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Chromosomes, DNA and Genes

® DNA is a molecule containing genetic information written in a language
whose words consist of 4 letters: A, T, C, G.

® A gene is a piece of DNA formed by a precise sequence of several of these
letters; this sequence of letters forms the sequence of the gene.

® There are more than 25,000 genes in the human genome that code for various
physical characteristics and control the functioning of the body and
contribute to the state of health of the individual at all stages of their life.

Your body is Cell Chromosome DNA
made of cells

1https ://mirakind.org/genetics-101
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Single-nucleotide polymorphism (SNP)

® A SNP is a variation at a single position in a DNA sequence among
individuals

® If more than 1% of a population does not carry the same nucleotide at
a specific position in the DNA sequence, then this variation can be
classified as a SNP.

"https://www.nature.com/scitable/definition/snp-295/
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UKBiobank: High-dimensional data (n << p)

® UK Biobank has collected and continues to collect extensive
environmental, lifestyle, and genetic data on half a million participants
® Genotyping: 800,000 genome-wide variants and imputation to
90 million variants
® Lots of phenotypes (response variables) available including bone
mineral density, height, mental health, ect.
® Objectives
» Prediction: determine the optimal weighted combination of SNPs to

predict the response e.g. polygenic risk scores (PRS)
> Discovery: which SNPs cause the phenotype

biobank’

Improving the health of future generations

"https://www.ukbiobank.ac.uk/enable-your-research/about-our-data

Motivating Dataset

5/73.


https://www.ukbiobank.ac.uk/enable-your-research/about-our-data

Example 1: Prediction study with UK Biobank

® Osteoporosis screening identifies only a small proportion of the
screened population to be eligible for intervention to prevent
osteoporosis-related fractures

® Much of the screening expenditure is spent on individuals who will
not qualify for intervention

PLOS MEDICINE

L)
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RESEARCH ARTICLE

Development of a polygenic risk score to
improve screening for fracture risk: A genetic
risk prediction study

Vincenzo Forgettac'®, Julyan Keller-Baruch(;2*, Marie Forest', Audrey Durand 2,
Sahir Bhatnagar®', John P. Kemp*®, Maria Nethander %7, Daniel Evans®, John

A. Morris(»', Douglas P. Kiel »°, Fernando Ri ira©'%, Helena 1112
Nicholas C. Harvey '*'%, Dan Mellstrém’, Magnus Karlsson'®, Cyrus Cooper.
David M. Evans*®, Robert Clarke'”, John A. Kanis'"'?, Eric Orwoll'®'°, Eugene
V. McCloskey?, Claes Ohlsson’, Joelle Pineauc 2, William D. Leslie»?', Celia M.
T. Greenwood ) ">?223 J. Brent Richards 224

13,14,16
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gSO0S: a PRS for heel quantitative ultrasound speed of
sound (SOS)

® SOS is a heritable risk factor for osteoporotic fracture

® The prediction of SOS using PRS could decrease the number of
screened individuals by reassuring those with low genetic risk
(negative screening)

Reassurance I Recommend Treatment I
<50 Years or 250 & No risk factors Population
Eligible for NOGG Screening H
| (250 years, with at least one risk factor) | {_Women with prior ragilty fracture |
4S0S > threshold <—{ gsos I

CRF-FRAX to calculate

-~ ) sk« 10-year probability of major
CRF-FRAX: Low Risk osteoporotic fracture T CRF-FRAX: High Risk

CRF-FRAX: Moderate Risk
BMD-FRAX: High Risk

BMD-FRAX: Low Risk

Motivating Dataset
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gSOS: a cheap negative screening tool
® 81% of the population required expensive testing to achieve 99.6%
sensitivity and 97.1% specificity
® QOur polygenic risk score (gSOS) consisting of 21,717 genetic variants,
only required 51% of the population while maintaining similar
sensitivity and specificity.

