
Variable Selection in Parametric Hazard Models

Sahir Rai Bhatnagar
McGill University

sahirbhatnagar.com

July 9, 2022

1 / 33 .

sahirbhatnagar.com


Jesse Islam
McGill

Olli Saarela
U. Toronto

Maxime Turgeon
U. Manitoba

Jim Hanley
McGill



August 19, 2015 in Dr. Celia Greenwood’s lab at the Lady Davis Institute.



Outline

1. Overview of case-base sampling

2. Extension to variable selection

2 / 33 .



Summary



Survival analysis

Summary 4 / 33



Survival analysis

Summary 4 / 33 .



Cox regression and absolute risk

• Time matching/risk set sampling (including Cox partial likelihood)
eliminates the baseline hazard from the likelihood expression for the
hazard ratios.

λ(t) = λ0(t) exp(βX)

Reid: So if you had a set of censored survival data today, you might
rather fit a parametric model, even though there was a feeling among
the medical statisticians that that wasn’t quite right.

Cox: That’s right, but since then various people have shown that the
answers are very insensitive to the parametric formulation of the
underlying distribution [see, e.g., Cox and Oakes, Analysis of Survival
Data, Chapter 8.5]. And if you want to do things like predict the
outcome for a particular patient, it’s much more convenient to
do that parametrically.

Reid N (1994). A Conversation with Sir David Cox. Statistical Science.
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Linear and logistic first, survival last

Linear/logistic model Survival model
Lasso (1996) Coxnet (2011)
SCAD (2001) Cox+SCAD (2011)
Elastic net (2005)
Group lasso (2006)
text
text
Hierarchical penalties (2006) Penalized Cox for interactions (2010)
text
text
Neural Netwoks (2010) DeepHit, DeepSurv (2018)
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casebase: An alternative framework for survival analysis

• Case-base sampling combined with logistic/multinomial regression
provides an alternative to risk set sampling-based semi-parametric
survival analysis methods.

• This enables easy fitting of smooth-in-time and non-proportional
hazard models with multiple time scales.

• Extensions to penalized models and neural networks.

• Provides an alternative to Kaplan-Meier-based methods for estimating
discrimination/calibration statistics (e.g. ROC, AUC, risk
reclassification probabilities, Brier score) from censored survival data.
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casebase R package

https://arxiv.org/abs/2009.10264 accepted in R Journal (2022+),
https://cran.r-project.org/package=casebase. 55k downloads (as of July 2022).
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Case-base sampling
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Case and base series
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From hazards to risks

• Once we have an estimate λ̂(t) of the hazard, we can get an estimate
of the survival function:

Ŝ(t) = exp
(
−
∫ t

0

λ̂(u)du
)
.

• Similarly, we can get an estimate of the risk function (i.e. CDF):

F̂(t) = 1− Ŝ(t).

Case-base sampling 14 / 33



From hazards to risks

• Once we have an estimate λ̂(t) of the hazard, we can get an estimate
of the survival function:
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Theoretical details



Assumptions

For notational convenience, we will assume Type I censoring (e.g. every
subject is followed until the event occurs or the end of the study).

We have two counting processes at play:
• Event of interest: A non-homogeneous Poisson process N(t) with

hazard λ(t; θ).

• Case-base sampling: A non-homogeneous Poisson process M(t)
with hazard ρ(t).
▶ In most examples, we will sample uniformly (i.e. homogeneous Poisson

process).
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Likelihood

The likelihood for this data-generating mechanism is given by

L(θ) =
n∏

i=1

∏
t∈(0,τ ]

(
λi(t; θ)dNi(t)

ρi(t) + λi(t; θ)

)dMi(t)

.

This is reminiscent of a logistic likelihood, with offset log(1/ρi(t)).

O. Saarela (2015). A case-base sampling method for estimating recurrent event intensities.
Lifetime data analysis.
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Asymptotic properties

Theorem [Saarela (2015)]
• The above likelihood is a partial likelihood for the full data-generating

mechanism.
• The corresponding score process has mean zero.
• The corresponding predictable variation process is equal to the

observed information process in expectation.

