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Survival analysis




Cox regression and absolute risk

¢ Time matching/risk set sampling (including Cox partial likelihood)
eliminates the baseline hazard from the likelihood expression for the
hazard ratios.

A(t) = exp(fX)

Reid N (1994). A Conversation with Sir David Cox. Statistical Science.
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Cox regression and absolute risk

¢ Time matching/risk set sampling (including Cox partial likelihood)
eliminates the baseline hazard from the likelihood expression for the
hazard ratios.

A(t) = exp(fX)

Reid: So if you had a set of censored survival data today, you might
rather fit a parametric model, even though there was a feeling among
the medical statisticians that that wasn’t quite right.

Cox: That’s right, but since then various people have shown that the
answers are very insensitive to the parametric formulation of the
underlying distribution [see, e.g., Cox and Oakes, Analysis of Survival
Data, Chapter 8.5]. And if you want to do things like predict the
outcome for a particular patient, it’s much more convenient to
do that parametrically.

Reid N (1994). A Conversation with Sir David Cox. Statistical Science.
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Linear and logistic first, survival last

Linear/logistic model

Survival model

Lasso (1996)
SCAD (2001)
Elastic net (2005)
Group lasso (2006)

Hierarchical penalties (2006)

Neural Netwoks (2010)

Coxnet (2011)
Cox+SCAD (2011)

Penalized Cox for interactions (2010)

DeepHit, DeepSurv (2018)
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Summar

casebase: An alternative framework for survival analysis

® (Case-base sampling combined with logistic/multinomial regression
provides an alternative to risk set sampling-based semi-parametric
survival analysis methods.



casebase: An alternative framework for survival analysis

® (Case-base sampling combined with logistic/multinomial regression
provides an alternative to risk set sampling-based semi-parametric
survival analysis methods.

® This enables easy fitting of smooth-in-time and non-proportional
hazard models with multiple time scales.
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casebase: An alternative framework for survival analysis

® (Case-base sampling combined with logistic/multinomial regression
provides an alternative to risk set sampling-based semi-parametric
survival analysis methods.

® This enables easy fitting of smooth-in-time and non-proportional
hazard models with multiple time scales.

® Extensions to penalized models and neural networks.
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casebase: An alternative framework for survival analysis

Summary

Case-base sampling combined with logistic/multinomial regression
provides an alternative to risk set sampling-based semi-parametric
survival analysis methods.

This enables easy fitting of smooth-in-time and non-proportional
hazard models with multiple time scales.

Extensions to penalized models and neural networks.

Provides an alternative to Kaplan-Meier-based methods for estimating
discrimination/calibration statistics (e.g. ROC, AUC, risk
reclassification probabilities, Brier score) from censored survival data.
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casebase R package

Summary

casebase: Fitting Flexible Smooth-in-Time Hazards and Risk Functions vi

Fit flexible and fully parametric hazard regression models to survival data with single event type or multip
its interactions with other predictors for time-dependent hazards and hazard ratios. From the fitted hazard 1
This approach accommodates any log-linear hazard function of prognostic time, treatment, and covariates,

plots. Based on the case-base sampling approach of Hanley and Miettinen (2009) <doi:10.2202/1557-4679

Version: 0.10.1
Depends: R (235.0)
Tmports: data.table, ggplot2, methods, mgy, stats, survival, VGAM
Suggests: colorspace, eha, glmnet, knitr, progress, rmarkdown, splines, testthat (> 3.0.0), visreg
Published: 2021-10-20
Author: Sahir Bhatnagar [aut, cre] (hitp:/sahirbhatnagar.com/), Maxime Turgeon (3 [aut], J:
(http://www.medicine.mcgill
Maintainer: Sahir Bhatnagar <sahir.bhatnagar at gmail.com>
License: MIT + file LICENSE
no
casebase citation info
Materials: README NEWS
In views: Survival
CRAN checks:  casebase results

Documentation:

eference manual: casebase.pdf
ignettes: Competing risk analysis
Customizing Population Time Plots
Plot Cumulative Incidence and Survival Curves
Plot Hazards and Hazard Ratios
Population Time Plots

Introduction to casebase samj

https://arxiv.org/abs/2009.10264 accepted in R Journal (2022+),

https://cran.r-project.org/package=casebase. 55k downloads (as of July 2022).

