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Setting

• We are concerned with the analysis of data in which we are
attempting to predict an outcome Y using a number of explanatory
factors X1, X2, X3, . . ., some of which may not be particularly useful

• Although the methods we will discuss can be used solely for
prediction (i.e., as a “black box”), I will adopt the perspective that we
would like the statistical methods to be interpretable and to explain
something about the relationship between the X and Y

• Regression models are an attractive framework for approaching
problems of this type, and the focus today will be on extending
classical regression modeling to deal with high-dimensional data

Classical Methods 3 / 76



Setting

• We are concerned with the analysis of data in which we are
attempting to predict an outcome Y using a number of explanatory
factors X1, X2, X3, . . ., some of which may not be particularly useful

• Although the methods we will discuss can be used solely for
prediction (i.e., as a “black box”), I will adopt the perspective that we
would like the statistical methods to be interpretable and to explain
something about the relationship between the X and Y

• Regression models are an attractive framework for approaching
problems of this type, and the focus today will be on extending
classical regression modeling to deal with high-dimensional data

Classical Methods 3 / 76



Setting

• We are concerned with the analysis of data in which we are
attempting to predict an outcome Y using a number of explanatory
factors X1, X2, X3, . . ., some of which may not be particularly useful

• Although the methods we will discuss can be used solely for
prediction (i.e., as a “black box”), I will adopt the perspective that we
would like the statistical methods to be interpretable and to explain
something about the relationship between the X and Y

• Regression models are an attractive framework for approaching
problems of this type, and the focus today will be on extending
classical regression modeling to deal with high-dimensional data

Classical Methods 3 / 76 .



Classical Methods

• A nice and powerful toolbox for analyzing the more traditional datasets where
the sample size (N) is far greater than the number of covariates (p):
▶ linear regression, logistic regression, LDA, QDA, glm,
▶ regression spline, smoothing spline, kernel smoothing, local smoothing,

GAM,
▶ Neural Network, SVM, Boosting, Random Forest, ...

Xn×p =



x11 x12 · · · x1p
x21 x12 · · · x1p
x31 x12 · · · x1p
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
xn1 x12 · · · xnp
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Classical Linear Regression

Data: (x1, y1), . . . , (xn, yn) iid from

y = xTβ + ϵ

where E(ϵ|x) = 0, and dim(x) = p. To include an intercept, we can set
x1 ≡ 1. Using Matrix notation:

y = Xβ + ϵ

The least squares estimator

β̂LS = argmin
β
∥y− Xβ∥2

β̂LS = (XTX)−1XTy

• Question: How to find the important variables xj?
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Best-subset Selection (Beal et al. 1967, Biometrika)
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Which variables are important?

• Scientists know only a small subset of variables (such as genes) are
important for the response variable.

• An old Idea: try all possible subset models and pick the best one.
• Fit a subset of predictors to the linear regression model. Let S be the

subset predictors, e.g., S = {1, 3, 7}.

Cp =
RSSS
σ2
− (n− 2|S|) = RSSS

σ2
+ 2|S| − n

• We pick the model with the smallest Cp value.
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Model selection criteria

Minimizing Cp is equivalent to minimizing

∥y− XSβ̂S∥2 + 2|S|σ2.

which is AIC score.
Many popular model selection criteria can be written as

∥y− XSβ̂S∥2 + λ|S|σ2.

• BIC uses λ = σ
√

log(n)/n.
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Remarks

Best subset selection plus model selection criteria (AIC, BIC, etc.)
• Computing all possible subset models is a combinatorial optimization

problem (NP hard)
• Instability in the selection process (Breiman, 1996)
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Ridge Regression (Hoerl & Kennard 1970, Technometrics)

• β̂ = argminβ ||y− Xβ||2 + λ||β||22

• ||β||22 =
∑p

j=1 β
2
j

• β̂Ridge = (X⊤X+ λI)−1X⊤y→ exact solution

• β̂LS = (X⊤X)−1X⊤y

• Let X⊤X = Ip×p

β̂j(Ridge) =
β̂j(MCO)

1 + λ
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Least squares vs. Ridge
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High-dimensional data (n << p)

Xn×p =

x11 x12 · · · · · · · · · · · · · · · · · · · · · x1p
...

...
...

...
...

...
...

...
...