Implication: All the GLM machinery (e.g. deviance tests, information
criteria, regularization) is available to us.
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casebase on the ERSPC data
library(survival) # for penalised spline basis (pspline)
library(casebase)
fit <- fitSmoothHazard(DeadOfPrCa ~ pspline(Follow.Up.Time, df = 2) * ScrArm,

data = ERSPC, ratio = 10)
summary(fit)

## Fitting smooth hazards with case-base sampling
##
## Sample size: 159893
## Number of events: 540
## Number of base moments: 5400
## ----
##
## Call:
## fitSmoothHazard(formula = DeadOfPrCa ~ pspline(Follow.Up.Time,
## df = 2) * ScrArm, data = ERSPC, ratio = 10)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.168 -0.486 -0.414 -0.215 3.262
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -13.81 9.98
## pspline(Follow.Up.Time, df = 2)1 2.66 10.96
## pspline(Follow.Up.Time, df = 2)2 6.43 9.73
## pspline(Follow.Up.Time, df = 2)3 5.57 10.10
## pspline(Follow.Up.Time, df = 2)4 7.27 9.90
## pspline(Follow.Up.Time, df = 2)5 6.54 10.10
## pspline(Follow.Up.Time, df = 2)6 10.82 10.03
## pspline(Follow.Up.Time, df = 2)7 -11.74 30.13
## ScrArmScreening group 9.22 13.35
## pspline(Follow.Up.Time, df = 2)1:ScrArmScreening group -9.25 14.85
## pspline(Follow.Up.Time, df = 2)2:ScrArmScreening group -9.80 12.97
## pspline(Follow.Up.Time, df = 2)3:ScrArmScreening group -9.04 13.54
## pspline(Follow.Up.Time, df = 2)4:ScrArmScreening group -9.39 13.23
## pspline(Follow.Up.Time, df = 2)5:ScrArmScreening group -10.65 13.55
## pspline(Follow.Up.Time, df = 2)6:ScrArmScreening group -8.86 13.46
## pspline(Follow.Up.Time, df = 2)7:ScrArmScreening group -11.58 36.92
## z value Pr(>|z|)
## (Intercept) -1.38 0.17
## pspline(Follow.Up.Time, df = 2)1 0.24 0.81
## pspline(Follow.Up.Time, df = 2)2 0.66 0.51
## pspline(Follow.Up.Time, df = 2)3 0.55 0.58
## pspline(Follow.Up.Time, df = 2)4 0.73 0.46
## pspline(Follow.Up.Time, df = 2)5 0.65 0.52
## pspline(Follow.Up.Time, df = 2)6 1.08 0.28
## pspline(Follow.Up.Time, df = 2)7 -0.39 0.70
## ScrArmScreening group 0.69 0.49
## pspline(Follow.Up.Time, df = 2)1:ScrArmScreening group -0.62 0.53
## pspline(Follow.Up.Time, df = 2)2:ScrArmScreening group -0.76 0.45
## pspline(Follow.Up.Time, df = 2)3:ScrArmScreening group -0.67 0.50
## pspline(Follow.Up.Time, df = 2)4:ScrArmScreening group -0.71 0.48
## pspline(Follow.Up.Time, df = 2)5:ScrArmScreening group -0.79 0.43
## pspline(Follow.Up.Time, df = 2)6:ScrArmScreening group -0.66 0.51
## pspline(Follow.Up.Time, df = 2)7:ScrArmScreening group -0.31 0.75
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 3619.1 on 5939 degrees of freedom
## Residual deviance: 3359.1 on 5924 degrees of freedom
## AIC: 3391
##
## Number of Fisher Scoring iterations: 7
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Analysis of deviance table

anova(fit, test = "LRT")

## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: DeadOfPrCa
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev
## NULL 5939 3619
## pspline(Follow.Up.Time, df = 2) 7 246.6 5932 3373
## ScrArm 1 5.6 5931 3367
## pspline(Follow.Up.Time, df = 2):ScrArm 7 7.9 5924 3359
## Pr(>Chi)
## NULL
## pspline(Follow.Up.Time, df = 2) <2e-16 ***
## ScrArm 0.018 *
## pspline(Follow.Up.Time, df = 2):ScrArm 0.343
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Time-dependent hazard ratios
new_data <- data.frame(ScrArm = factor("Control group",

levels = c("Control group","Screening group")),
Follow.Up.Time = seq(1, 12, by = 0.1))

plot(fit, type = "hr", newdata = new_data,
var = "ScrArm", xvar = "Follow.Up.Time", ci = T)
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Hazard functions
plot(fit, type = "hazard",

hazard.params = list(xvar = "Follow.Up.Time",
by = "ScrArm"))

## Conditions used in construction of plot
## ScrArm: Control group / Screening group
## offset: 0
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Absolute risk

risk <- absoluteRisk(fit, time = new_time, newdata = new_data)
conf_ints <- confint(risk, fit, nboot=500)
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Variable Selection



R packages for survival analysis

Competing Allows Penalized Semi Interval/Left Risk
Package Risks Non PH Regression Splines Parametric Parametric Censoring Estimates
casebase ✓ ✓ ✓ ✓ ✓ ✓
CFC ✓ ✓ ✓ ✓

cmprsk ✓ ✓ ✓
crrp ✓ ✓ ✓

fastcox ✓ ✓
flexrsurv ✓ ✓ ✓ ✓
flexsurv ✓ ✓ ✓ ✓ ✓
glmnet ✓ ✓ ✓
glmpath ✓ ✓
mets ✓ ✓ ✓ ✓

penalized ✓ ✓
riskRegression ✓ ✓ ✓ ✓

rstpm2 ✓ ✓ ✓ ✓ ✓ ✓
SmoothHazard ✓ ✓ ✓ ✓

survival ✓ ✓ ✓ ✓ ✓ ✓
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Penalized logistic regression

• To perform variable selection on the regression parameters θ ∈ Rp of
the hazard function, we can add a penalty to the likelihood and
optimise the following equation:

min
θ∈Rp

− log L (θ) +
p∑

j=1

wj pλ,α(θj)

• pλ,α(θj) is a penalty term controlled by λ and α

• wj is the penalty factor for the jth covariate
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Variable selection with casebase

# casebase
pen_cb <- fitSmoothHazard.fit(x, y, family = "glmnet", time = "d.time",

event = "death", ratio = 10,
formula_time = ~ log(d.time),
alpha = 1, standardize = TRUE, penalty.factor = c(0, rep(1, ncol(x))))

# coxnet
u <- with(train, survival::Surv(time = d.time, event = death))
coxNet <- glmnet::cv.glmnet(x = x, y = u, family = "cox",

alpha = 1, standardize = TRUE)

Variable selection 27 / 33 .



Variable selection with casebase
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Brier score
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+
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Future Directions



To explain or predict?
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predictive power
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Extension: Higher-order interactions and flexible baseline

Islam et al. 3

FIGURE 1 Steps involved in CBNN from case-base sampling to the model framework we use for training. The first step is
case-base sampling, completed before training begins. Next, we pass this sampled data through a feedforward neural network.
We add the offset and pass that through a sigmoid activation function, whose output is a probability. Once the neural network
model completes its training, we can convert the probability output to a hazard, using it for our survival outcomes of interest.

ℎ(𝑡 ∣ 𝑋𝑖) using the sampled person-moments. Recall that ℎ(𝑡 ∣ 𝑋𝑖) is the instantaneous potential of experiencing the event at
time 𝑡 for a given set of covariates 𝑋𝑖, assuming 𝑇𝑖 ≥ 𝑡.

Now, let 𝑏 be the (user-defined) size of the base series, and let 𝐵 be the sum of all follow-up times for the individuals in the
study. If we sample the base series uniformly, then the hazard function of the sampling process is equal to 𝑏∕𝐵. Therefore, we
have the following equality a:

𝑃
(
𝑌𝑖 = 1 ∣ 𝑋𝑖, 𝑇𝑖

)

