Variable selection in high-dimensional genetic data

Sahir Rai Bhatnagar Department of Epidemiology, Biostatistics, and Occupational Health Department of Diagnostic Radiology McGill University

sahirbhatnagar.com

Feb. 23, 2021

Classical Methods

Betting on Sparsity

A Thought Experiment

Motivating Dataset

Notre proposition

Résultats

Other applications

Extensions

Fonctions de pénalité non convexes
 Analyse de survie

Orientations futures

Setting

• We are concerned with the analysis of data in which we are attempting to predict an outcome *Y* using a number of explanatory factors *X*₁, *X*₂, *X*₃, . . . , some of which may not be particularly useful

Setting

- We are concerned with the analysis of data in which we are attempting to predict an outcome *Y* using a number of explanatory factors *X*₁, *X*₂, *X*₃, . . . , some of which may not be particularly useful
- Although the methods we will discuss can be used solely for prediction (i.e., as a "black box"), I will adopt the perspective that we would like the statistical methods to be interpretable and to explain something about the relationship between the *X* and *Y*

Setting

- We are concerned with the analysis of data in which we are attempting to predict an outcome *Y* using a number of explanatory factors *X*₁, *X*₂, *X*₃, . . . , some of which may not be particularly useful
- Although the methods we will discuss can be used solely for prediction (i.e., as a "black box"), I will adopt the perspective that we would like the statistical methods to be interpretable and to explain something about the relationship between the *X* and *Y*
- Regression models are an attractive framework for approaching problems of this type, and the focus today will be on extending classical regression modeling to deal with high-dimensional data

Classical Methods

- A nice and powerful toolbox for analyzing the more traditional datasets where the sample size (*N*) is far **greater than** the number of covariates (*p*):
 - linear regression, logistic regression, LDA, QDA, glm,
 - regression spline, smoothing spline, kernel smoothing, local smoothing, GAM,
 - Neural Network, SVM, Boosting, Random Forest, ...

Classical Methods

- A nice and powerful toolbox for analyzing the more traditional datasets where the sample size (*N*) is far **greater than** the number of covariates (*p*):
 - linear regression, logistic regression, LDA, QDA, glm,
 - regression spline, smoothing spline, kernel smoothing, local smoothing, GAM,
 - Neural Network, SVM, Boosting, Random Forest, ...

	x_{11}	x_{12}		x_{1p}
	x_{21}	x_{12}	• • •	x_{1p}
	x_{31}	x_{12}		x_{1p}
	:	÷	÷	:
$\mathbf{X}_{n \times p} =$:	÷	÷	÷
n×p	:	÷	÷	:
	:	÷	÷	:
	:	÷	÷	:
	x_{n1}	x_{12}	•••	x_{np}

	Sepal.Length $\hat{}$	Sepal.Width $^{\diamond}$	Petal.Length 🗘	Petal.Width 🗘	Species $\hat{}$
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa
11	5.4	3.7	1.5	0.2	setosa
12	4.8	3.4	1.6	0.2	setosa
13	4.8	3.0	1.4	0.1	setosa
14	4.3	3.0	1.1	0.1	setosa
15	5.8	4.0	1.2	0.2	setosa

Classical Linear Regression

Data: $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$ iid from

$$y = \mathbf{x}^T \boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where $E(\epsilon | \mathbf{x}) = 0$, and dim(x) = p. To include an intercept, we can set $\mathbf{x}_1 \equiv 1$. Using Matrix notation:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

The least squares estimator

$$\widehat{\boldsymbol{\beta}}_{LS} = \arg\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$
$$\widehat{\boldsymbol{\beta}}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Classical Linear Regression

Data: $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$ iid from

$$y = \mathbf{x}^T \boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where $E(\epsilon | \mathbf{x}) = 0$, and dim(x) = p. To include an intercept, we can set $\mathbf{x}_1 \equiv 1$. Using Matrix notation:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

The least squares estimator

$$\widehat{\boldsymbol{\beta}}_{LS} = \arg\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$
$$\widehat{\boldsymbol{\beta}}_{LS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

• **Question:** How to find the important variables **x**_{*j*}?

Best-subset Selection (Beal et al. 1967, Biometrika)

Predictor set	model
None of $x_1 x_2 x_3 x_4$	$E(\mathbf{Y}) = \beta_0$
<i>x</i> ₁	$\mathbf{E}(\mathbf{Y}) = \mathbf{\beta}_0 + \mathbf{\beta}_1 \mathbf{x}_1$
<i>x</i> ₂	$E(\mathbf{Y}) = \beta_0 + \beta_2 x_2$
<i>x</i> ₃	$\mathbf{E}(\mathbf{Y}) = \mathbf{\beta}_0 + \mathbf{\beta}_3 \mathbf{x}_3$
<i>x</i> ₄	$E(\mathbf{Y}) = \beta_0 + \beta_4 x_4$
$x_1 x_2$	$\mathbf{E}(\mathbf{Y}) = \mathbf{\beta}_0 + \mathbf{\beta}_1 \mathbf{x}_1 + \mathbf{\beta}_2 \mathbf{x}_2$
<i>x</i> ₁ <i>x</i> ₃	$\mathbf{E}(\mathbf{Y}) = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \boldsymbol{x}_1 + \boldsymbol{\beta}_3 \boldsymbol{x}_3$
<i>x</i> ₁ <i>x</i> ₄	$\mathbf{E}(\mathbf{Y}) = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \boldsymbol{x}_1 + \boldsymbol{\beta}_4 \boldsymbol{x}_4$
<i>x</i> ₂ <i>x</i> ₃	$\mathbf{E}(\mathbf{Y}) = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_2 \boldsymbol{x}_2 + \boldsymbol{\beta}_3 \boldsymbol{x}_3$
<i>x</i> ₂ <i>x</i> ₄	$\mathbf{E}(\mathbf{Y}) = \beta_0 + \beta_2 x_2 + \beta_4 x_4$
x3 x4	$\mathbf{E}(\mathbf{Y}) = \beta_0 + \beta_3 x_3 + \beta_4 x_4$
$x_1 x_2 x_3$	$\mathbf{E}(\mathbf{Y}) = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \boldsymbol{x}_1 + \boldsymbol{\beta}_2 \boldsymbol{x}_2 + \boldsymbol{\beta}_3 \boldsymbol{x}_3$
$x_1 x_2 x_4$	$\mathbf{E}(\mathbf{Y}) = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \boldsymbol{x}_1 + \boldsymbol{\beta}_2 \boldsymbol{x}_2 + \boldsymbol{\beta}_4 \boldsymbol{x}_4$
$x_1 x_3 x_4$	$\mathbf{E}(\mathbf{Y}) = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \boldsymbol{x}_1 + \boldsymbol{\beta}_3 \boldsymbol{x}_3 + \boldsymbol{\beta}_4 \boldsymbol{x}_4$
x ₂ x ₃ x ₄	$\mathbf{E}(\mathbf{Y}) = \beta_0 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$
$x_1 x_2 x_3 x_4$	$E(Y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$

Classical Methods

Which variables are important?