...
xn1 x12 · · · · · · · · · · · · · · · · · · · · · xnp
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Why can’t we fit OLS to High-dimensional data?
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High-dimensional data (n << p)

• We will let
▶ n denote the number of independent sampling units (e.g., number of

patients)
▶ p denote the number of features recorded for each unit

• In high-dimensional data, p is large with respect to n
▶ This certainly includes the case where p > n
▶ However, the ideas we discuss in this course are also relevant to many

situations in which p < n; for example, if n = 100 and p = 80, we
probably don’t want to use ordinary least squares
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A fundamental picture for data science

ESL, Hastie et al. 2009
Classical Methods 16 / 76 .



Classical Methods

Betting on Sparsity

A Thought Experiment

Motivating Dataset

Notre proposition

Résultats

Other applications

Extensions
Fonctions de pénalité non convexes
Analyse de survie

Orientations futures

Betting on Sparsity 17 / 76 .



Bet on Sparsity Principle
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Bet on Sparsity Principle

Use a procedure that does well in sparse problems, since
no procedure does well in dense problems.1

• We often don’t have enough data to estimate so many parameters

• Even when we do, we might want to identify a relatively small
number of predictors (k < N) that play an important role

• Faster computation, easier to understand, and stable predictions on
new datasets.

1The elements of statistical learning. Springer series in statistics, 2001.
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How would you schedule a meeting of 20 people?
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UKBiobank

• Données de génotypage sont issues de 500 000 individus d’origine
caucasienne recrutés au Royaume-Uni

• La puce UKBioBANK comporte plus de 800 000 SNPs
• Grand nombre de variables réponses (ex. maladie, densité minérale

osseuse)
• Objectif: Quelles variables explicatives sont associées à la variable

réponse?

Motivating Dataset 23 / 76 .



Un échantillon
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GWAS

diabetes mellitus (T2DM)17, coronary artery dis-
ease18, schizophrenia19, inflammatory bowel disease20, 
insomnia21, body mass index (BMI)22 and educational 
attainment23, among others. This surge of replicable 
associations is in stark contrast to the pre- GWAS era, 

in which only a handful of robustly associated loci were 
identified24.

Initial excitement was somewhat tempered by 
the realization that GWAS loci typically have small 
effect sizes and explain only a modest proportion of trait 
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1Tam V. et al. Benefits and limitations of genome-wide association studies. Nat Rev Genet (2019)
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Confounding
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Population structure

• Les GWAS comparent des individus non apparentés, mais «non
apparentés» en fait signifie que les relations sont inconnues et
présumées éloignées.

 452 W. ASTLE AND D. J. BALDING

 Although association designs are used to study other
 species, we will mainly take a human-genetics view
 point. For example, we will focus on binary pheno
 types, such as disease case/control or drug respon
 der/nonresponder, which remain the most commonly
 studied type of outcome in humans, although quanti
 tative (continuous), categorical and time-to-event traits
 are increasingly important. The subjects of an associ
 ation study are sometimes sampled from a population
 without regard to phenotype, as in prospective cohort
 designs. However, retrospective ascertainment of indi
 viduals on the basis of phenotype, as in case-control
 study designs, is more common in human genetics, and
 we will focus on such designs here.

 Linkage studies (Thompson, 2007) form the other
 major class of study designs in genetic epidemiology.
 These seek loci at which there is correlation between

 the phenotype of interest and the pattern of transmis
 sion of DNA sequence over generations in a known
 pedigree. In contrast, association studies are used to
 search for loci at which there is a significant associ
 ation between the phenotypes and genotypes of unre
 lated individuals. These associations arise because of

 correlations in transmissions of phenotypes and geno
 types over many generations, but association analy
 ses do not model these transmissions directly, whereas
 linkage analyses do. The relatedness of study subjects
 is therefore central to a linkage study, whereas the re

 latedness of association study subjects is typically un
 known and assumed to be distant; any close relatedness
 is a nuisance (Figure 1).