1

Percent
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Example 2: Identify individuals with rare variants

® An LDL-C PRS could be used to identify individuals with a higher
probability of harboring FH variants

® We find that those with a low LDL-C PRS had a 21-fold higher
probability of carrying an FH variant compared with those with a
high LDL-C PRS

Circulation: Genomic and Precision Medicine

ORIGINAL ARTICLE i
Polygenic Risk Score for Low-Density Lipoprotein r

Cholesterol Is Associated With Risk of Ischemic
Heart Disease and Enriches for Individuals With

Familial Hypercholesterolemia .
yP My former MSc student
Haoyu Wu®, MSc; Vincenzo Forgetta®, PhD; Sirui Zhou, PhD; Sahir R. Bhatnagar®, PhD; Guillaume Paré®, MD;

J. Brent Richards®, MD Haoyu Wu
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Classical Methods

® A nice and powerful toolbox for analyzing the more traditional datasets where
the sample size (N) is far greater than the number of covariates (p):

> linear regression, logistic regression, LDA, QDA, glm,
> regression spline, smoothing spline, kernel smoothing, local smoothing,

GAM,

» Neural Network, SVM, Boosting, Random Forest, ...

XnXp =

Challenges in High-Dimensional Data

X11
X21
X31

Xnl

X12
X12
X12

X12

X1p
xlp
X1p
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High-dimensional data (n << p)

® Qur data are wide
* e.g. UK Biobank - X € R?00,000x90,000,000

X111 X12
Xn><p =

Xn1  X12

Challenges in High-Dimensional Data

xlp
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New challenges arise from how such data is used

A B
y X1 y X1 X2 X3 X4 X5 X6 X7 X8
0.0 O o 0 2 o0 0 1 o0 1 O
21 1 21 1.0 2 3 2 0 0 3
27 0 2 0 0 0 2 2 1 1 1
59 3 59 3 0 1 O O 0 2 O
73 3 3 3 4 0 1 1 1 0 O
00 O 0o 0 2 0 O 3 0 0 O
20 1 201 0 2 1 0 0 0 1

Estimated model R? g
y=0.66 4+ 1.92x; 0.83
y=0.22 4 1.78x1 4+ Ox2 4+ Ox3 + Ox4 + Ox5 + 2.11x6 + Ox7 + Oxg  0.98

Challenges in High-Dimensional Data
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Overarching reaserch focus: including prior information

Be arg min{ DataFitting [X, y, #] + A Prior [5]}
BeR?

Challenges in High-Dimensional Data
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Overarching reaserch focus: including prior information

Be arg min{ DataFitting [X, y, #] + A Prior [5]}
BeR?

Examples:
éni]élp ly— XBlI3 + MBllo (Best subset selection)
€
; _ 2 .
i ly — X515 + MBI (Lasso regression)

. o 2 2 . .
min ||y — X5l + A5l (Ridge regession)

Challenges in High-Dimensional Data
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Bet on Sparsity Principle

Use a procedure that does well in sparse problems, since
no procedure does well in dense problems.!

I The elements of statistical learning. Springer series in statistics, 2001.
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Bet on Sparsity Principle

Betting o

Use a procedure that does well in sparse problems, since
no procedure does well in dense problems.!
® We often don’t have enough data to estimate so many parameters

¢ Even when we do, we might want to identify a relatively small
number of predictors (k < N) that play an important role

® Faster computation, easier to understand, and stable predictions on
new datasets.

I The elements of statistical learning. Springer series in statistics, 2001.

Sparsity
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How would you schedule a meeting of 20 people?
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How would you schedule a meeting of 20 people?

GOOFM-  GOOFM-  BOOAM-  DOFM-  TOOFM-  TDOFM-  LDOFM- 100

M- 1DDFEN - 100 Fi-
11 participants B00FM B00FM 0FPM D0 PM D PM S0EPM «0EPW 00PN a00EN 800 P
JayZ v v J J v
Evan o
Crmar v v v v v
Caitln o v ¥, v
. v
v v 4 7
v v v v v v
o v v o o v v )
o o o o o
7 7
v v < v v
GO0 FM - GO0 FM - BOOAM - F00PM - 00PN - 100 PM- 100 PM -
BOOFM BOOFM 300FM Sl PN 0P 00 PM H0XPM

A Thought Experiment 19/73 .