- Scientists know only a small subset of variables (such as genes) are important for the response variable.
- An old Idea: try all possible subset models and pick the best one.
- Fit a subset of predictors to the linear regression model. Let S be the subset predictors, e.g., S = {1, 3, 7}.

$$C_p = \frac{\text{RSS}_S}{\sigma^2} - (n - 2|S|) = \frac{\text{RSS}_S}{\sigma^2} + 2|S| - n$$

• We pick the model with the smallest *C_p* value.

Model selection criteria

Minimizing C_p is equivalent to minimizing

$$\|\mathbf{y}-\mathbf{X}_{S}\widehat{\boldsymbol{\beta}}_{S}\|^{2}+2|S|\sigma^{2}.$$

which is AIC score.

Many popular model selection criteria can be written as

$$\|\mathbf{y} - \mathbf{X}_{S}\widehat{\boldsymbol{\beta}}_{S}\|^{2} + \lambda |S|\sigma^{2}.$$

• BIC uses $\lambda = \sigma \sqrt{\log(n)/n}$.

Remarks

Best subset selection plus model selection criteria (AIC, BIC, etc.)

- Computing all possible subset models is a combinatorial optimization problem (NP hard)
- Instability in the selection process (Breiman, 1996)

•
$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2 + \lambda ||\boldsymbol{\beta}||_2^2$$

•
$$||\beta||_2^2 = \sum_{j=1}^p \beta_j^2$$

•
$$\widehat{\boldsymbol{\beta}} = \arg \min_{\boldsymbol{\beta}} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2 + \lambda ||\boldsymbol{\beta}||_2^2$$

•
$$||\beta||_2^2 = \sum_{j=1}^p \beta_j^2$$

•
$$\widehat{\boldsymbol{\beta}}_{Ridge} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y} \rightarrow \text{exact solution}$$

•
$$\widehat{\boldsymbol{\beta}}_{LS} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

•
$$\widehat{\boldsymbol{\beta}} = \arg \min_{\boldsymbol{\beta}} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2 + \lambda ||\boldsymbol{\beta}||_2^2$$

•
$$||\beta||_2^2 = \sum_{j=1}^p \beta_j^2$$

•
$$\widehat{\boldsymbol{\beta}}_{Ridge} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y} \rightarrow \text{exact solution}$$

•
$$\widehat{\boldsymbol{\beta}}_{LS} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

• Let
$$\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_{p \times p}$$

•
$$\widehat{\boldsymbol{\beta}} = \arg \min_{\boldsymbol{\beta}} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2 + \lambda ||\boldsymbol{\beta}||_2^2$$

•
$$||\beta||_2^2 = \sum_{j=1}^p \beta_j^2$$

•
$$\widehat{\boldsymbol{\beta}}_{Ridge} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y} \rightarrow \text{exact solution}$$

•
$$\widehat{\boldsymbol{\beta}}_{LS} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

• Let
$$\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_{p \times p}$$

 $\hat{\beta}_{j(Ridge)} = \frac{\hat{\beta}_{j(MCO)}}{1 + \lambda}$

$$\mathbf{X}_{n\times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & \cdots & \cdots & \cdots & x_{1p} \\ \vdots & \vdots \\ x_{n1} & x_{12} & \cdots & \cdots & \cdots & \cdots & x_{np}. \end{bmatrix}$$

Why can't we fit OLS to High-dimensional data?

• We will let

- *n* denote the number of independent sampling units (e.g., number of patients)
- *p* denote the number of features recorded for each unit

- We will let
 - *n* denote the number of independent sampling units (e.g., number of patients)
 - *p* denote the number of features recorded for each unit
- In high-dimensional data, *p* is large with respect to *n*
 - This certainly includes the case where p > n

- We will let
 - *n* denote the number of independent sampling units (e.g., number of patients)
 - *p* denote the number of features recorded for each unit
- In high-dimensional data, *p* is large with respect to *n*
 - This certainly includes the case where p > n
 - However, the ideas we discuss in this course are also relevant to many situations in which *p* < *n*; for example, if *n* = 100 and *p* = 80, we probably don't want to use ordinary least squares

A fundamental picture for data science

ESL, Hastie et al. 2009

Classical Methods

Betting on Sparsity

A Thought Experiment

Motivating Dataset

Notre proposition

Résultats

Other applications

Extensions

Fonctions de pénalité non convexes
 Analyse de survie

Orientations futures

Use a procedure that does well in sparse problems, since no procedure does well in dense problems.¹

¹The elements of statistical learning. Springer series in statistics, 2001. Betting on Sparsity

Use a procedure that does well in sparse problems, since no procedure does well in dense problems.¹

- We often don't have enough data to estimate so many parameters
- Even when we do, we might want to identify a **relatively small number of predictors** (*k* < *N*) that play an important role
- Faster computation, easier to understand, and stable predictions on new datasets.

¹The elements of statistical learning. Springer series in statistics, 2001. Betting on Sparsity

Classical Methods

Betting on Sparsity

A Thought Experiment

Motivating Datase

Notre proposition

Résultats

Other applications

Extensions

Fonctions de pénalité non convexes Analyse de survie

Orientations futures

How would you schedule a meeting of 20 people?

How would you schedule a meeting of 20 people?