8/33.


https://arxiv.org/abs/2009.10264
https://cran.r-project.org/package=casebase

Case-base sampling
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Case series
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Case series
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Case and base series
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From hazards to risks

® Once we have an estimate ;\(t) of the hazard, we can get an estimate
of the survival function:

3(t) = exp (— /Ot&(u)du) .
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From hazards to risks

® Once we have an estimate ;\(t) of the hazard, we can get an estimate
of the survival function:

3(t) = exp (— /Ot&(u)du) .

® Similarly, we can get an estimate of the risk function (i.e. CDF):

Fi) =1- 5.
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Assumptions

For notational convenience, we will assume Type I censoring (e.g. every
subject is followed until the event occurs or the end of the study).

We have two counting processes at play:

® Event of interest: A non-homogeneous Poisson process N(t) with
hazard A(t; 0).

® Case-base sampling: A non-homogeneous Poisson process M(f)
with hazard p(t).
> In most examples, we will sample uniformly (i.e. homogeneous Poisson
process).

Theoretical details
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Likelihood

The likelihood for this data-generating mechanism is given by

t9 dN(1) dM;(t)
IO ()

i=1te(0,7]

This is reminiscent of a logistic likelihood, with offset log(1/p;(¢)).

O. Saarela (2015). A case-base sampling method for estimating recurrent event intensities.
Lifetime data analysis.

Theoretical details 17/33 .



Asymptotic properties

Theorem [Saarela (2015)]

® The above likelihood is a partial likelihood for the full data-generating
mechanism.

® The corresponding score process has mean zero.

® The corresponding predictable variation process is equal to the
observed information process in expectation.
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Asymptotic properties

Theorem [Saarela (2015)]

® The above likelihood is a partial likelihood for the full data-generating
mechanism.

® The corresponding score process has mean zero.

® The corresponding predictable variation process is equal to the
observed information process in expectation.

Implication: All the GLM machinery (e.g. deviance tests, information
criteria, regularization) is available to us.

18/33 .



casebase on the ERSPC data

library(survival) # for penalised spline basis (pspline)
library(casebase)

fit <- fitSmoothHazard(DeadOfPrCa ~ pspline(Follow.Up.Time, df

data = ERSPC, ratio = 10)

Fitting smooth hazards with case-base sampling

moments:

5400

2) * ScrArm,

fitSmoothHazard(formula = Dead0fPrCa ~ pspline(Follow.Up.Time,
df = 2) * ScrArm, data

Median
-0.414

Up.Time,
Up.Time,
Up.Time,
Up.Time,

summary (£it)

##

##

## Sample size: 159893
## Number of events: 540
## Number of base

## -——-

##

## Call:

##

##

##

## Deviance Residuals:
## Min 1Q

## -1.168 -0.486

##

## Coefficients:

##

## (Intercept)

## pspline(Follow.

## pspline(Follow.

## pspline(Follow.

## pspline(Follow.

## pspline(Follow.

Theoretical fi#iRSPline (Follow.

Up.Time,
Up.Time,

-0.

df
df
df
df
df
df

= ERSPC, ratio = 10)

3Q Max
215 3.262

Estimate Std.
=185
= 2)1 o

=2)2
=2)3

= 2)5
= 2)6

81
66

6.43
5.57
= 2)4 7o
6
10

27

.54
.82

Error
9.
10.
()
10.
9.
10.
10.
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Analysis of deviance table

anova(fit, test = "LRT")

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Analysis of Deviance Table
Model: binomial, link: logit
Response: DeadOfPrCa