Doctors also bet on sparsity




Multivariable Penalized Linear mixed effects models
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Additional challenges in genetic data — confounding by
population structure

Subpopulation A Subpopulation B

Cases E Cases

Controls ! Controls

z2=21 2=163 12 =157
(p=0.34) (p <0.001) (p=0.46)

Genotype B aa mAa O AA

ITam V. et al. Benefits and limitations of genome-wide association studies. Nat Rev Genet (2019)

Multivariable Penalized Linear mixed effects models 22/73.



Population structure

® GWAS compares unrelated individuals, but unrelated signifies that the

relationships are typically unknown and assumed to be distant

Time
(generations)

Linkage
Relatedness:

- known
-recent
- useful

Association

Relatedness:
- unknown

- distant
- nuisance

0o

6 6o o0 o o

! Astle and Balding. Population structure and cryptic relatedness in genetic association studies.
Statistical Science (2009)

Multivariable Penalized Linear mixed effects models
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Observations are not independant

® Observations are correlated, but this relationship is often unknown

® However, it can be estimated from the data

ID Response Genel Gene2 Gene3 Gene4 Gene5 Geneb6
1 2610781  -1.255 1 2 0 0 0 1
2 4114347  -0.339 1 2 0 2 0 1
3 4399930 -0.6 1 2 1 1 0 1
4 2081319 0.809 1 2 0 1 0 2
5 1347380 0.279 2 2 0 0 0 0
6 3262449 -0.421 2 2 0 1 0 1
7 4870063 -0.454 2 2 0 0 0 2
8 1141212 1.383 2 2 1 1 1 0
9 2997954 -2.29 1 2 0 0 0 1
|0 5805218 2.289 1 2 0 1 1 1

Multivariable Penalized Linear mixed effects models 24/73 .



Kinship Matrix: Measuring Genetic Similarity

® Let kinship be a list of SNPs used to estimate the kinship matrix
® Let Xinship be a standardized n x q genotype matrix.

® A kinship matrix (®) can be computed as

1 T
P = kainshipxkinship

1)

25/73 .



Multivariable Penalized Linear mixed effects models
(LMM)

p
Y= B-SNP;+P+e
j=1

P~ N(0,70%®) e~ N(0,(1—n)o*T)

o2 is the phenotype total variance

n € [0, 1] is the phenotype heritability
Y|(ﬁa n, 02) ~ N( f:l ﬂj : SNPja 7702{’ + (1 - 77)021)

® In our applications, n << p

@)
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Multivariable Penalized Linear mixed effects models
(LMM)

p
Y= B-SNP;+P+e @)

=1

P~ N(0,70%®) e~ N(0,(1—n)o*T)

o2 is the phenotype total variance

n € [0, 1] is the phenotype heritability
Y|(ﬁa n, 02) ~ N( f:l ﬂj : SNPja 770—2{) + (1 - 77)021)

® In our applications, n << p

Lasso, ridge, ect. are not directly applicable to LMM

fultivariable Penalized Linear mixed effects models 26/73 .



Current solution: Two Stage Procedure

Step 1: Fit a null LMM with a single random effect

Y=P+e
P~ N(0,70%®) e~ N(0,(1 —n)o*T)

o2 is the phenotype total variance
® 5 € [0,1] is the phenotype heritability (narrow sens)
Y|(n,0%) ~ N(0,70%® + (1 — 1)0’T)

27173



Current solution: Two Stage Procedure

Step 1: Fit a null LMM with a single random effect

Y=P+e
P~ N(0,70%®) e~ N(0,(1 —n)o*T)

o2 is the phenotype total variance

1 € [0, 1] is the phenotype heritability (narrow sens)
Y|(n,0%) ~ N(0,70%® + (1 — 1)0’T)

Step 2: Use residuals from Step 1 as new independent response

27/73 .