	March 201	7										
	Thu 9	Fri 10	Sal 11		Sun 12	Mon 13	Tue 14	Wed 15	Thu 16	Fri 17	Sat 18	Sun 19
1 participants	5:00 PM - 9:00 PM	5:00 PM - 9:00 PM	9:00 AM - 3:00 PM	3:00 PM - 9:00 PM	1:00 PM- 9:00 PM	1:00 PM- 9:00 PM	1:00 PM- 9:00 PM	1:00 PM- 9:00 PM	1:00 PM - 9:00 PM	1:00 PM - 9:00 PM	1:00 PM - 9:00 PM	1:00 PM- 9:00 PM
JayZ	1	1	1			1			1	1	1	
Evan										1	1	1
Omar	1	1		1		1			1	1	1	
Caitlin	1	1	1						1	1	1	
Austin	1	1	1									
Ethan			1	1					1		1	
. Max	1	1	1			1			1	1	1	
. Tycho	1	1	1	1		1			1	1	1	
Janavi Chadha		1	1	1		1	1			1	1	
Charlotte											1	1
Darshanye	1	1				1			1	1		
Your name												
	5:00 PM - 9:00 PM	5:00 PM - 9:00 PM	9.00 AM - 3.00 PM	3:00 PM - 9:00 PM	1:00 PM 9:00 PM							
	Thu 9	Fri 10	Sat 11		Sun 12	Mon 13	Tue 14	Wed 15	Thu 16	Fri 17	Sat 18	Sun 19
	March 201	7										
	7	8	7	4	0	6	1	0	7	8	9	2

Classical Methods

Betting on Sparsity

A Thought Experiment

Motivating Dataset

Notre proposition

Résultats

Other applications

Extensions

Fonctions de pénalité non convexes Analyse de survie

Orientations futures

UKBiobank

- Données de génotypage sont issues de 500 000 individus d'origine caucasienne recrutés au Royaume-Uni
- La puce UKBioBANK comporte plus de 800 000 SNPs
- Grand nombre de variables réponses (ex. maladie, densité minérale osseuse)
- Objectif: Quelles variables explicatives sont associées à la variable réponse?

Un échantillon

	ID	Response	Gene1	Gene2	Gene3	Gene4	Gene5	Gene6
1	2610781	-1.255	1	2	0	0	0	1
2	4114347	-0.339	1	2	0	2	0	1
3	4399930	-0.6	1	2	1	1	0	1
4	2081319	0.809	1	2	0	1	0	2
5	1347380	0.279	2	2	0	0	0	0
6	3262449	-0.421	2	2	0	1	0	1
7	4870063	-0.454	2	2	0	0	0	2
8	1141212	1.383	2	2	1	1	1	0
9	2997954	-2.29	1	2	0	0	0	1
10	5805218	2.289	1	2	0	1	1	1

GWAS

 $^{1}\mathrm{Tam}$ V. et al. Benefits and limitations of genome-wide association studies. Nat Rev Genet (2019) Motivating Dataset

Confounding

Population structure

 Les GWAS comparent des individus non apparentés, mais «non apparentés» en fait signifie que les relations sont inconnues et présumées éloignées.

¹Astle and Balding. Population structure and cryptic relatedness in genetic association studies. Statistical Science (2009)

Les observations ne sont pas indépendants

- Les observations sont **corrélées**, mais cette relation est souvent **inconnue**
- Cependant, elle peut être estimé à partir des données

	ID	Response	Gene1	Gene2	Gene3	Gene4	Gene5	Gene6
1	2610781	-1.255	1	2	0	0	0	1
2	4114347	-0.339	1	2	0	2	0	1
3	4399930	-0.6	1	2	1	1	0	1
4	2081319	0.809	1	2	0	1	0	2
5	1347380	0.279	2	2	0	0	0	0
6	3262449	-0.421	2	2	0	1	0	1
7	4870063	-0.454	2	2	0	0	0	2
8	1141212	1.383	2	2	1	1	1	0
9	2997954	-2.29	1	2	0	0	0	1
10	5805218	2.289	1	2	0	1	1	1

La matrice de parenté (kinship)

- Soit *kinship* une liste de SNP utilisée pour estimer la matrice de parenté
- Soit $X_{kinship}$ une matrice de génotype normalisée $n \times q$.
- Une matrice de parenté (Φ) peut être calculée comme:

$$\mathbf{\Phi} = \frac{1}{q-1} X_{kinship} X_{kinship}^{\top} \tag{1}$$

Test d'association avec un modèle mixte linéaire (LMM)

$$\mathbf{Y} = \sum_{j=1}^{p} \beta_j \cdot \mathrm{SNP}_j + \mathbf{P} + \boldsymbol{\varepsilon}$$
(2)

$$\mathbf{P} \sim \mathcal{N}(0, \eta \sigma^2 \mathbf{\Phi}) \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(0, (1-\eta)\sigma^2 \mathbf{I})$$

- σ^2 est la variance totale du phénotype
- $\eta \in [0,1]$ est l'héritabilité du phénotype

•
$$\mathbf{Y}|(\eta, \sigma^2) \sim \mathcal{N}(\mathbf{0}, \eta \sigma^2 \mathbf{\Phi} + (1 - \eta) \sigma^2 \mathbf{I})$$

Régression ridge (Hoerl & Kennard 1970, Technometrics), Lasso (Tibshirani 1996, JRSSB)

•
$$\widehat{\boldsymbol{\beta}^{ridge}} = \arg\min_{\boldsymbol{\beta}} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2 + \lambda ||\boldsymbol{\beta}||_2^2$$

•
$$\hat{\boldsymbol{\beta}}^{lasso} = \arg\min_{\beta} \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Lasso, ridge, ect. ne sont pas directement applicable au LMM

• Étape 1: Ajuster un LMM sous l'hypothèse nul avec un seul effet aléatoire

$$\begin{split} \mathbf{Y} &= \mathbf{P} + \boldsymbol{\varepsilon} \\ \mathbf{P} &\sim \mathcal{N}(0, \eta \sigma^2 \mathbf{\Phi}) \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(0, (1 - \eta) \sigma^2 \mathbf{I}) \end{split}$$

• Étape 1: Ajuster un LMM sous l'hypothèse nul avec un seul effet aléatoire

$$\begin{split} \mathbf{Y} &= \mathbf{P} + \boldsymbol{\varepsilon} \\ \mathbf{P} &\sim \mathcal{N}(0, \eta \sigma^2 \mathbf{\Phi}) \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(0, (1 - \eta) \sigma^2 \mathbf{I}) \end{split}$$

• Étape 2: Utilisez les résidus de l'étape 1 comme nouvelle réponse *indépendante*

V	
Λ	kinship

	Gene1	Gene2	Gene3	Gene4	Gene5	Gene6
ID1	2	2	2	2	2	2
ID2	0	2	2	2	2	2
ID3	0	2	2	2	2	2
ID4	1	2	2	2	2	2
ID5	0	2	2	2	2	2
ID6	1	2	2	2	1	2
ID7	2	2	2	2	1	2
ID8	1	2	2	2	2	2
ID9	0	2	2	2	1	2
ID10	1	2	2	1	2	2