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid.
NULL 5939
pspline(Follow.Up.Time, df = 2) 7 246.6 5932
ScrArm 1 5.6 5931
pspline(Follow.Up.Time, df = 2):ScrArm 7 7.9 5924
Pr(>Chi)
NULL
pspline(Follow.Up.Time, df = 2) <2e-16 **x
ScrArm 0.018 *
pspline(Follow.Up.Time, df = 2):ScrArm 0.343
Signif. codes: O 'x*x*' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Theoretical details

3619
3373
3367
3359
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Time-dependent hazard ratios

new_data <- data.frame(ScrArm = factor("Control group",
levels = c("Control group","Screening group")),
Follow.Up.Time = seq(1, 12, by = 0.1))
plot(fit, type = "hr", newdata = new_data,
var = "ScrArm", xvar = "Follow.Up.Time", ci = T)

1.50

% reduction in

1.25 prostate cancer

mortalit)/ rate
0%

1.00
0.75 25%
0.50 50%
0.25

75%

Death from prostate cancer hazard ratio

0.00 L0000 AR

1 2 3 4 5 6 7 8 9 10 11 12
Follow-up time (years)
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Hazard functions

plot(fit, type = "hazard",
hazard.params = list(xvar = "Follow.Up.Time",

by = "ScrArm"))

## Conditions used in construction of plot
## ScrArm: Control group / Screening group
## offset: O

- Control group - Screening group
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Absolute risk

risk <- absoluteRisk(fit, time = new_time, newdata = new_data)
conf_ints <- confint(risk, fit, nboot=500)

Control group Screening group
n Te]
« 7| —— Case-base 7]
S —— Kaplan-Meier °
§ 7 7
2
= v | 0 |
% — —
Ko}
e o o
[SEE I -
X
)
x un | o |
o o
o ] o ]
S T T T T T T 1 S T T T T T T
0 2 4 6 8 10 14 0 2 4 6 8 10 14

Years since randomization Years since randomization

Theoretical details
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Variable Selection



R packages for survival analysis

Competing Allows  Penalized Semi Interval/Left Risk
Package Risks Non PH Regression Splines Parametric Parametric Censoring Estimates
casebase v v v v v v
CFC v v v v
cmprsk v v v
crrp v v v
fastcox v v
flexrsurv v v v v
flexsurv v v v v v
glmnet v v v
glmpath v v
mets v v v v
penalized v v
riskRegression v v v v
rstpm2 v v v v v v
SmoothHazard v v v v
survival v v v v v v

25/



Penalized logistic regression

® To perform variable selection on the regression parameters 6 € R? of
the hazard function, we can add a penalty to the likelihood and
optimise the following equation:

4
52%15 —logL(0) + 21: w; pa,a(0))
=
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Penalized logistic regression

® To perform variable selection on the regression parameters 6 € R? of
the hazard function, we can add a penalty to the likelihood and
optimise the following equation:

4
52%15 —logL(0) + 21: w; pa,a(0))
=

® pxa(6)) is a penalty term controlled by \ and «
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Penalized logistic regression

® To perform variable selection on the regression parameters 6 € R? of
the hazard function, we can add a penalty to the likelihood and
optimise the following equation:

4
52%15 —logL(0) + 21: w; pa,a(0))
=

® pxa(6)) is a penalty term controlled by \ and «

® w; is the penalty factor for the jth covariate

26/33 .



Variable selection with casebase

# casebase

pen_cb <- fitSmoothHazard.fit(x, y, family = "glmnet", time = "d.time",
event = "death", ratio = 10,
formula_time = ~ log(d.time),

alpha = 1, standardize = TRUE,

# coznet
u <- with(train, survival::Surv(time = d.time, event = death))
coxNet <- glmnet::cv.glmnet(x = x, y = u, family = "cox",

alpha = 1, standardize = TRUE)

Variable selection 27/33.