Two step procedure

X_kinship

Multivariable Penalized Linear mixed effects models

ID1
D2
D3

D5
D6
D7
D8
D9
D10

Gene1
2

B o B v [EH o B o IS

Gene2 Gene3 Gene4 Gene5 Geneé

2

SIS R SR SR SR SR I )

2

LSS I VR SR SR G O )

2

BRSNS O SR SR SR SR O )

2

LS R O S I )

2

SIS I VR SR OO RS )
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Two step procedure

X_kinship

D1
D2
D3
D4
ID5
D6
D7
D8
D9
D10

Multivariable Penalized Linear mixed effects models

ID1
097

-0.02
0.03
0.02

-0.01

-0.02
0.03

Gene1
D1 2
D2 0
D3 0
D4 1
D5 0
D6 1
D7 2
D8 1
D9 0
D10 1
ID2 D3
0 0
1 0
0 0.98
-0.01 0.01
0 0.01
-0.01 0.01
-0.01 0
0 0.03
0 -0.01
0 -0.01

2

SIS R SR SR SR SR I )

-0.01
0.01
1.03
0.04
0.01

-0.01
0.01
0.01

-0.01

2

LSS I VR SR SR G O )

D5
-0.02

0.01

0.04
0.97
-0.01
-0.01
0.01

0.03
0.03

2

BRSNS O SR SR SR SR O )

X_kinship X_kinship |

D6
0.03
-0.01
0.01
0.01
-0.01
1.02
0
0
0
0.01

2

LS R O S I )

ID7
0.02
-0.01
0
-0.01
-0.01
0
1
0.02
0.02
0

Gene2 Gene3 Gene4 Gene5 Geneé

2

SIS I VR SR OO RS )

ID8
-0.01
0
0.03
0.01
0.01
0
0.02
1.01
0.01
0

D9
-0.02
0
-0.01
0.01
0.03
0
0.02
0.01
1.04
0.01

ID10
0.03
0
-0.01
-0.01
0.03
0.01
0
0
0.01
0.95

29/73.



Two step procedure

Response
-1.255
-0.339

-0.6
0.809
0.279

-0.421
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-2.29
2.289
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+

30/73.



Two step procedure

Y

Response
IDI D2 D3 D4 D5 D6 ID7 D8 ID9 ID10
259 D1 097 0 0 0 -002 003 002 -0.01 -0.02 0.03
Step 1 ’O;ZQ D2 0 1 0 -001 0 -001 -0.01 © 0 0 + E
- =Y ~ D3 0 0 098 001 001 001 0 003 -0.01 -0.01 1
0.809 ID4 0 -001 001 103 004 001 -0.01 001 001 -0.01
0.279 ID5 -002 0 001 004 097 -001 -0.01 0.01 003 0.3
-0.421 ID6 0.03 -001 001 001 -001 102 0 0 0 o001
-0.454 ID7 002 -001 0 -001 -001 0 1002 002 0
1.383 /D8 -001 0 003 001 001 0 002 101 001 0
-2.29 D9 -002 0 -001 001 003 ©0 002 001 1.04 0.01
2.289 ID10 003 0 -001 -0.01 003 001 0 0 001 095
Genel Gene2 Gene3 Gene4 Gene5 Gene6
D1 2 2 2 2 2 2
D2 0 2 2 2 2 2
D3 0 2 2 2 2 2
Step2: Residuals ~ = ¢t oo
D5 0 2 a2 2 2 a + E2
D6 1 2 2 2 1 2
from Step 1 Pz 2 2 2 1
D8 1 2 B 2 2 2
D9 0 2 2 2 1 2
D10 1 2 B 1 2 P

Multivariable Penal Linear mixed effects models
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Two step procedure

Y

Response
IDI D2 D3 D4 D5 D6 ID7 D8 ID9 ID10
259 D1 097 0 0 0 -002 003 002 -0.01 -0.02 0.03
Step 1 ’O;ZQ D2 0 1 0 -001 0 -001 -0.01 © 0 0 + E
- =Y ~ D3 0 0 098 001 001 001 0 003 -0.01 -0.01 1
0.809 ID4 0 -001 001 103 004 001 -0.01 001 001 -0.01
0.279 ID5 -002 0 001 004 097 -001 -0.01 0.01 003 0.3
-0.421 ID6 0.03 -001 001 001 -001 102 0 0 0 o001
-0.454 ID7 002 -001 0 -001 -001 0 1002 002 0
1.383 /D8 -001 0 003 001 001 0 002 101 001 0
-2.29 D9 -002 0 -001 001 003 ©0 002 001 1.04 0.01
2.289 ID10 003 0 -001 -0.01 003 001 0 0 001 095
Genel Gene2 Gene3 Gene4 Gene5 Gene6
D1 2 2 2 2 2 2
D2 0 2 2 2 2 2
D3 0 2 2 2 2 2
Step2: Residuals ~ = ¢t oo
D5 0 2 a2 2 2 a + E2
D6 1 2 2 2 1 2
from Step 1 Pz 2 2 2 1
D8 1 2 B 2 2 2
D9 0 2 2 2 1 2
D10 1 2 B 1 2 P