 In the last decade, association studies have become
 increasingly prominent in human genetics, while, al
 though they remain important, the role of linkage stud
 ies has declined. Linkage studies can provide strong
 and robust evidence for genetic causation, but are lim
 ited by the difficulty of ascertaining enough suitable
 families, and by insufficient recombinations within
 these families to refine the location of a causal vari

 ant. When only a few hundred of genetic markers
 were available, lack of within-family recombinations
 was not a limitation. Now, cost-effective technology
 for genotyping ~106 single nucleotide polymorphism
 (SNP) markers distributed across the genome has made
 possible genome-wide association studies (GWAS)
 which investigate most of the common genetic vari
 ation in a population, and obtain orders of magni
 tude finer resolution than a comparable linkage study
 (Morris and Cardon, 2007; Altshuler, Daly and Lan
 der, 2008). GWAS are preferred for detecting com
 mon causal variants (say, population fraction > 0.05),
 which typically have only a weak effect on phenotype,
 whereas linkage studies remain superior for the detec
 tion of rare variants of large effect (because these ef
 fects are more strongly concentrated within particular
 families).

 Time
 (generations)

 Linkage
 Relatedness:

 - known
 - recent
 - useful

 Association
 Relatedness:

 - unknown

 - distant

 - nuisance

 ?

 FlG. 1. Schematic illustration of differences between linkage studies, which track transmissions in known pedigrees, and population asso
 ciation studies which assume "unrelated" individuals. Open circles denote study subjects for whom phenotype data are available and solid
 lines denote observed parent-child relationships. Dotted lines indicate unobserved lines of descent, which may extend over many genera
 tions, and filled circles indicate the common ancestors at which these lineages first diverge. Unobserved ancestral lineages also connect the
 founders of a linkage study, but these have little impact on inferences and are ignored, whereas they form the basis of the rationale for an
 association analysis and constitute an important potential confounder.

This content downloaded from 132.216.234.169 on Thu, 31 Aug 2017 12:35:39 UTC
All use subject to http://about.jstor.org/terms

1Astle and Balding. Population structure and cryptic relatedness in genetic association studies.
Statistical Science (2009)
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Les observations ne sont pas indépendants

• Les observations sont corrélées, mais cette relation est souvent
inconnue

• Cependant, elle peut être estimé à partir des données
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La matrice de parenté (kinship)

• Soit kinship une liste de SNP utilisée pour estimer la matrice de
parenté

• Soit Xkinship une matrice de génotype normalisée n× q.
• Une matrice de parenté (Φ) peut être calculée comme:

Φ =
1

q− 1
XkinshipX⊤

kinship (1)
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Test d’association avec un modèle mixte linéaire (LMM)

Y =

p∑
j=1

βj · SNPj + P+ ε (2)

P ∼ N (0, ησ2Φ) ε ∼ N (0, (1− η)σ2I)

• σ2 est la variance totale du phénotype
• η ∈ [0, 1] est l’héritabilité du phénotype
• Y|(η, σ2) ∼ N (0, ησ2Φ+ (1− η)σ2I)
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Régression ridge (Hoerl & Kennard 1970, Technometrics),
Lasso (Tibshirani 1996, JRSSB)

• β̂ridge = argminβ ||y− Xβ||2 + λ||β||22

• β̂
lasso

= argminβ
1
2

∑n
i=1

(
yi −

∑p
j=1 xijβj

)2

+ λ
∑p

j=1 |βj|

Lasso, ridge, ect. ne sont pas directement applicable au LMM
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Procédure en deux étapes

• Étape 1: Ajuster un LMM sous l’hypothèse nul avec un seul effet
aléatoire

Y = P+ ε

P ∼ N (0, ησ2Φ) ε ∼ N (0, (1− η)σ2I)

• Étape 2: Utilisez les résidus de l’étape 1 comme nouvelle réponse
indépendante
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Procédure en deux étapes

X_kinship
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Procédure en deux étapes

X_kinship

X_kinshipX_kinship T
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Procédure en deux étapes

͠
Y P

E+

X_kinship

X_kinshipX_kinship T
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Procédure en deux étapes

͠
Y P

E1+Step 1:

Step 2: Residuals 
from Step 1 ͠ + E2+

• Dans les tests d’association, on sait qu’il souffre d’énormes pertes de
puissance (Oualkacha et al. Gene. Epi. (2013))
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Notre proposition
• Nous proposons, ggmix, une procédure en une seule étape qui

contrôle simultanément les populations structurées et effectue une
sélection de variables dans les modèles mixtes linéaires

RESEARCH ARTICLE

Simultaneous SNP selection and adjustment

for population structure in high dimensional

prediction models

Sahir R. BhatnagarID
1,2*, Yi Yang3, Tianyuan LuID

4,5, Erwin SchurrID
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Abstract