𝑃
(
𝑌𝑖 = 0 ∣ 𝑋𝑖, 𝑇𝑖

) =
ℎ
(
𝑇𝑖 ∣ 𝑋𝑖

)
𝑏∕𝐵

. (1)
The odds of a person-moment to be a part of the case series is the ratio of the hazard ℎ(𝑇𝑖 ∣ 𝑋𝑖) and the uniform rate 𝑏∕𝐵. Using
Equation 1, we can see how the log-hazard function can be estimated from the log-odds arising from case-base sampling:

log
(
ℎ
(
𝑡 ∣ 𝑋𝑖

))
= log

(
𝑃
(
𝑌𝑖 = 1 ∣ 𝑋𝑖, 𝑡

)

𝑃
(
𝑌𝑖 = 0 ∣ 𝑋𝑖, 𝑡

)
)

+ log
( 𝑏
𝐵

)
. (2)

Equation 2 demonstrates that we may estimate the hazard function provided that we adjust for the scaling issue introduced by
case-base sampling by adding the offset term log

(
𝑏
𝐵

)
. Next, we propose the use of neural networks to calculate the odds.

2.2 Neural network extension
All features including time are passed into a user-defined feedforward component. This component is added to an offset term,
adjusting the scaling issue from case-base sampling10. We pass the result through a sigmoid function, resulting in a probability
that can be converted into a hazard (Figure 1). In Equation 3, 𝑓𝜃(𝑋, 𝑇 ) represents any feedforward neural network architecture,
log

(
𝐵
𝑏

)
represents the bias term set by case-base sampling and 𝜃 represents the set of parameters learned by the neural network.

By allowing a neural network to approximate a higher-order polynomial of time, the baseline hazard specification is now data-
driven, where the flexibility is controlled by the user-defined hyperparameters like regularization, number of nodes and layers.

Equation 3 shows how CBNN can predict the probability of an event. We denote 𝑇 to be a random variable representing the
event time, 𝑋 to be the random variable for a covariate profile;

𝑃 (𝑌 = 1|𝑋, 𝑇 ) = sigmoid
(
𝑓𝜃(𝑋, 𝑇 ) + log

(𝐵
𝑏

))
. (3)

aWe are abusing notation here, conflating hazards with probabilities. For a rigorous treatment, see Saarela & Hanley (2015) section 3 11 .

Jesse Islam, PhD (c), Quantitative Life Sciences

https://github.com/Jesse-Islam/pmnn
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Remarks

• We proposed a simple and flexible way of directly modelling the
hazard function, using logistic regression.
▶ This leads to smooth estimates of the absolute risks.

• We are explicitly modelling time.
• We can test the significance of covariates.
• Case-base sampling combined with logistic/multinomial regression

provides an alternative to risk set sampling-based semi-parametric
survival analysis methods

• Similarly, this provides an alternative to Kaplan-Meier-based methods
for estimating discrimination statistics (e.g. ROC, AUC, risk
reclassification probabilities) from censored survival data.

• The R package casebase provides convenient functions for the
different parts of the analysis.
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Vaccination safety (Saarela & Hanley, 2015)

• The motivation comes from Patel et al. (2011).
• They studied the potential effect of rotavirus vaccination on

intussusception incidence in infants.
• Exposure period is one week after vaccination.

35 / 33 .



Vaccination safety (Saarela & Hanley, 2015)
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Different time scales

• Study on risk factors for cardio-vascular diseases (CVD)
• Time since enrolment does not have much clinical value...
• With case-base sampling, we can treat all time variables

symmetrically.
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Different time scales
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Overview of main functions

There are essentially four main functions in the package:
• popTime: Creates popTime objects that can be plotted to create

population-time plots.
• sampleCaseBase: Samples a base series uniformly from the study

base.
• fitSmoothHazard: Fits a parametric hazard to the data using

case-base sampling.
• absoluteRisk: Estimates absolute risks (or cumulative incidence

functions) from a fitted hazard.
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popTime

^^I^^I^^IpopTime(data, time, event, censored.indicator, exposure)
^^I^^I

• time, event: Variable names representing these quantities. If not
specified, we try to guess.

• exposure: To create stratified population-time plots.

casebase package 40 / 33 .



sampleCaseBase

^^I^^I^^IsampleCaseBase(data, time, event, ratio = 10,
^^I^^I^^Icomprisk = FALSE, censored.indicator)
^^I^^I

• ratio: Ratio of the size of the base series to the case series (i.e. how
many controls for each case?)