Multivariable Penal Linear mixed effects models

In association testing, it is known to suffer from huge power loss (Oualkacha et al. Gene. Epi. (2013))
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Our proposal: ggmix

® We propose, ggmix, a one stage procedure which simultaneously
controls for structured populations and performs variable selection in
Linear Mixed Models (LMMs)

PLOS GENETICS

RESEARCH ARTICLE

Simultaneous SNP selection and adjustment
for population structure in high dimensional
prediction models

Sahir R. Bhatnagar "2+, Yi Yang®, Tianyuan Lu@*®, Erwin Schurr®, JC Loredo-Osti”,
Marie Forest,%, Karim Oualkacha :®, Celia M. T. Greenwood o 51011

1D of Epi ics and O ional Health, McGill University, Montréal, Québec,
Canada, 2 Department of Diagnostic Radiology, McGill University, Montréal, Québec, Canada, 3 Department

I of Mathematics and Statistics, McGill University, Montréal, Québec, Canada, 4 Quantitative Life Sciences,
McGill University, Montréal, Québec, Canada, 5 Lady Davis Institute, Jewish General Hospital, Montréal,
Québec, Canada, 6 Department of Medicine, McGill University, Montréal, Québec, Canada, 7 Department of
Mathematics and Statistics, Memorial University, St. John's, Newfoundland and Labrador, Canada, 8 Ecole

Check for de Technologie Supérieure, Montréal, Québec, Canada, 9 Département de Mathématiques, Université du
updates Québec a Montréal, Montréal, Québec, Canada, 10 Gerald Bronfman Department of Oncology, McGil

University, Montréal, Québec, Canada, 11 Department of Human Genetics, McGill University, Montréal,
Québec, Canada

# sahir.bhatnagar@megill.ca

IR package: sahirbhatnagar.com/ggmix, https://cran.r-project.org/package=ggmix
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sahirbhatnagar.com/ggmix
https://cran.r-project.org/package=ggmix

ggmix: One step procedure

Y
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IR package: sahirbhatnagar.com/ggmix, https://cran.r-project.org/package=ggmix

ggmix
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Data and Model

Our proposal: ggmix

Phenotype: Y = (y1,...,yn) € R"

SNPs: X = (X3;...,X,)T € R, where p>> n

Twice the Kinship matrix or Realized Relationship matrix: ® € R"*"
Regression Coefficients: 8 = (f1,...,8,)T € R?

Polygenic random effect: P = (Py,...,P,) € R"

Error: € = (e1,...,&,) € R"

We consider the following LMM with a single random effect:

Y=XB+P+e¢
P ~ N(0,75%®) e ~N(0,(1 —n)o*T)

o2 is the phenotype total variance
n € [0, 1] is the phenotype heritability (narrow sens)
Y[(B,1,0%) ~ N(XB,10°® + (1 — 1)0°T)

35/73.



Our

Likelihood

® The negative log-likelihood is given by

—0(®) x glog(a2) + % log (det(V)) + 2%2 (Y-XB8)"V ' (Y-XP)

where
V=n®+(1-nI

propo

36/73



Likelihood

® The negative log-likelihood is given by

—0(®) x glog(a2) + % log (det(V)) + 2%2 (Y-XB8)"V ' (Y-XP)

where
V=n®+(1-nI

® Assume the spectral decomposition of ®
® =UDU'

® Uis an n X northogonal matrix and D is an n x n diagonal matrix

Our proposal: ggmix
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Likelihood

® The negative log-likelihood is given by

—0(®) x glog(a2) + % log (det(V)) + 2%2 (Y-XB8)"V ' (Y-XP)

where
V=n®+(1-nI

Assume the spectral decomposition of ®
® =UDU'

® Uis an n X northogonal matrix and D is an n x n diagonal matrix

® One can write
V=U#nD+ (1-nZ)U" =Uuwu '

with W = dlag (Wi)l'nzl’ W = UD,‘,' + (1 — 7])

Our proposal: ggmix

36/73 .