Complex traits are known to be influenced by a combination of environmental factors and

rare and common genetic variants. However, detection of such multivariate associations

can be compromised by low statistical power and confounding by population structure. Lin-

ear mixed effects models (LMM) can account for correlations due to relatedness but have

not been applicable in high-dimensional (HD) settings where the number of fixed effect pre-

dictors greatly exceeds the number of samples. False positives or false negatives can result

from two-stage approaches, where the residuals estimated from a null model adjusted for

the subjects’ relationship structure are subsequently used as the response in a standard

penalized regression model. To overcome these challenges, we develop a general penal-

ized LMM with a single random effect called ggmix for simultaneous SNP selection and

adjustment for population structure in high dimensional prediction models. We develop a

blockwise coordinate descent algorithm with automatic tuning parameter selection which is

highly scalable, computationally efficient and has theoretical guarantees of convergence.

Through simulations and three real data examples, we show that ggmix leads to more par-

simonious models compared to the two-stage approach or principal component adjustment

with better prediction accuracy. Our method performs well even in the presence of highly

correlated markers, and when the causal SNPs are included in the kinship matrix. ggmix

can be used to construct polygenic risk scores and select instrumental variables in Mende-

lian randomization studies. Our algorithms are available in an R package available on

CRAN (https://cran.r-project.org/package=ggmix).
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ggmix: une procédure en une seule étape
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Data and Model

• Phenotype: Y = (y1, . . . , yn) ∈ Rn

• SNPs: X = (X1; . . . ,Xn)
T ∈ Rn×p, where p≫ n

• Twice the Kinship matrix or Realized Relationship matrix: Φ ∈ Rn×n

• Regression Coefficients: β = (β1, . . . , βp)
T ∈ Rp

• Polygenic random effect: P = (P1, . . . , Pn) ∈ Rn

• Error: ε = (ε1, . . . , εn) ∈ Rn

• We consider the following LMM with a single random effect:

Y = Xβ + P+ ε

P ∼ N (0, ησ2Φ) ε ∼ N (0, (1− η)σ2I)

• σ2 is the phenotype total variance
• η ∈ [0, 1] is the phenotype heritability (narrow sens)
• Y|(β, η, σ2) ∼ N (Xβ, ησ2Φ+ (1− η)σ2I)
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Likelihood

• The negative log-likelihood is given by

−ℓ(Θ) ∝ n
2
log(σ2) +

1

2
log (det(V)) + 1

2σ2
(Y− Xβ)T V−1 (Y− Xβ)

V = ηΦ+ (1− η)I
• Assume the spectral decomposition of Φ

Φ = UDU⊤

• U is an n× n orthogonal matrix and D is an n× n diagonal matrix
• One can write

V = U(ηD+ (1− η)I)U⊤ = UWU⊤

with W = diag (wi)
n
i=1, wi = ηDii + (1− η)
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Likelihood

• Projection of Y (and columns of X) into Span(U) leads to a simplified
correlation structure for the transformed data: Ỹ = U⊤Y

• Ỹ|(β, η, σ2) ∼ N (X̃β, σ2W), with X̃ = U⊤X
• The negative log-likelihood can then be expressed as

−ℓ(Θ) ∝ n
2
log(σ2) +

1

2

n∑
i=1

log (wi) +
1

2σ2

(
Ỹ− X̃β

)T W−1 (Ỹ− X̃β
)

• For fixed σ2 and η, solving for β is a weighted least squares problem
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Penalized Maximum Likelihood Estimator

• Define the objective function:

Qλ(Θ) = −ℓ(Θ) + λ
∑
j

pj(βj)

• pj(·) is a penalty term on β1, . . . , βp

• An estimate of the model parameters Θ̂λ is obtained by

Θ̂λ = argmin
Θ

Qλ(Θ)
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Block Relaxation (De Leeuw, 1994)

To solve for the optimization problem we use a block relaxation technique

Set k← 0, initial values for the parameter vector Θ(0) and ϵ;
for λ ∈ {λmax, . . . , λmin} do

repeat

For j = 1, . . . , p, β
(k+1)
j ← argmin

βj

Qλ

(
β
(k)
−j , η

(k), σ2 (k)
)

η(k+1) ← argmin
η

Qλ

(
β(k+1), η, σ2 (k)