V	
Λ	kinship

	Gene1	Gene2	Gene3	Gene4	Gene5	Gene6
ID1	2	2	2	2	2	2
ID2	0	2	2	2	2	2
ID3	0	2	2	2	2	2
ID4	1	2	2	2	2	2
ID5	0	2	2	2	2	2
ID6	1	2	2	2	1	2
ID7	2	2	2	2	1	2
ID8	1	2	2	2	2	2
ID9	0	2	2	2	1	2
ID10	1	2	2	1	2	2

 $X_{kinship} X_{kinship}$

1	ID1	ID2	ID3	ID4	ID5	ID6	ID7	ID8	ID9	ID10
ID1	0.97	0	0	0	-0.02	0.03	0.02	-0.01	-0.02	0.03
ID2	0	1	0	-0.01	0	-0.01	-0.01	0	0	0
ID3	0	0	0.98	0.01	0.01	0.01	0	0.03	-0.01	-0.01
ID4	0	-0.01	0.01	1.03	0.04	0.01	-0.01	0.01	0.01	-0.01
ID5	-0.02	0	0.01	0.04	0.97	-0.01	-0.01	0.01	0.03	0.03
ID6	0.03	-0.01	0.01	0.01	-0.01	1.02	0	0	0	0.01
ID7	0.02	-0.01	0	-0.01	-0.01	0	1	0.02	0.02	0
ID8	-0.01	0	0.03	0.01	0.01	0	0.02	1.01	0.01	0
ID9	-0.02	0	-0.01	0.01	0.03	0	0.02	0.01	1.04	0.01
ID10	0.03	0	-0.01	-0.01	0.03	0.01	0	0	0.01	0.95

V	
Λ	kinship

	Gene1	Gene2	Gene3	Gene4	Gene5	Gene6
ID1	2	2	2	2	2	2
ID2	0	2	2	2	2	2
ID3	0	2	2	2	2	2
ID4	1	2	2	2	2	2
ID5	0	2	2	2	2	2
ID6	1	2	2	2	1	2
ID7	2	2	2	2	1	2
ID8	1	2	2	2	2	2
ID9	0	2	2	2	1	2
ID10	1	2	2	1	2	2
			-			

1	X	_kinship X	_kinship ^T
---	---	-------------------	-----------------------

1	ID1	ID2	ID3	ID4	ID5	ID6	ID7	ID8	ID9	ID10
ID1	0.97	0	0	0	-0.02	0.03	0.02	-0.01	-0.02	0.03
ID2	0	1	0	-0.01	0	-0.01	-0.01	0	0	0
ID3	0	0	0.98	0.01	0.01	0.01	0	0.03	-0.01	-0.01
ID4	0	-0.01	0.01	1.03	0.04	0.01	-0.01	0.01	0.01	-0.01
ID5	-0.02	0	0.01	0.04	0.97	-0.01	-0.01	0.01	0.03	0.03
ID6	0.03	-0.01	0.01	0.01	-0.01	1.02	0	0	0	0.01
ID7	0.02	-0.01	0	-0.01	-0.01	0	1	0.02	0.02	0
ID8	-0.01	0	0.03	0.01	0.01	0	0.02	1.01	0.01	0
ID9	-0.02	0	-0.01	0.01	0.03	0	0.02	0.01	1.04	0.01
ID10	0.03	0	-0.01	-0.01	0.03	0.01	0	0	0.01	0.95

neaponae	
-1.255	
-0.339	
-0.6	
0.809	
0.279	
-0.421	
-0.454	
1.383	
-2.29	
2.289	

Response

+

Υ						Ρ					
Response		ID1	ID2	ID3	ID4	ID5	ID6	ID7	ID8	ID9	ID10
-1.255	ID1	0.97			0	-0.02	0.03	0.02	-0.01	-0.02	
-0.339			0	0	-						0.03
-0.6	ID2	0	1	0	-0.01	0	-0.01	-0.01	0	0	0
	ID3	0	0	0.98	0.01	0.01	0.01	0	0.03	-0.01	-0.01
0.809	ID4	0	-0.01	0.01	1.03	0.04	0.01	-0.01	0.01	0.01	-0.01
0.279	ID5	-0.02	0	0.01	0.04	0.97	-0.01	-0.01	0.01	0.03	0.03
-0.421	ID6	0.03	-0.01	0.01	0.01	-0.01	1.02	0	0	0	0.01
-0.454	ID7	0.02	-0.01	0	-0.01	-0.01	0	1	0.02	0.02	0
1.383	ID8	-0.01	0	0.03	0.01	0.01	0	0.02	1.01	0.01	0
-2.29	ID9	-0.02	0	-0.01	0.01	0.03	0	0.02	0.01	1.04	0.01
2.289	ID10	0.03	0	-0.01	-0.01	0.03	0.01	0	0	0.01	0.95

Step 2: Residuals from Step 1

	Gene1	Gene2	Gene3	Gene4	Gene5	Gene6
ID1	2	2	2	2	2	2
ID2	0	2	2	2	2	2
ID3	0	2	2	2	2	2
ID4	1	2	2	2	2	2
ID5	0	2	2	2	2	2
ID6	1	2	2	2	1	2
ID7	2	2	2	2	1	2
ID8	1	2	2	2	2	2
ID9	0	2	2	2	1	2
ID10	1	2	2	1	2	2

+ E₁

E,

Step 2: Residuals from Step 1

	Gene1	Gene2	Gene3	Gene4	Gene5	Gene6
ID1	2	2	2	2	2	2
ID2	0	2	2	2	2	2
ID3	0	2	2	2	2	2
ID4	1	2	2	2	2	2
ID5	0	2	2	2	2	2
ID6	1	2	2	2	1	2
ID7	2	2	2	2	1	2
ID8	1	2	2	2	2	2
ID9	0	2	2	2	1	2
ID10	1	2	2	1	2	2

• Dans les tests d'association, on sait qu'il souffre d'énormes pertes de Motivating Dataset puissance (Oualkacha et al. Gene. Epi. (2013))

36/76.

F.