Likelihood

® Projection of Y (and columns of X) into Span(U) leads to a simplified
correlation structure for the transformed data: Y = UTY

* Y|(B,1,0%) ~ N(XB,0°W), with X = UTX
® The negative log-likelihood can then be expressed as

—{(®) o *log Zlog wi +7( —X8)'W (Y -%8)

Our proposal: ggmi
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Likelihood

® Projection of Y (and columns of X) into Span(U) leads to a simplified
correlation structure for the transformed data: Y = UTY

Y|(B,1,0%) ~ N(XB,0°W), with X = UTX
® The negative log-likelihood can then be expressed as

—0(®) x flog 2Zlog wi +—( - ,B)wa1 (Y-XB)

For fixed o and 7, solving for 3 is a weighted least squares problem

Our proposal: ggmi
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Penalized Maximum Likelihood Estimator

® Define the objective function:

A(®) =—{(0O) + Aij(ﬁj)

® pi(-) is a penalty term on 31, ..., 3,

® An estimate of the model parameters ©, is obtained by

©, = argmin 0)(O)
e

Our propo:
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Block Relaxation (De Leeuw, 1994)

To solve for the optimization problem we use a block relaxation technique

Set k < 0, initial values for the parameter vector 0 and €
for A € {M\naxs - - -, Ain} do
repeat

Forj=1,...,p, 5}(k+1 ¢ argmin Qy (ﬁ(j,n k) 2(k)>

J

. k
1D ¢ argmin 0y (8, ,0° )
n

< arg min Q) (,@<k+1), n(k+1), 02)

o2

o2 (k+1)

k<« k+1
until convergence criterion is satisfied: [[@**Y — @V ||, < ¢

end
Algorithm 1: Block Relaxation Algorithm

Our proposal: ggmi

39/73.



Coordinate Gradient Descent Method

We take advantage of smoothness of ¢(©)

® We approximate Q) (@) by a strictly convex quadratic function (using
gradient)

We use CGD to calculate a descent direction

® To achieve the descent property for the objective function, we employ
further line search

ITseng P& Yun S. Math. Program., Ser. B, (2009)

Our propc
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Coordinate Gradient Descent Method

We take advantage of smoothness of ¢(©)

® We approximate Q) (@) by a strictly convex quadratic function (using
gradient)

We use CGD to calculate a descent direction

® To achieve the descent property for the objective function, we employ
further line search

Theorem [Convergence] ':

1f{®® k=0,1,2,...} is a sequence of iterates generated by the iteration
map of Algorithm 1, then each cluster point (i.e. limit point) of

{©W k=0,1,2,...} is a stationary point of Q5 (©)

I Tseng P& Yun S. Math. Program., Ser. B, (2009)

Our proposal: g
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objective function
75 80 85 90 95 100 105
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Choice of the tuning parameter

We use the BIC:

BIC, = —20(B,52,7) + c- df,

dfy, is the number of non-zero elements in 3, plus two !

Several authors 2 have used this criterion for variable selection in
mixed models with ¢ = logn

e Other authors 2 have proposed ¢ = log(log(n)) * log(n)

Our proposal

1Zou et al. The Annals of Statistics, (2007)
2Bondell et al. Biometrics (2010)
3Wang et al. JRSS(Ser. B), (2009)

ggmix
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Multivariable Penalized Linear mixed effects models
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Simulation study

We simulated data from the model Y =X38 +P + ¢

We used heritability 7 = {0.1, 0.3}, number of covariates p = 5, 000,
number of kinship SNPs k = 10, 000, percentage of causal SNPs

¢ = {0%,1%} and 0 = 1.

In addition to these parameters, we also varied the amount of overlap
between the causal list and the kinship list:

1. None of the causal SNPs are included in kinship set.
2. All of the causal SNPs are included in the kinship set.

These were meant to contrast the model behavior when causal SNPs
are included in both the main effects and random effects vs. when the
causal SNPs are only included in the main effects.