)
σ2 (k+1) ← argmin

σ2

Qλ

(
β(k+1), η(k+1), σ2

)
k← k+ 1

until convergence criterion is satisfied: ||Θ(k+1) −Θ(k)||2 < ϵ;
end

Algorithm 1: Block Relaxation Algorithm
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Coordinate Gradient Descent Method

• We take advantage of smoothness of ℓ(Θ)

• We approximate Qλ(Θ) by a strictly convex quadratic function (using
gradient)

• We use CGD to calculate a descent direction
• To achieve the descent property for the objective function, we employ

further line search

Theorem [Convergence] 1:
If {Θ(k), k = 0, 1, 2, . . .} is a sequence of iterates generated by the iteration
map of Algorithm 1, then each cluster point (i.e. limit point) of
{Θ(k), k = 0, 1, 2, . . .} is a stationary point of Qλ(Θ)

1Tseng P& Yun S. Math. Program., Ser. B, (2009)
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Choice of the tuning parameter

• We use the BIC:

BICλ = −2ℓ(β̂, σ̂2, η̂) + c · d̂fλ

• d̂fλ is the number of non-zero elements in β̂λ plus two 1

• Several authors 2 have used this criterion for variable selection in
mixed models with c = log n

• Other authors 3 have proposed c = log(log(n)) ∗ log(n)

1Zou et al. The Annals of Statistics, (2007)
2Bondell et al. Biometrics (2010)
3Wang et al. JRSS(Ser. B), (2009)
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Simulation study
• We simulated data from the model Y = Xβ + P+ ε

• We used heritability η = {0.1, 0.3}, number of covariates p = 5, 000,
number of kinship SNPs k = 10, 000, percentage of causal SNPs
c = {0%, 1%} and σ2 = 1.

• In addition to these parameters, we also varied the amount of overlap
between the causal list and the kinship list:

1. None of the causal SNPs are included in kinship set.
2. All of the causal SNPs are included in the kinship set.

• These were meant to contrast the model behavior when causal SNPs
are included in both the main effects and random effects vs. when the
causal SNPs are only included in the main effects.

• These scenarios are motivated by the current standard of practice in
GWAS where the candidate marker is excluded from the calculation of
the kinship matrix.

• This approach becomes much more difficult to apply in large-scale
multivariable models where there is likely to be overlap between the
variables in the design matrix and kinship matrix.
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Simulation study results

• Both the lasso+PC and twostep selected more false positives
compared to ggmix

• Overall, we observed that variable selection results and RMSE for
ggmix were similar regardless of whether the causal SNPs were in the
kinship matrix or not.

• This result is encouraging since in practice the kinship matrix is
constructed from a random sample of SNPs across the genome, some
of which are likely to be causal, particularly in polygenic traits.

• In particular, our simulation results show that the principal
component adjustment method may not be the best approach to
control for confounding by population structure, particularly when
variable selection is of interest.
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Real data applications

1. UK Biobank
▶ 10,000 LD-pruned SNPs (Essentially un-correlated variables) to predict

standing height in 18k related individuals
▶ Standing height is highly polygenic (many variables associated with

response)

2. GAW20 Simulated dataset
▶ 50,000 SNPs (all on chromosome 1) to predict high-density lipoproteins

in 679 related individuals
▶ Not much correlation between causal SNP and others
▶ Very sparse signals (only 1 causal variant)

3. Mouse Crosses
▶ Find loci associated with mouse sensitivity to mycobacterial infection
▶ 189 samples, and 625 microsatellite markers
▶ Highly correlated variables
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Results: UK Biobank
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Results: GAW20

Method Median number RMSE (SD)
of active variables

(Inter-quartile range)

twostep 1 (1 - 11) 0.3604 (0.0242)
lasso 1 (1 - 15) 0.3105 (0.0199)
ggmix 1 (1 - 12) 0.3146 (0.0210)
BSLMM 40,737 (39,901 - 41,539) 0.2503 (0.0099)

Table: Summary of model performance based on 200 GAW20 simulations. Five-fold
cross-validation root-mean-square error was reported for each simulation replicate.
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Results: Mouse crosses
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Discussion

• La procédure en deux étapes conduit à un grand nombre de faux
positifs et de faux négatifs

• L’ajustement de la composante principale dans lasso peut ne pas être
suffisant pour contrôler la confusion, en particulier lorsqu’il y a
beaucoup de corrélation entre les observations

