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Motivation

Genetic Analysis Workshop (GAW20, March 4-7, 2017, San Diego,
US)

1GOLDEN project: Genetics of Lipid Lowering Drugs and Diet Network Study
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I Our contribution in GAW20

I Contribution of the Causal modelling group
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Motivation

I Our contribution in GAW20 consisted of investigation of causal
relationship between DNA methylation (exposure) within some
genes and ∆HDL (outcome)

I DNA methylation in these genes has been shown association
with HDL

I We used Mendelian randomization to explore causal
relationship

I We used SNPs around the analyzed genes as Instrumental
Variables (IVs) to interrogate the causal relationship
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Challenges in GAW20 Data Sets

I GAW20 SNPs data was high-dimensional
I There was a need for data regularization in order to select

SNPs strongly associated with the exposure
I Penalized LS regression can be used (Lasso, SCAD, MCP or

Elastic net)

I But, data consists of families !
I In the GAW20, all regularized methods

I either did not control for the family structure
I or used two-steps adjustment for the family structure (including

our group)
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Challenges in GAW20 Data Sets

I Two-steps adjustment:
I Step 1 : uses LMM to adjust for subjects relationship

I Step 2 : uses residuals from Step 1 in variable-selection
LS-regression methods to select SNPs

I Two-steps procedure is a valid approach
I In association testing, (GRAMMAR) it is known to suffer from

huge power loss 1

1Oualkacha et al. Gene. Epi. (2013)
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Proposal

Aim:
We believe that performing variable selection and controlling for
familial and/or hidden relationships simultaneously in
high-dimensional settings, are likely to be of great interest to the
genetic scientists community

Proposal:
We propose, ggmix, a two-in-one procedure which controls for
structured populations and performs variable selection in Linear
Mixed Models
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Data and Model
I Phenotype: Y = (y1, . . . , yn) ∈ Rn

I SNPs: X = (X1; . . . ,Xn)T ∈ Rn×p, where p � n
I Twice the Kinship matrix or Realized Relationship matrix:

Φ ∈ Rn×n

I Regression Coefficients: β = (β1, . . . , βp)T ∈ Rp

I Polygenic random effect: P = (P1, . . . ,Pn) ∈ Rn

I Error: ε = (ε1, . . . , εn) ∈ Rn

I We consider the following LMM with a single random effect:

Y = Xβ + P + ε
P ∼ N (0, ησ2Φ) ε ∼ N (0, (1− η)σ2I)

I σ2 is the phenotype total variance
I η ∈ [0, 1] is the phenotype heritability (narrow sens)
I Y|(β, η, σ2) ∼ N (Xβ, ησ2Φ + (1− η)σ2I)
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Likelihood
I The negative log-likelihood is given by

−`(Θ) ∝ n
2 log(σ2) + 1

2 log (det(V)) + 1
2σ2 (Y− Xβ)T V−1 (Y− Xβ)

V = ηΦ + (1− η)I

I Assume the spectral decomposition of Φ

Φ = UDU>

I U is an n × n orthogonal matrix and D is an n × n diagonal matrix
I One can write

V = U(ηD + (1− η)I)U> = UWU>

with W = diag (wi )n
i=1, wi = ηDii + (1− η)
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Likelihood

I Projection of Y (and columns of X) into Span(U) leads to a
simplified correlation structure for the transformed data:
Ỹ = U>Y

I Ỹ|(β, η, σ2) ∼ N (X̃β, σ2W), with X̃ = U>X

I The negative log-likelihood can then be expressed as

−`(Θ) ∝ n
2 log(σ2) + 1

2

n∑
i=1

log (wi ) + 1
2σ2

(
Ỹ− X̃β

)T W−1 (Ỹ− X̃β
)

I For fixed σ2 and η, solving for β is a weighted least squares problem
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)

I For fixed σ2 and η, solving for β is a weighted least squares problem

10 / 28



Penalized Maximum Likelihood Estimator

I Define the objective function:

Qλ(Θ) = −`(Θ) + λ
∑

j
pj(βj)

I pj(·) is a penalty term on β1, . . . , βp

I An estimate of the model parameters Θ̂λ is obtained by

Θ̂λ = argmin
Θ

Qλ(Θ)
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Block Relaxation (De Leeuw, 1994)
To solve for the optimization problem we use a block relaxation
technique
Set k ← 0, initial values for the parameter vector Θ(0) and ε;
for λ ∈ {λmax , . . . , λmin} do

repeat

For j = 1, . . . , p, β(k+1)
j ← argmin

βj

Qλ

(
β

(k)
−j , η

(k), σ2 (k))
η(k+1) ← argmin

η
Qλ

(
β(k+1), η, σ2 (k))