These scenarios are motivated by the current standard of practice in
GWAS where the candidate marker is excluded from the calculation of
the kinship matrix.

This approach becomes much more difficult to apply in large-scale
multivariable models where there is likely to be overlap between the
variables in the design matrix and kinship matrix.
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Simulation study results

Both the lasso+PC and twostep selected more false positives
compared to ggmix

Overall, we observed that variable selection results and RMSE for
ggmix were similar regardless of whether the causal SNPs were in the
kinship matrix or not.

This result is encouraging since in practice the kinship matrix is
constructed from a random sample of SNPs across the genome, some
of which are likely to be causal, particularly in polygenic traits.

In particular, our simulation results show that the principal
component adjustment method may not be the best approach to
control for confounding by population structure, particularly when
variable selection is of interest.
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Real data applications

1. UK Biobank
> 10,000 LD-pruned SNPs (Essentially un-correlated variables) to predict

standing height in 18k related individuals
» Standing height is highly polygenic (many variables associated with

response)

Results
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Real data applications

1. UK Biobank
> 10,000 LD-pruned SNPs (Essentially un-correlated variables) to predict
standing height in 18k related individuals
» Standing height is highly polygenic (many variables associated with
response)
2. GAW20 Simulated dataset
> 50,000 SNPs (all on chromosome 1) to predict high-density lipoproteins
in 679 related individuals
> Not much correlation between causal SNP and others
> Very sparse signals (only 1 causal variant)

3. Mouse Crosses
» Find loci associated with mouse sensitivity to mycobacterial infection
> 189 samples, and 625 microsatellite markers
» Highly correlated variables

46/73 .



Results: UK Biobank

A (8)
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Results: GAW20

Method Median number RMSE (SD)
of active variables
(Inter-quartile range)

twostep 1(1-11) 0.3604 (0.0242)
lasso 1(1-15) 0.3105 (0.0199)
ggmix 1(1-12) 0.3146 (0.0210)

BSLMM 40,737 (39,901 - 41,539)  0.2503 (0.0099)

Table: Summary of model performance based on 200 GAW20 simulations. Five-fold
cross-validation root-mean-square error was reported for each simulation replicate.



Results: Mouse crosses

Results
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ggmix R package

library(ggmix)

data("admixed")

fit <- ggmix(x = admixed$xtrain,

y = admixed$ytrain,

kinship = admixed$kin_train)

plot(fit)
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https://cran.r-project.org/package=ggmix

ggmix R package

Results

hdbic <- gic(fit)

plot (hdbic)
51 52 51 51 52 49 46 42 39 30 20 13 7 5 4 3
8 -.—-‘-'-"-P-—-
o v 0ege
O] ] --"".. :
o :
8 “"""m-_-e'""..-’
T T T T T
-10 -8 -6 -4 -2
log(Lambda)
coef (hdbic, type = "nonzero")
## 1
## (Intercept) -0.03598164
## X302 -0.17617815
## X524 1.34917874
## X538 -0.72073279
## eta 0.99000000
## sigma2 1.60477653
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SCAD (Fan et Li, JASA, 2001), MCP (Zhang, Ann. Stat.,
2010)

SCAD
4 —
2 - MCP
Lasso
< 0 —
-2 -
_4 —
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Computational challenges

® Past approaches for optimization for SCAD/MCP relies upon descent
method, first- or second- order

® e.g., sparsenet (Mazumder et al. 2011) uses coordinate descent with
full step size, whose coordinate update cycles through

B =8, (X, (vi— y’) Xij, At)s where 7] = Zk;é]x,kﬂk

® However, coordinate descent is difficult to vectorize, and rate of
convergence is difficult of establish — though past literature suggests
O(1/k) rate of convergence for ISTA