Variable selection with casebase

age
sexmale o

slos
dzgroupCirrhosis

dzgroupComa

dzgroupLung Cancer
dzgroupMOSF w/Malig 4
num.co 4

scoma

avtisst 4

hday

cano

temp

biliq

adlp

I

adlsc 4

Models © Cox © Pen.Cox © Pen CB

Variable selection

1.0
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Brier score

A 1.00+ B 0.25
0.904
0.80+4 0.20
0.70+4
E=]
]
S 0.0 2015
° o
2050 °
3 k!
[} @
0.40+4
8 0.10
o
0.304
0.204
0.05
0.104
0.004
. ' ' ' + . 0,00~ . ' ' + +
0 1 2 3 4 5 0 1 2 3 4 5
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Models — Cox —— Pen.Cox — Pen.CB —— K-M

N 2
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1:1 a (Tl) a( t)
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Future Directions



To explain or predict?

predictive power

explanatory power
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Extension: Higher-order interactions and flexible baseline

RESEARCH ARTICLE

Case-Base Neural Networks: survival analysis with time-varying,

higher-order interactions

Jesse Islam' | Maxime Turgeon? | Robert Sladek® | Sahir Bhatnagar*

Time Status x,|X, ... X,

Case-base
sampling

Time|Status x, X, ... x, Offset

Model

https://github.com/Jesse-Islam/pmnn

Future Directions

/]| Neural Network

Feed-forward

UORO00

Add, L
- Probability

b Jesse Islam, PhD (c), Quantitative Life Sciences
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http://sahirbhatnagar.com/casebase/

Remarks

® We proposed a simple and flexible way of directly modelling the
hazard function, using logistic regression.

» This leads to smooth estimates of the absolute risks.
® We are explicitly modelling time.
® We can test the significance of covariates.
® (Case-base sampling combined with logistic/multinomial regression

provides an alternative to risk set sampling-based semi-parametric
survival analysis methods

® Similarly, this provides an alternative to Kaplan-Meier-based methods
for estimating discrimination statistics (e.g. ROC, AUC, risk
reclassification probabilities) from censored survival data.

® The R package casebase provides convenient functions for the
different parts of the analysis.

34/33.



Vaccination safety (Saarela & Hanley, 2015)

® The motivation comes from Patel et al. (2011).

® They studied the potential effect of rotavirus vaccination on
intussusception incidence in infants.

® Exposure period is one week after vaccination.

35/33.



Vaccination safety (Saarela & Hanley, 2015)
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Different time scales

® Study on risk factors for cardio-vascular diseases (CVD)

® Time since enrolment does not have much clinical value...

® With case-base sampling, we can treat all time variables
symmetrically.

37/33.



0009 0005 000t 000€ 0002 0001
uonendod

%]
Q
—
<
Q
7]
]
£
-—
-—
s
[<P]
3
=
A




e Case series
= Study base

0009 0005 000Y 000€ 000¢ 0001
uone|ndod

Different time scales

38/33

80

70

60

50

40

30



Different time scales
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Base series
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Overview of main functions

There are essentially four main functions in the package:

® popTime: Creates popTime objects that can be plotted to create
population-time plots.

® sampleCaseBase: Samples a base series uniformly from the study
base.

® fitSmoothHazard: Fits a parametric hazard to the data using
case-base sampling.

® absoluteRisk: Estimates absolute risks (or cumulative incidence
functions) from a fitted hazard.

39/33.



popTime

MIMIMIpopTime(data, time, event, censored.indicator, exposure
~TITTI

® time, event: Variable names representing these quantities. If not
specified, we try to guess.

® exposure: To create stratified population-time plots.



sampleCaseBase

~~I""I""IsampleCaseBase(data, time, event, ratio = 10,
“"I""I""Icomprisk = FALSE, censored.indicator)
~TITTI

® ratio: Ratio of the size of the base series to the case series (i.e. how
many controls for each case?)

® Note: Rarely need to call directly.



fitSmoothHazard

~~I""I""IfitSmoothHazard(formula, data, time,

~"I""I""Ifamily = c("glm", "gam", "gbm", "glmnet"),
~~I""I""Icensored.indicator, ratio = 100, ...)

~TItTITTI

~"I~"I""IfitSmoothHazard.fit(x, y, formula_time, time, event,
“"IT"I""Ifamily = c("glm", "gbm", "glmnet"),
~~I""I""Icensored.indicator, ratio = 100, ...)