E₁

Classical Methods

Betting on Sparsity

A Thought Experiment

Motivating Dataset

Notre proposition

Résultats

Other applications

Extensions

Fonctions de pénalité non convexes
 Analyse de survie

Orientations futures

Notre proposition

• Nous proposons, ggmix, une procédure en **une seule étape** qui contrôle simultanément les populations structurées et effectue une sélection de variables dans les modèles mixtes linéaires

PLOS GENETICS

RESEARCH ARTICLE

Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models

Sahir R. Bhatnagaro^{1,2}*, Yi Yang³, Tianyuan Luo^{4,5}, Erwin Schurro⁶, JC Loredo-Osti⁷, Marie Foresto⁸, Karim Oualkacha⁹, Celia M. T. Greenwoodo^{1,4,5,10,11}

1 Department of Epidemiology, Biostalistics and Occupational Health, McGill University, Montriela, Québec, Canada, 2 Department of Diagnositic Radiology, McGill University, Montriela, Québe, Canada, 3 Department of Mathematics and Statistics, McGill University, Montriela, Québec, Canada, 4 Quantitative Life Sciences, McGill University, Montriela, Québec, Canada, 4 Quantitative Life Sciences, McGill University, Montriela, Québec, Canada, 4 Quantitative Life Sciences, McGill University, Montriela, Québec, Canada, 5 Department of Mathematics and Statistics, Menorial University, Montriela, Québec, Canada, 8 Department of Mathematics and Statistics, Menorial University, Montriela, Québec, Canada, 9 Department of Mathematica and Labrado, Canada, 8 Ecola de Technologie Supérieure, Montréal, Québec, Canada, 9 Départment de Mathematiques, Université du Québec X andréal, Montréal, Québec, Canada, 9 Department of Human Genetics, McGill University, Montréal, Québec, Canada, 9 Départment de Mathematiques, Université du Québec X, Montréal, Québec, Canada, 9 Départment of Human Genetics, McGill University, Montréal, Québec, Canada

* sahir.bhatnagar@mcgill.ca

¹R package: sahirbhatnagar.com/ggmix, https://cran.r-project.org/package=ggmix proposition

ggmix: une procédure en une seule étape

Γ

	ID1	ID2	ID3	ID4	ID5	ID6	ID7	ID8	ID9	ID10
ID1	0.97	0	0	0	-0.02	0.03	0.02	-0.01	-0.02	0.03
ID2	0	1	0	-0.01	0	-0.01	-0.01	0	0	0
ID3	0	0	0.98	0.01	0.01	0.01	0	0.03	-0.01	-0.01
ID4	0	-0.01	0.01	1.03	0.04	0.01	-0.01	0.01	0.01	-0.01
ID5	-0.02	0	0.01	0.04	0.97	-0.01	-0.01	0.01	0.03	0.03
ID6	0.03	-0.01	0.01	0.01	-0.01	1.02	0	0	0	0.01
ID7	0.02	-0.01	0	-0.01	-0.01	0	1	0.02	0.02	0
ID8	-0.01	0	0.03	0.01	0.01	0	0.02	1.01	0.01	0
ID9	-0.02	0	-0.01	0.01	0.03	0	0.02	0.01	1.04	0.01
ID10	0.03	0	-0.01	-0.01	0.03	0.01	0	0	0.01	0.95

+ E

¹R package: sahirbhatnagar.com/ggmix, https://cran.r-project.org/package=ggmix Note proposition

Data and Model

- Phenotype: $\mathbf{Y} = (y_1, \dots, y_n) \in \mathbb{R}^n$
- SNPs: $\mathbf{X} = (\mathbf{X}_1; \dots, \mathbf{X}_n)^T \in \mathbb{R}^{n \times p}$, where $p \gg n$
- Twice the Kinship matrix or Realized Relationship matrix: $\mathbf{\Phi} \in \mathbb{R}^{n imes n}$
- Regression Coefficients: $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^T \in \mathbb{R}^p$
- Polygenic random effect: $\mathbf{P} = (P_1, \dots, P_n) \in \mathbb{R}^n$
- Error: $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_n) \in \mathbb{R}^n$
- We consider the following LMM with a single random effect:

$$\begin{split} \mathbf{Y} &= \mathbf{X}\boldsymbol{\beta} + \mathbf{P} + \boldsymbol{\varepsilon} \\ \mathbf{P} &\sim \mathcal{N}(0, \eta \sigma^2 \mathbf{\Phi}) \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(0, (1 - \eta) \sigma^2 \mathbf{I}) \end{split}$$

- σ^2 is the phenotype total variance
- $\eta \in [0,1]$ is the phenotype heritability (narrow sens)
- $\mathbf{Y}|(\boldsymbol{\beta},\eta,\sigma^2) \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta},\eta\sigma^2\mathbf{\Phi} + (1-\eta)\sigma^2\mathbf{I})$

Likelihood

• The negative log-likelihood is given by

$$-\ell(\boldsymbol{\Theta}) \propto \frac{n}{2}\log(\sigma^2) + \frac{1}{2}\log\left(\det(\mathbf{V})\right) + \frac{1}{2\sigma^2}\left(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\right)^T \mathbf{V}^{-1}\left(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\right)$$

$$\mathbf{V} = \eta \mathbf{\Phi} + (1 - \eta) \mathbf{I}$$

• Assume the spectral decomposition of ${f \Phi}$

$$\mathbf{\Phi} = \mathbf{U}\mathbf{D}\mathbf{U}^{\top}$$

- U is an $n \times n$ orthogonal matrix and **D** is an $n \times n$ diagonal matrix
- One can write

$$\mathbf{V} = \mathbf{U}(\eta \mathbf{D} + (1 - \eta)\mathbf{I})\mathbf{U}^{\top} = \mathbf{U}\mathbf{W}\mathbf{U}^{\top}$$
with $\mathbf{W} = \text{diag}(w_i)_{i=1}^n, w_i = \eta \mathbf{D}_{ii} + (1 - \eta)$

Likelihood

- Projection of Y (and columns of X) into Span(U) leads to a simplified correlation structure for the transformed data: $\tilde{Y} = U^{\top}Y$
- $\tilde{\mathbf{Y}}|(\boldsymbol{\beta},\eta,\sigma^2) \sim \mathcal{N}(\tilde{\mathbf{X}}\boldsymbol{\beta},\sigma^2\mathbf{W})$, with $\tilde{\mathbf{X}} = \mathbf{U}^{\top}\mathbf{X}$
- The negative log-likelihood can then be expressed as

$$-\ell(\boldsymbol{\Theta}) \propto \frac{n}{2} \log(\sigma^2) + \frac{1}{2} \sum_{i=1}^{n} \log\left(w_i\right) + \frac{1}{2\sigma^2} \left(\tilde{\mathbf{Y}} - \tilde{\mathbf{X}}\boldsymbol{\beta}\right)^T \mathbf{W}^{-1} \left(\tilde{\mathbf{Y}} - \tilde{\mathbf{X}}\boldsymbol{\beta}\right)$$