Our proposal: Accelerated gradient (AG) method

Extensions

Improving Convergence for Nonconvex Composite
Programming

Kai Yang - Masoud Asgharian - Sahir
Bhatnagar

Received: date / Accepted: date

Abstract High-di ional posite problems are popular in today’s
machine learning and statistical genetics research. Recently, Ghadimi and Lan [1]
proposed an algorithm to optimize nonconvex high-dimensional problems. There are
several parameters in their algorithm that are to be set before running the algorithm.
It is not trivial how to choose these parameters nor there is, to the best of our knowl-
edge, an explicit rule how to select the parameters to make the algorithm converges
faster. We analyze Ghadimi and Lan’s algorithm to gain an interpretation based on
the inequality constraints for convergence and the upper bound for the norm of the
gradient analogue. Our interpretation of their algorithm suggests this to be a damped
accelerated gradient scheme. Based on this, we propose an approach how to select
the parameters to improve convergence of the algorithm. Our numerical studies us-
ing high-dimensional nonconvex sparse learning problems, motivated by image de-
noising and statistical genetics applications, show that convergence can be made, on
average, considerably faster than that of the conventional ISTA algorithm for such
optimization problems with over 10000 variables should the parameters be chosen
using our proposed approach.

Keywords Accelerated Gradient - Composite Optimization - Nonconvex Optimiza-
tion

'https://arxiv.org/abs/2009.10629
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Numerical Study for SCAD
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1.23(intercept), 3,4, 5, 6, 59 as true effect coefficients and 10000 values of
0. Start point: 79 = 110006, @ = 3.7, A = 0.6.
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Numerical Study for MCP

log(gx — g%)
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0 500 1000 1500 2000 2500 3000
k

Simulation settings here is same as before in SCAD, v = 2.5, A = 0.6.

Extensions
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casebase

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.0000.i00

casebase: An Alternative Framework For Survival
Analysis and Comparison of Event Rates

Sahir Rai Bhatnagar* Maxime Turgeon*
McGill University University of Manitoba

Jesse Islam James A. Hanley Olli Saarela
McGill University McGill University University of Toronto

'https://arxiv.org/abs/2009.10264,
https://cran.r-project.org/package=casebase
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Case-base sampling — Toy example

Extensions

Participants

Time (weeks)
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® Case series: all the person-moments where an event occured

® Base series: sample of all moments
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Case-base sampling with logistic regression

Time (weeks)

1 2 3 4

N A Bt _ PriY = 1a.1)
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To have a flexible baseline hazard:

ln(ix(J;.t)) = 3“! + 3,2{2 + ‘3,‘{" + ;91‘ +In (%)
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Smooth-in-time cumulative incidence curves

Extensions

Participants

Time (weeks)

A
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Tumor Dectection

Tumor Dectection
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Single Energy CT - 3-D Tensor

Tumo

Dectection

One patient

One Slice (fix Z value)
Grey area: low intensity, high
in H and C: fat, tissues
White area: high intensity,
high in calcium: bones
Black: air
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Dual Energy CT - 4-D Tensor

. Tubeé/)
Tubes O
For a higher energy level,

o . . intensity typically decreases
Two tubes incite x-rays at different energies: Xlow and Different materials have different
Xhigh . . . decrease in intensity

DECT can reconstruct the signal received to scans as if

they are taken at different incoming X-ray enefgy in

Conventional CT scans

E =50 keV.
E =45 keV
E =40 keV

Tumor Dectection
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HNSCC

Head and Neck Squamous Cell Carcinoma

slice 53

Tumor extraction on DECT Feb24, 2021 2/18
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One Approach — Clustering

Goal:
Cut image in different areas
that fit anatomical regions

Focus on tumor regions.
Method: Statistical

approach to differentiate
energy decay curves of voxels
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Session Info

R version 4.0.2 (2020-06-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Pop!_0S 20.10

Matrix products: default
BLAS: /usr/1ib/x86_64-1inux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/1lib/x86_64-1inux-gnu/openblas-pthread/libopenblasp-r0.3.10.s0

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] ggmix_0.0.1 knitr_1.31

loaded via a namespace (and not attached):

[1] lattice_0.20-41 codetools_0.2-16 glmnet_4.1-1 foreach_1.5.1
[5] grid_4.0.2 magrittr_2.0.1 evaluate_0.14  highr 0.8

[9] stringi_1.5.3  Matrix_1.2-18  splines_4.0.2  iterators_1.0.13
[13] tools_4.0.2 stringr_1.4.0  survival_3.2-3 xfun_0.22

[17] compiler_4.0.2 shape_1.4.5
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