• ggmix fonctionne bien même lorsque les variables causales sont
utilisées dans le calcul de la matrice de parenté

• ggmix a montré la plus grande amélioration par rapport à twostep et
lasso quand il y avait des variables hautement corrélées avec
beaucoup de structure (exemple de croix de souris)
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ggmix R package
library(ggmix)
data("admixed")
fit <- ggmix(x = admixed$xtrain,

y = admixed$ytrain,
kinship = admixed$kin_train)

plot(fit)
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gSOS
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SCAD (Fan et Li, JASA, 2001), MCP (Zhang, Ann. Stat.,
2010)
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Computational challenges

• Past approaches for optimization for SCAD/MCP relies upon descent
method, first- or second- order

• e.g., sparsenet (Mazumder et al. 2011) uses coordinate descent with
full step size, whose coordinate update cycles through
β̃j = Sγk

(∑n
i=1

(
yi − ỹji

)
xij, λℓ

)
, where ỹji =

∑
k ̸=j xikβ̃k

• However, coordinate descent is difficult to vectorize, and rate of
convergence is difficult of establish – though past literature suggests
O(1/k) rate of convergence for ISTA
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Our proposal: Accelerated gradient (AG) method
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gradient analogue. Our interpretation of their algorithm suggests this to be a damped

accelerated gradient scheme. Based on this, we propose an approach how to select
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Numerical Study for SCAD
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0, σ2

)
, y = Xτ generate + ε, σ2 =

∥τ generate∥2
3 ,

τ generate ∈ R10006 is a sparse constant vector with 6 values of
1.23(intercept), 3, 4, 5, 6, 59 as true effect coefficients and 10000 values of
0. Start point: τ 0 = 110006, a = 3.7, λ = 0.6.

Extensions 64 / 76 .



Numerical Study for MCP
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Simulation settings here is same as before in SCAD, γ = 2.5, λ = 0.6.
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Abstract

In epidemiological studies of time-to-event data, a quantity of interest to the clinician
and the patient is the risk of an event given a covariate profile. However, methods relying
on time matching or risk-set sampling (including Cox regression) eliminate the baseline
hazard from the likelihood expression or the estimating function. The baseline hazard
then needs to be estimated separately using a non-parametric approach. This leads to
step-wise estimates of the cumulative incidence that are difficult to interpret. Using case-
base sampling, Hanley & Miettinen (2009) explained how the parametric hazard functions
can be estimated using logistic regression. Their approach naturally leads to estimates of
the cumulative incidence that are smooth-in-time.

In this paper, we present the casebase R package, a comprehensive and flexible toolkit
for parametric survival analysis. We describe how the case-base framework can also be
used in more complex settings: competing risks, time-varying exposure, and variable se-
lection. Our package also includes an extensive array of visualization tools to complement
the analysis of time-to-event data. We illustrate all these features through four different
case studies.

*SRB and MT contributed equally to this work.

Keywords: survival analysis, absolute risk, R, data visualization.

1. Introduction

Survival analysis and the comparison of event rates has been greatly influenced over the last
50 years by the partial likelihood approach of the Cox proportional hazard model (Cox 1972).
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Case-base sampling
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Case-base sampling

• The unit of analysis is a person-moment.
• Case-base sampling reduces the model fitting to a familiar logistic

regression.
• The sampling process is taken into account using an offset term.
• By sampling a large base series, the information loss eventually

becomes negligible.
• This framework can easily be used with time-varying covariates (e.g.

time-varying exposure). We can fit any hazard λ of the following
form:

logλ(t;α, β) = g(t;α) + βX

• Different choices of the function g leads to familiar parametric
families:
▶ Exponential: g is constant.
▶ Gompertz: g(t;α) = αt.
▶ Weibull: g(t;α) = α log t
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Orientations futures

• ggmix est limité par le nombre d’individus (ne s’applique pas à
l’ensemble de la cohorte UK Biobank de 500k)→ approximations de
rang inférieur de la matrice de parenté

• Problèmes de mémoire lorsque le nombre de covariables dans le
modèle dépasse 50k→ stratégies de mappage de mémoire (par
exemple biglasso de Zeng et Breheny (2017))

• Extension aux données multivariées, longitudinales, combinaisons de
plusieurs cohortes→ Plusieurs effets aléatoires.
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