Likelihood

- Projection of Y (and columns of X) into Span(U) leads to a simplified correlation structure for the transformed data: $\tilde{Y} = U^{\top}Y$
- $\tilde{\mathbf{Y}}|(\boldsymbol{\beta},\eta,\sigma^2) \sim \mathcal{N}(\tilde{\mathbf{X}}\boldsymbol{\beta},\sigma^2\mathbf{W})$, with $\tilde{\mathbf{X}} = \mathbf{U}^{\top}\mathbf{X}$
- The negative log-likelihood can then be expressed as

$$-\ell(\boldsymbol{\Theta}) \propto \frac{n}{2} \log(\sigma^2) + \frac{1}{2} \sum_{i=1}^{n} \log\left(w_i\right) + \frac{1}{2\sigma^2} \left(\tilde{\mathbf{Y}} - \tilde{\mathbf{X}}\boldsymbol{\beta}\right)^T \mathbf{W}^{-1} \left(\tilde{\mathbf{Y}} - \tilde{\mathbf{X}}\boldsymbol{\beta}\right)$$

• For fixed σ^2 and η , solving for β is a weighted least squares problem

Penalized Maximum Likelihood Estimator

• Define the objective function:

$$Q_\lambda(\mathbf{\Theta}) = -\ell(\mathbf{\Theta}) + \lambda \sum_j p_j(eta_j)$$

- $p_j(\cdot)$ is a penalty term on β_1, \ldots, β_p
- An estimate of the model parameters $\widehat{\boldsymbol{\Theta}}_{\lambda}$ is obtained by

$$\widehat{\mathbf{\Theta}}_{\lambda} = \operatorname*{arg\,min}_{\mathbf{\Theta}} Q_{\lambda}(\mathbf{\Theta})$$

Block Relaxation (De Leeuw, 1994)

To solve for the optimization problem we use a block relaxation technique Set $k \leftarrow 0$, initial values for the parameter vector $\Theta^{(0)}$ and ϵ ; for $\lambda \in \{\lambda_{max}, \ldots, \lambda_{min}\}$ do repeat For $j = 1, \dots, p, \ \beta_j^{(k+1)} \leftarrow \operatorname*{arg\,min}_{\beta_j} Q_\lambda\left(\boldsymbol{\beta}_{-j}^{(k)}, \eta^{(k)}, \sigma^{2^{-(k)}}\right)$ $\eta^{(k+1)} \leftarrow \operatorname*{arg\,min}_{\eta} Q_{\lambda} \left(\boldsymbol{\beta}^{(k+1)}, \eta, \sigma^{2} \right)^{(k)}$ $\sigma^{2} \xrightarrow{(k+1)} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\sigma}^{2}} Q_{\lambda} \left(\boldsymbol{\beta}^{(k+1)}, \eta^{(k+1)}, \sigma^{2} \right)$ $k \leftarrow k + 1$ **until** convergence criterion is satisfied: $||\Theta^{(k+1)} - \Theta^{(k)}||_2 < \epsilon$; end

Algorithm 1: Block Relaxation Algorithm

Coordinate Gradient Descent Method

- We take advantage of smoothness of $\ell(\boldsymbol{\Theta})$
- We approximate $Q_{\lambda}(\Theta)$ by a strictly convex quadratic function (using gradient)
- We use CGD to calculate a descent direction
- To achieve the descent property for the objective function, we employ further line search

¹Tseng P& Yun S. Math. Program., Ser. B, (2009)

Coordinate Gradient Descent Method

- We take advantage of smoothness of $\ell(\boldsymbol{\Theta})$
- We approximate $Q_{\lambda}(\Theta)$ by a strictly convex quadratic function (using gradient)
- We use CGD to calculate a descent direction
- To achieve the descent property for the objective function, we employ further line search

Theorem [Convergence] ¹:

If $\{\Theta^{(k)}, k = 0, 1, 2, ...\}$ is a sequence of iterates generated by the iteration map of Algorithm 1, then each cluster point (i.e. limit point) of $\{\Theta^{(k)}, k = 0, 1, 2, ...\}$ is a stationary point of $Q_{\lambda}(\Theta)$

¹Tseng P& Yun S. Math. Program., Ser. B, (2009)

Choice of the tuning parameter

• We use the BIC:

$$BIC_{\lambda} = -2\ell(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^2, \widehat{\eta}) + c \cdot \widehat{d}f_{\lambda}$$

- + $\widehat{d}\!f_\lambda$ is the number of non-zero elements in $\widehat{\boldsymbol{\beta}}_\lambda$ plus two 1
- Several authors ² have used this criterion for variable selection in mixed models with c = log n
- Other authors ³ have proposed $c = \log(\log(n)) * \log(n)$

¹Zou et al. The Annals of Statistics, (2007)

²Bondell et al. Biometrics (2010)

³Wang et al. JRSS(Ser. B), (2009)

Classical Methods

Betting on Sparsity

A Thought Experiment

Motivating Dataset

Notre proposition

Résultats

Other applications

Extensions

Fonctions de pénalité non convexes Analyse de survie

Orientations futures

Simulation study

- We simulated data from the model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{P} + \boldsymbol{\varepsilon}$
- We used heritability $\eta = \{0.1, 0.3\}$, number of covariates p = 5,000, number of *kinship* SNPs k = 10,000, percentage of *causal* SNPs $c = \{0\%, 1\%\}$ and $\sigma^2 = 1$.
- In addition to these parameters, we also varied the amount of overlap between the *causal* list and the *kinship* list:
 - 1. None of the *causal* SNPs are included in *kinship* set.
 - 2. All of the *causal* SNPs are included in the *kinship* set.
- These were meant to contrast the model behavior when causal SNPs are included in both the main effects and random effects vs. when the causal SNPs are only included in the main effects.
- These scenarios are motivated by the current standard of practice in GWAS where the candidate marker is excluded from the calculation of the kinship matrix.
- This approach becomes much more difficult to apply in large-scale multivariable models where there is likely to be overlap between the variables in the design matrix and kinship matrix.