~TI1t7I

® We allow both a formula and a matrix interface.
® We have four different model families:

» glm: Vanilla case-base sampling.

gam: Generalized additive models.

gbm: Gradient boosted models (experimental!).
glmnet: Regularized logistic regression.

vvyy



absoluteRisk

~~I""I""IabsoluteRisk(object, time, newdata,
~~I""I""Imethod = c("numerical", "montecarlo"),
~"I""I""Insamp = 100, onlyMain = TRUE, ...)
“TITTICTTI

“TIT71

® time: Vector of time values at which we compute the risk.

® method: Should we use numerical or Montecarlo integration.



Case Study [-Veteran data

® Survival data for 137 patients from Veteran’s Administration Lung
Cancer Trial.

® Patients were randomized to one of two chemotherapy treatments.

ase studies
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Veteran data—Population-Time plot
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Veteran data—Model fit

~"I""I""Iphreg(Surv(time, status) ~ karno + diagtime + age +
“"I""I""Iprior + celltype + trt,

~~I""I""Idata = veteran, shape = 0, dist = "weibull")
“TITTITTI

~"I""I""IfitSmoothHazard(status ~ log(time) + karno + diagtime +
“"I""I""Iage + prior + celltype + trt,

~"I""I""Idata = veteran)

cTITTICTI

“"I""I""Icoxph(Surv(time, status) ~ karno + diagtime + age +
~"I""I""Iprior + celltype + trt, data = veteran)

Il



Veteran data—Estimates

Variables Cox | Case-Base | Weibull
Karnofsky score 0.97 0.97 0.97
Time from diagnosis 1.00 1.00 1.00
Age 0.99 1.00 0.99
Prior therapy 1.07 1.06 1.05

Squamous | 0.67 0.66 0.65
Cell type Small cell | 1.58 1.56 1.59

Adeno 2.21 2.17 2.21
Treatment 1.34 1.30 1.28

47/33 .



Veteran data-95% CI

Variables Case-Base Weibull
Karnofsky score (0.96, 0.98) | (0.96, 0.98)
Time from diagnosis (0.98, 1.02) | (0.98, 1.02)
Age (0.98, 1.01) | (0.98, 1.01)
Prior therapy (0.67, 1.66) | (0.67, 1.64)
Squamous | (0.38,1.15) | (0.38, 1.12)
Cell type Small cell | (0.94, 2.64) | (0.95, 2.65)
Adeno (1.19, 3.94) | (1.23,3.97)
Treatment (0.87, 1.94) | (0.86, 1.90)

48/33 .



c

Veteran data—Risk plot

ase studies
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Case Study [I-ERSPC data

® European Randomized Study of Prostate Cancer Screening (Schroeder
et al., 2009)

® 159,893 men between the ages of 55 and 69 years at entry.

® Recruited from seven European countries; recruitment started at
different time.

ase studies
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ERSPC data-Population-Time plot
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ERSPC data—Model fit

“~"I""I""Ilibrary(splines)

“TITTICTI

“"I""I""Icoxph(Surv(Follow.Up.Time, Dead0fPrCa) ~ ScrArm,
~"I""I""Idata = ERSPC)

“CITTITTI

~"I""I""IfitSmoothHazard(Dead0fPrCa ~ bs(Follow.Up.Time) + ScrAr
~~I""I""Idata = ERSPC)

Il
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ERSPC-Hazard ratio estimates

Model HR

95% CI

Cox 0.80
Case-base 0.80

(0.67 0.95)
(0.68, 0.96)
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ERSPC-Risk estimates

n
3 -| —— Control group (Cox)
e ---- Control group (Casebase)
—— Screening group (Cox)
---- Screening group (Casebase)
3
8 S
S (=]
ke
Q
=
[
=
8
p=}
€ w
=] o
O 9
o
o
o
S
o

Years since Randomization

Case studies 54/33.



Non-proportional hazard

® Recall that we are explicitly modelling time.