• Note: Rarely need to call directly.
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fitSmoothHazard

^^I^^I^^IfitSmoothHazard(formula, data, time,
^^I^^I^^Ifamily = c("glm", "gam", "gbm", "glmnet"),
^^I^^I^^Icensored.indicator, ratio = 100, ...)
^^I^^I^^I
^^I^^I^^IfitSmoothHazard.fit(x, y, formula_time, time, event,
^^I^^I^^Ifamily = c("glm", "gbm", "glmnet"),
^^I^^I^^Icensored.indicator, ratio = 100, ...)
^^I^^I

• We allow both a formula and a matrix interface.
• We have four different model families:

▶ glm: Vanilla case-base sampling.
▶ gam: Generalized additive models.
▶ gbm: Gradient boosted models (experimental!).
▶ glmnet: Regularized logistic regression.
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absoluteRisk

^^I^^I^^IabsoluteRisk(object, time, newdata,
^^I^^I^^Imethod = c("numerical", "montecarlo"),
^^I^^I^^Insamp = 100, onlyMain = TRUE, ...)
^^I^^I^^I
^^I^^I

• time: Vector of time values at which we compute the risk.
• method: Should we use numerical or Montecarlo integration.
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Case Study I–Veteran data

• Survival data for 137 patients from Veteran’s Administration Lung
Cancer Trial.

• Patients were randomized to one of two chemotherapy treatments.
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Veteran data–Population-Time plot
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Veteran data–Model fit

^^I^^I^^Iphreg(Surv(time, status) ~ karno + diagtime + age +
^^I^^I^^Iprior + celltype + trt,
^^I^^I^^Idata = veteran, shape = 0, dist = "weibull")
^^I^^I^^I
^^I^^I^^IfitSmoothHazard(status ~ log(time) + karno + diagtime +
^^I^^I^^Iage + prior + celltype + trt,
^^I^^I^^Idata = veteran)
^^I^^I^^I
^^I^^I^^Icoxph(Surv(time, status) ~ karno + diagtime + age +
^^I^^I^^Iprior + celltype + trt, data = veteran)
^^I^^I
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Veteran data–Estimates

Variables Cox Case-Base Weibull
Karnofsky score 0.97 0.97 0.97
Time from diagnosis 1.00 1.00 1.00
Age 0.99 1.00 0.99
Prior therapy 1.07 1.06 1.05

Cell type
Squamous 0.67 0.66 0.65
Small cell 1.58 1.56 1.59
Adeno 2.21 2.17 2.21

Treatment 1.34 1.30 1.28
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Veteran data–95% CI

Variables Case-Base Weibull
Karnofsky score (0.96, 0.98) (0.96, 0.98)
Time from diagnosis (0.98, 1.02) (0.98, 1.02)
Age (0.98, 1.01) (0.98, 1.01)
Prior therapy (0.67, 1.66) (0.67, 1.64)

Cell type
Squamous (0.38, 1.15) (0.38, 1.12)
Small cell (0.94, 2.64) (0.95, 2.65)
Adeno (1.19, 3.94) (1.23, 3.97)

Treatment (0.87, 1.94) (0.86, 1.90)
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Veteran data–Risk plot
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Case Study II–ERSPC data

• European Randomized Study of Prostate Cancer Screening (Schroeder
et al., 2009)

• 159,893 men between the ages of 55 and 69 years at entry.
• Recruited from seven European countries; recruitment started at

different time.
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ERSPC data–Population-Time plot
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ERSPC data–Model fit

^^I^^I^^Ilibrary(splines)
^^I^^I^^I
^^I^^I^^Icoxph(Surv(Follow.Up.Time, DeadOfPrCa) ~ ScrArm,
^^I^^I^^Idata = ERSPC)
^^I^^I^^I
^^I^^I^^IfitSmoothHazard(DeadOfPrCa ~ bs(Follow.Up.Time) + ScrArm,
^^I^^I^^Idata = ERSPC)
^^I^^I
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ERSPC–Hazard ratio estimates

Model HR 95% CI
Cox 0.80 (0.67 0.95)

Case-base 0.80 (0.68, 0.96)
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ERSPC–Risk estimates
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Non-proportional hazard

• Recall that we are explicitly modelling time.
• For this reason, we can fit non-proportional hazards using interaction

terms
▶ Status ~ time * covariate

• We will illustrate this approach using the Stanford Transplant data
(available in the package survival).
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Case Study III–Stanford transplant data

• Survival times of potential heart transplant recipients (Crowley & Hu,
1977).