Simulation study results

- Both the lasso+PC and twostep selected more false positives compared to ggmix
- Overall, we observed that variable selection results and RMSE for ggmix were similar regardless of whether the causal SNPs were in the kinship matrix or not.
- This result is encouraging since in practice the kinship matrix is constructed from a random sample of SNPs across the genome, some of which are likely to be causal, particularly in polygenic traits.
- In particular, our simulation results show that the principal component adjustment method may not be the best approach to control for confounding by population structure, particularly when variable selection is of interest.

Real data applications

1. UK Biobank

- 10,000 LD-pruned SNPs (Essentially un-correlated variables) to predict standing height in 18k related individuals
- Standing height is highly polygenic (many variables associated with response)

Real data applications

1. UK Biobank

- 10,000 LD-pruned SNPs (Essentially un-correlated variables) to predict standing height in 18k related individuals
- Standing height is highly polygenic (many variables associated with response)

2. GAW20 Simulated dataset

- 50,000 SNPs (all on chromosome 1) to predict high-density lipoproteins in 679 related individuals
- Not much correlation between causal SNP and others
- Very sparse signals (only 1 causal variant)

Real data applications

1. UK Biobank

- 10,000 LD-pruned SNPs (Essentially un-correlated variables) to predict standing height in 18k related individuals
- Standing height is highly polygenic (many variables associated with response)

2. GAW20 Simulated dataset

- 50,000 SNPs (all on chromosome 1) to predict high-density lipoproteins in 679 related individuals
- Not much correlation between causal SNP and others
- Very sparse signals (only 1 causal variant)

3. Mouse Crosses

- ▶ Find loci associated with mouse sensitivity to mycobacterial infection
- 189 samples, and 625 microsatellite markers
- Highly correlated variables

Results: UK Biobank

Results: GAW20

Method	Median number of active variables (Inter-quartile range)	RMSE (SD)
twostep	1 (1 - 11)	0.3604 (0.0242)
lasso	1 (1 - 15)	0.3105 (0.0199)
ggmix	1 (1 - 12)	$0.3146\ (0.0210)$
BSLMM	40,737 (39,901 - 41,539)	0.2503 (0.0099)

Table: Summary of model performance based on 200 GAW20 simulations. Five-fold cross-validation root-mean-square error was reported for each simulation replicate.

Results: Mouse crosses

Résultats

53/76.

Discussion

- La procédure en deux étapes conduit à un grand nombre de faux positifs et de faux négatifs
- L'ajustement de la composante principale dans lasso peut ne pas être suffisant pour contrôler la confusion, en particulier lorsqu'il y a beaucoup de corrélation entre les observations
- ggmix fonctionne bien même lorsque les variables causales sont utilisées dans le calcul de la matrice de parenté
- ggmix a montré la plus grande amélioration par rapport à twostep et lasso quand il y avait des variables hautement corrélées avec beaucoup de structure (exemple de croix de souris)

ggmix R package

Résultats

L1 Norm

ggmix R package

hdbic <- gic(fit)
plot(hdbic)</pre>

log(l	Lam	bd	la)	
-------	-----	----	-----	--

C	oef(hdbic.	type = "nonzero"
	,	-71-
#:	#	1
#:	# (Intercep	ot) -0.03598164
#:	# X302	-0.17617815
	# X524	1.34917874
	# X538	-0.72073279
#:	# eta	0.99000000
#:	# sigma2	1.60477653
	0	

Classical Methods

Betting on Sparsity

A Thought Experiment

Motivating Dataset

Notre proposition

Résultats

Other applications

Extensions

Fonctions de pénalité non convexes Analyse de survie

Orientations futures

gSOS

PLOS MEDICINE

Development of a polygenic risk score to improve screening for fracture risk: A genetic risk prediction study

1 Centre for Clinical Epidemiology, Department of Medicine, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada, 2 Department of Human Genetics, McGill University, Montré Québec, Canada, 3 School of Computer Science, McGill University, Montréal, Québec, Canada, 4 Univers of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia, 5 Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom, 6 Bioinformatics Core Facility, Sahlgrenska Academy University of Gothenburg, Gothenburg, Sweden, 7 Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, 8 California Pacific Medical Center Research Institute, San Francisco, California, United States of America. 9 Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Broad Institute of MIT & Harvard University, Boston, Massachusetts, United States of America, 10 Department of Internal Medicine Erasmus Medical Center, Rotterdam, Netherlands, 11 Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, United Kingdom, 12 Australian Catholic University, Melbourne, Victoria, Australia, 13 Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom, 14 National Institute for Health Research Southampton Biomedical Research Centre.

OPEN ACCESS

Citation: Forgetta V, Keller-Baruch J, Forest M, Durand A, Bhatnagar S, Kemp JP, et al. (2020) Development of a polygenic risk score to improve screening for fracture risk: A genetic risk prediction study. PLoS Med 17(7): e1003152. https://doi.org/

Fig 6. Performance characteristics of screening with and without a gSOS screening step. BMD-FRAX, bone-mineral-density-based Fracture Risk Assessment Tool; CRF-FRAX, clinical-risk-factor-based Fracture Risk Assessment Tool.

https://doi.org/10.1371/journal.pmed.1003152.g006

Classical Methods

Betting on Sparsity

A Thought Experiment

Motivating Dataset

Notre proposition

Résultats

Other applications

Extensions Fonctions de pénalité non convex Analyse de survie

Orientations futures

SCAD (Fan et Li, JASA, 2001), MCP (Zhang, Ann. Stat., 2010)

Computational challenges

- Past approaches for optimization for SCAD/MCP relies upon descent method, first- or second- order
- e.g., sparsenet (Mazumder et al. 2011) uses coordinate descent with full step size, whose coordinate update cycles through $\tilde{\beta}_j = S_{\gamma_k} \left(\sum_{i=1}^n \left(y_i \tilde{y}_i^j \right) x_{ij}, \lambda_\ell \right)$, where $\tilde{y}_i^j = \sum_{k \neq j} x_{ik} \tilde{\beta}_k$
- However, coordinate descent is difficult to vectorize, and rate of convergence is difficult of establish – though past literature suggests O(1/k) rate of convergence for ISTA

Our proposal: Accelerated gradient (AG) method

Improving Convergence for Nonconvex Composite Programming

Kai Yang · Masoud Asgharian · Sahir Bhatnagar

Received: date / Accepted: date

Abstract High-dimensional nonconvex composite problems are popular in today's machine learning and statistical genetics research. Recently, Ghadimi and Lan [1] proposed an algorithm to optimize nonconvex high-dimensional problems. There are several parameters in their algorithm that are to be set before running the algorithm. It is not trivial how to choose these parameters nor there is, to the best of our knowledge, an explicit rule how to select the parameters to make the algorithm converges faster. We analyze Ghadimi and Lan's algorithm to gain an interpretation based on the inequality constraints for convergence and the upper bound for the norm of the gradient analogue. Our interpretation of their algorithm suggests this to be a damped accelerated gradient scheme. Based on this, we propose an approach how to select the parameters to improve convergence of the algorithm. Our numerical studies using high-dimensional nonconvex sparse learning problems, motivated by image denoising and statistical genetics applications, show that convergence can be made, on average, considerably faster than that of the conventional ISTA algorithm for such optimization problems with over 10000 variables should the parameters be chosen using our proposed approach.