σ2 (k+1) ← argmin
σ2

Qλ

(
β(k+1), η(k+1), σ2

)
k ← k + 1

until convergence criterion is satisfied: ||Θ(k+1) −Θ(k)||2 < ε;
end

Algorithm 1: Block Relaxation Algorithm
12 / 28



Coordinate Gradient Descent Method

I We take advantage of smoothness of `(Θ)
I We approximate Qλ(Θ) by a strictly convex quadratic function

(using gradient)
I We use CGD to calculate a descent direction
I To achieve the descent property for the objective function, we

employ further line search

Theorem [Convergence] 1:
If {Θ(k), k = 0, 1, 2, . . .} is a sequence of iterates generated by the
iteration map of Algorithm 1, then each cluster point (i.e. limit
point) of {Θ(k), k = 0, 1, 2, . . .} is a stationary point of Qλ(Θ)

1Tseng P& Yun S. Math. Program., Ser. B, (2009)
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Choice of the tuning parameter

I We use the BIC:

BICλ = −2`(β̂, σ̂2, η̂) + c · d̂f λ

I d̂f λ is the number of non-zero elements in β̂λ plus two 1

I Several authors 2 have used this criterion for variable selection
in mixed models with c = log n

I Other authors 3 have proposed c = log(log(n)) ∗ log(n)

1Zou et al. The Annals of Statistics, (2007)
2Bondell et al. Biometrics (2010)
3Wang et al. JRSS(Ser. B), (2009)
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Simulation study

I We simulate genotypes from the BN-PSD Admixture Model
I a : percentage of causal SNPs
I X(test): n × 5000 matrix of SNPs randomly sampled across the

genome
I X(causal): n × (a ∗ 5000) matrix of SNPs that are truly

associated with the simulated phenotype, X(causal) ⊆ X(test)

I βj : effect size for the jth SNP, simulated from a
Uniform(0.3, 0.7) for j = 1, . . . , (a ∗ 5000)

I Y|(β, η, σ2) ∼ N (X(causal)β, ησ2Φ + (1− η)σ2I)

1https://cran.r-project.org/package=bnpsd
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RRM/Kinship matrix construction

I X(other): n × 10, 000 matrix of simulated SNPs
I X(kinship): matrix of SNPs used to construct the RRM/Kinship

matrix
I Scenario 1: X(kinship) = X(other) ← No overlap
I Scenario 2: X(kinship) = [X(other),X(causal)]← 100% overlap