® For this reason, we can fit non-proportional hazards using interaction
terms

> Status ~ time * covariate

® We will illustrate this approach using the Stanford Transplant data
(available in the package survival).

ase studies
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Case Study [II-Stanford transplant data

® Survival times of potential heart transplant recipients (Crowley & Hu,
1977).

® Evaluate the effect of transplant on subsequent survival

® For the purposes of this talk, we assume that exposure (i.e. transplant
or no) is assessed at the beginning of follow-up.

56/33 .



Stanford data—Population-Time plot
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Stanford data—Model fit

“7I°"ITTIfitl <- fitSmoothHazard(fustat ~ transplant,

~"I""I""Idata = jasa, time = "futime")

cTITTICTI

“TITTITTIfit2 <- fitSmoothHazard(fustat ~ transplant + futime,
~"I""I""Idata = jasa, time = "futime")

ctItTITTI

“7ITTITTIfit3 <- fitSmoothHazard(fustat ~ transplant + bs(futime
~"I""I""Idata = jasa, time = "futime")

cTITTICTI

“7ITTITTIfit4 <- fitSmoothHazard(fustat ~ transplant*bs(futime),
~"I""I""Idata = jasa, time = "futime")

Il



Stanford data—Model selection

Model Predictors PH AIC
fitl transplant Yes 802.34
fit2 transplant + time Yes 760.96
fit3 transplant + bs(time) Yes 74291
fit4 transplant*bs(time) No 747.38

Case studies

59/33.



Stanford transplant data-Hazard and risk plots
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Stanford transplant data-Hazard and risk plots
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Case Study [V-Bone-marrow transplant study

® Data on patients who underwent haematopoietic stem cell
transplantation for acute leukemia.

® Two types of stem-cell harvest:

> Bone marrow and peripheral blood
» Peripheral blood only

® Event of interest is relapse

ase studies
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Bone-marrow study-Data

Variable description

Statistical summary

Sex M=Male (87)
F=Female (72)
Disease ALL (59)
AML (100)
Phase CR1 (43)
CR2 (40)
CR3 (10)
Relapse (65)
Type of transplant BM+PB (15)
PB (144)
Age of patient (years) 16-62
33 (IQR 19.5)
Failure time (months) 0.13-131.77

20.28 (30.78)

Status indicator

Case studies

O=censored (40)
1=relapse (49)
2=competing event (70)

62/33 .



Bone-marrow study—Model fit

~~I~"I""IfitSmoothHazard(Status ~ bs(ftime, df = 5) + Sex + D +
“"I""I""IPhase + Source + Age,

~~I""I""Idata = bmtcrr, time = "ftime")

“TITTICTTI

~"I""I""Icomp.risk(Event(ftime, Status) ~ const(Sex) + const(D)
~"I""I""Iconst(Phase) + const(Source) + const(Age),
~"I""I""Idata = bmtcrr, cause = 1, model = "fg")

“TITTITTI

~"I""I""Icoxph(Surv(ftime, Status == 1) ~ Sex + D + Phase +
~~I""I""ISource + Age, data = bmtcrr)

TIT71
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Bone-marrow data—Hazard ratios and 95% CI

Variable

Cox regression
Hazard ratio 95% CI

Sex

Disease
Phase CR2
Phase CR3
Phase Relapse
Source

Age

Case studies

Case-base
Hazard ratio 95% CI
0.64 (0.35, 1.20)
0.54 (0.27, 1.07)
1.00 (0.37, 2.70)
1.25 (0.24, 6.53)
471 (2.11, 10.54)
1.89 (0.40, 8.99)
0.99 (0.97, 1.02)

0.75 (0.42, 1.35)
0.63 (0.34, 1.19)
0.95 (0.36, 2.51)
1.38 (0.28, 6.76 )
4.06 (1.85, 8.92)
1.49 (0.32, 6.85)

0.99 (0.97, 1.02)
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Bone-marrow data—Absolute risk plots

Case studies

Method — Case-base — Fine-Gray — Kaplan—-Meier
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