Keywords Accelerated Gradient · Composite Optimization · Nonconvex Optimization

¹https://arxiv.org/abs/2009.10629

Numerical Study for SCAD

$$\begin{split} \mathbf{x}_{i} & \stackrel{i.i.d.}{\sim} N(\mathbf{0},\mathbf{I}), \ \varepsilon_{i} \stackrel{i.i.d.}{\sim} N(0,\sigma^{2}), \ \mathbf{y} = \mathbf{X}\boldsymbol{\tau}_{\text{generate}} + \boldsymbol{\varepsilon}, \sigma^{2} = \frac{\|\boldsymbol{\tau}_{\text{generate}}\|^{2}}{3}, \\ \boldsymbol{\tau}_{\text{generate}} \in \mathbb{R}^{10006} \text{ is a sparse constant vector with 6 values of} \\ 1.23(\text{intercept}), 3, 4, 5, 6, 59 \text{ as true effect coefficients and 10000 values of} \\ 0. \text{ Start point: } \boldsymbol{\tau}_{0} = \mathbf{1}_{10006}, \ a = 3.7, \ \lambda = 0.6. \end{split}$$

Numerical Study for MCP

Simulation settings here is same as before in SCAD, $\gamma = 2.5, \ \lambda = 0.6.$

casebase

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

casebase: An Alternative Framework For Survival Analysis and Comparison of Event Rates

Sahir Rai Bhatnagar* McGill University Maxime Turgeon* University of Manitoba

Jesse Islam McGill University James A. Hanley McGill University Olli Saarela University of Toronto

¹https://arxiv.org/abs/2009.10264,

https://cran.r-project.org/package=casebase

Case-base sampling

Case-base sampling

- The unit of analysis is a person-moment.
- Case-base sampling reduces the model fitting to a familiar logistic regression.
- The sampling process is taken into account using an offset term.
- By sampling a large base series, the information loss eventually becomes negligible.
- This framework can easily be used with time-varying covariates (e.g. time-varying exposure). We can fit any hazard λ of the following form:

$$\log \lambda(t;\alpha,\beta) = g(t;\alpha) + \beta X$$

- Different choices of the function *g* leads to familiar parametric families:
 - Exponential: *g* is constant.
 - Gompertz: $g(t; \alpha) = \alpha t$.
 - Weibull: $g(t; \alpha) = \alpha \log t$

Classical Methods

Betting on Sparsity

A Thought Experiment

Motivating Dataset

Notre proposition

Résultats

Other applications

Extensions Fonctions de pénalité r

Analyse de survie

Orientations futures

Orientations futures

- ggmix est limité par le nombre d'individus (ne s'applique pas à l'ensemble de la cohorte UK Biobank de 500k) → approximations de rang inférieur de la matrice de parenté
- Problèmes de mémoire lorsque le nombre de covariables dans le modèle dépasse 50k → stratégies de mappage de mémoire (par exemple biglasso de Zeng et Breheny (2017))
- Extension aux données multivariées, longitudinales, combinaisons de plusieurs cohortes → Plusieurs effets aléatoires.

CRSNG RGPIN-2020-05133

- Kai Yang: Non-convex optimization
- · Jesse Islam: High-dimensional survival analysis

Kai Yang, PhD (c)

Jesse Islam, PhD (c)

<u>MiCM</u>

• Julien St-Pierre: LMM with multiple random effects, longitudinal data, combining multiple cohorts

Julien St-Pierre, PhD (c)

CIHR Project Grant, CANSSI CRT

- Zeyu Bian: Low-rank approximations, memory mapping
- Mohan Zhao: Multivariate outcomes and matrix covariates

Zeyu Bian, PhD (c)

Mohan Zhao, BSc (c)

- Masoud Asgharian (McGill)
- Tianyuan Lu (McGill)
- Yi Yang (McGill)
- Karim Oualkacha (UQÀM)
- Celia Greenwood (Lady Davis Institute)
- Erica Moodie (McGill)
- James Hanley (McGill)
- Maxime Turgeon (UManitoba)
- Olli Saarela (UofT)
- Luda Diatchenko (McGill)
- UK Biobank Resource under project number 27449. We appreciate the generosity of UK Biobank volunteers

References

- Yang K, Asgharian M, Bhatnagar SR (2020+). Improving Rate of Convergence for Nonconvex Composite Programming. Submitted to Optimization Letters. https://arxiv.org/abs/2009.10629.
- 2. Bhatnagar SR, Turgeon M, **Islam J**, Hanley JA, Saarela O (2020+). casebase: An Alternative Framework For Survival Analysis and Comparison of Event Rates. *Submitted to Journal of Statistical Software*. https://arxiv.org/abs/2009.10264.
- Bhatnagar SR, Yang Y, Lu T, Schurr E, Loredo-Osti JC, Forest M, Oualkacha K, Greenwood CMT (2020). Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models. *PLoS Genetics* 16(5): e1008766. DOI 10.1371/journal.pgen.1008766.

sahirbhatnagar.com

Session Info

```
R version 4.0.2 (2020-06-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Pop!_OS 20.10
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.10.so
attached base packages:
[1] stats
            graphics grDevices utils
                                         datasets methods base
other attached packages:
[1] ggmix_0.0.1 knitr_1.31
loaded via a namespace (and not attached):
[1] lattice_0.20-41 codetools_0.2-16 glmnet_4.1-1
                                                     foreach_1.5.1
 [5] grid_4.0.2
                    magrittr_2.0.1 evaluate_0.14
                                                     highr_0.8
[9] stringi_1.5.3 Matrix_1.2-18 splines_4.0.2
                                                     iterators_1.0.13
[13] tools_4.0.2 stringr_1.4.0 survival_3.2-3
                                                    xfun_0.21
[17] compiler_4.0.2 shape_1.4.5
```