I In each scenario we considered a = 0, 0.01, η = 0.1, 0.5 and
σ2 = 1

16 / 28



Empirical Kinship Matrix

Empirical Kinship Matrix with Block Structure

0
0

.2
0

.4
0

.6
0

.8
1

1
.2

K
in

s
h

ip

In
d

iv
id

u
a

ls

(a) Kinship Matrix

●
●●

●● ●● ●
●

●●
●
●

● ●
● ●

●
● ● ● ●●

●

●●●
●●

●
● ●●

●
●●

●

●●
●● ●●

●
●

●

● ● ●
●

●●
●

●
●●●

●
● ●

●
●

●

●

●
●

●

●
●

●●
●●

●●
●

● ●●
●

●
● ●
●

● ●
●

● ●

●

●
●

●
●

●

● ●

●
●●

●● ● ●
●

● ●

●

●
● ● ●

●
●

●
● ●

●
●

●● ●
●

●
●

● ●
● ●●

●
●

●●
●

●

●

●● ●●● ●
●●

●
●

●

●●
●● ●●

●
●

●
●

●

●

●● ●
● ●●

●
●● ●●

● ●●● ●
●

● ●●

●
●

● ●
●● ●●

●
● ●● ●

● ●
● ●

● ●●
●●

●● ● ●
● ●

●
●● ●

●

●
●●

●●● ●
●

●
●● ●

●● ●●
●
●

●
● ●

●
●

●

● ●●
●
● ●●●●

●
●●● ●

● ●
● ● ●

● ● ●
●

●

● ●
●● ●●

● ●
●●

●
●

●

● ●
●●

●
●

●
●

●●
●●●● ●● ● ●●●

● ●●●● ●● ●●
●

●
●

●

●
●● ● ●●

● ● ●
●● ●

●
●●

●

●
●

● ●●●
●●

●
● ●

●●
●● ● ●

●

●
●

●
●●

●
●●

●●
●● ●

● ●
●
●

●
●●

●● ●
●

● ●

●●

● ●●●
●

●
●

●● ●● ●
●

●

●
●●

●●● ●● ●
●●● ●

●● ●
●

●

● ●
●
● ●

●
●

●
●

●
● ●●● ●

● ●●

●

●
●● ●●

●
● ●●

●
●

●
●● ●

●

●
●●

●
●

● ● ● ●●
●

●●
● ●

●
● ●

●●

●
●

●
● ● ●

●
●

●
●

● ●● ●
●

●●
●

●●●●
●

●

●
● ●

●● ●●●
●

●

●
●

●● ●●●
●

● ●●
●

●● ●●●● ●
●
●●
●

●● ●● ●●
● ● ●●

●

●● ●
●

●● ● ●
●● ●● ●

●

●
●●●

●

●
●●

●
●●

●
●●

●

●● ●●
●

● ●
●●●

●
● ●

●

● ●● ●
● ●●●

● ● ●
●

● ●●
●

●● ●
●

●●●
●●

● ●
●

●

●
● ●

●

●●
●

●●● ● ● ●
●● ●

●● ●
●

●
●●●

●

●
●

●
●●●●

●
●

●

●●
●

● ●●●
●
●●● ●●● ●

●
●

●
●
● ●

●
●

●

●●
●

● ●
●

● ●

●●
●● ●

●
●

●
●●

●
● ●

●

●
● ●

●

●
● ●● ●●

● ● ● ●

●● ●
●

●
●

●
●

●
●

●
●

●
●●●

●
●●

● ●
● ●●

●

●
●●

●
●

●
●●

●●●
●

●
●●● ● ●● ●●

●●
●

●
●

●
●

●
●

●
●

●

●●
●●

● ●●●
●

●●
●●

●●
●

●

●●
● ●

●

●
●

●
●

●
●

●
●

●● ●● ●
●

●●● ●●
●● ●

●
●

●

● ●● ●

● ●
●

● ●
●

●
● ●●

●

●

●●●
●

●

●●
●●●

●
●

●
●

●●
●● ●

● ●
●

●
●

●
● ●● ●●

●● ● ●●

●
●● ●● ● ●●●

● ●
●

●
●

●●
●●●

●
●

●
●

●
●

●

●●
●

●●
●

● ●●●●
●

●

●
● ●●

●

●

●

●

●

●●

●
● ●

● ●● ●

●

●
●

●●
●

●
● ●

●

●●

●
●●

●●

●

●●
●

●
●

●●
●●

●●
●● ●

●
●● ●

●
●

●● ●●
●

●
●

●●
● ●●●

●● ●●●
●
●

●
●

●

●
●

●
●

●

●
●●●

●
●●

●
●

●●

●
●

●
● ●

●●
●

●

●
●

●
●

●
●

●●● ●

−0.50 −0.45 −0.40 −0.35 −0.30 −0.25 −0.20

−
0

.4
−

0
.2

0
.0

0
.2

Block Structure

1st principal component

2
n

d
 p

ri
n

c
ip

a
l 
c
o

m
p

o
n

e
n

t

(b) 1st and 2nd PC

17 / 28



Correct Sparsity for Null Model
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Correct Sparsity Results for the Null Model

η = 10%
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Correct Sparsity for Model with 1% Causal SNPs
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True Positive vs. False Positive Rate
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Heritability Estimates for Null Model
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horizontal dashed line is the true value
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Heritability Estimates for Model with 1% Causal SNPs
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Error Variance for Null Model
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Error Variance for Model with 1% Causal SNPs
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Model Error vs. Number Active for Model with 1% Causal
SNPs
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Fig. 1: Model Error: Xβ − Xβ̂
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Discussion/Future work

I In some situations, prior information of the predictors (e.g.
SNPs) groups structure is available

I Theoretical development of group-Lasso in LMM is already
done

I In situations where the RRM matrix is of low rank (i.e.
n >> # of SNPs used to construct RRM). ex: UK Biobank

I Computational time of fitting ggmix can be reduced using
SVD decomposition of X(kinship) in order to construct Φ and in
order to transforme the data

I Theoretical development of low-rank trick is already done
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Discussion/Future work

I Capturing the subjects relationship using random effect requires
VCs estimation

I Random effect modelling leads to a non-convex optimization
problem

I Fixed effects models are good alternatives to random effects
models for analysis of Longitudinal/Panel data 1

I Capturing familial structure using a penalized FE model could
be an interesting avenue to explore

1Roger Koenker, JMA, (2004)
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