• Evaluate the effect of transplant on subsequent survival
• For the purposes of this talk, we assume that exposure (i.e. transplant

or no) is assessed at the beginning of follow-up.
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Stanford data–Population-Time plot
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Stanford data–Model fit

^^I^^I^^Ifit1 <- fitSmoothHazard(fustat ~ transplant,
^^I^^I^^Idata = jasa, time = "futime")
^^I^^I^^I
^^I^^I^^Ifit2 <- fitSmoothHazard(fustat ~ transplant + futime,
^^I^^I^^Idata = jasa, time = "futime")
^^I^^I^^I
^^I^^I^^Ifit3 <- fitSmoothHazard(fustat ~ transplant + bs(futime),
^^I^^I^^Idata = jasa, time = "futime")
^^I^^I^^I
^^I^^I^^Ifit4 <- fitSmoothHazard(fustat ~ transplant*bs(futime),
^^I^^I^^Idata = jasa, time = "futime")
^^I^^I
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Stanford data–Model selection

Model Predictors PH AIC
fit1 transplant Yes 802.34
fit2 transplant + time Yes 760.96
fit3 transplant + bs(time) Yes 742.91
fit4 transplant*bs(time) No 747.38
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Stanford transplant data–Hazard and risk plots
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Stanford transplant data–Hazard and risk plots
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Case Study IV–Bone-marrow transplant study

• Data on patients who underwent haematopoietic stem cell
transplantation for acute leukemia.

• Two types of stem-cell harvest:
▶ Bone marrow and peripheral blood
▶ Peripheral blood only

• Event of interest is relapse
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Bone-marrow study–Data

Variable description Statistical summary
Sex M=Male (87)

F=Female (72)
Disease ALL (59)

AML (100)
Phase CR1 (43)

CR2 (40)
CR3 (10)

Relapse (65)
Type of transplant BM+PB (15)

PB (144)
Age of patient (years) 16–62

33 (IQR 19.5)
Failure time (months) 0.13–131.77

20.28 (30.78)
Status indicator 0=censored (40)

1=relapse (49)
2=competing event (70)
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Bone-marrow study–Model fit

^^I^^I^^IfitSmoothHazard(Status ~ bs(ftime, df = 5) + Sex + D +
^^I^^I^^IPhase + Source + Age,
^^I^^I^^Idata = bmtcrr, time = "ftime")
^^I^^I^^I
^^I^^I^^Icomp.risk(Event(ftime, Status) ~ const(Sex) + const(D) +
^^I^^I^^Iconst(Phase) + const(Source) + const(Age),
^^I^^I^^Idata = bmtcrr, cause = 1, model = "fg")
^^I^^I^^I
^^I^^I^^Icoxph(Surv(ftime, Status == 1) ~ Sex + D + Phase +
^^I^^I^^ISource + Age, data = bmtcrr)
^^I^^I
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Bone-marrow data–Hazard ratios and 95% CI

Case-base Cox regression
Variable Hazard ratio 95% CI Hazard ratio 95% CI
Sex 0.64 (0.35, 1.20) 0.75 (0.42, 1.35)
Disease 0.54 (0.27, 1.07) 0.63 (0.34, 1.19)
Phase CR2 1.00 (0.37, 2.70) 0.95 (0.36, 2.51)
Phase CR3 1.25 (0.24, 6.53) 1.38 (0.28, 6.76 )
Phase Relapse 4.71 (2.11, 10.54) 4.06 (1.85, 8.92)
Source 1.89 (0.40, 8.99) 1.49 (0.32, 6.85)
Age 0.99 (0.97, 1.02) 0.99 (0.97, 1.02)
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Bone-marrow data–Absolute risk plots
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