 0.3146 (0.0210)
BSLMM 40,737 (39,901 - 41,539) 0.2503 (0.0099)

Table 1: Summary of model performance based on 200 GAW20
simulations. Five-fold cross-validation root-mean-square error was
reported for each simulation replicate.
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Results: Mouse crosses
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Discussion

▶ Two-step procedure leads to a large number of false positives
and false negatives

▶ Principal component adjustment in lasso may not be
sufficient to control for confounding, particularly when there is
a lot of correlation between observations

▶ ggmix performs well even when the causal variables are used
in the calculation of the kinship matrix

▶ ggmix showed the biggest improvement over twostep and
lasso when there were highly correlated variables with lots of
structure (e.g. mouse crosses example)
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Future work

▶ ggmix is limited by the number of individuals (not applicable
to enitre UK Biobank cohort of 500k) → low-rank
approximations to kinship matrix

▶ Run into memory issues when the number of covariates in the
model exceeds 50k → memory mapping strategies (e.g.
biglasso by Zeng and Breheny (2017))

▶ Extension to other (non-convex) penalties → more consistent
variable selection

▶ Model selection. Is HDBIC appropriate? → cAIC4 (Greven et
al.) ?
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