
1

High-dimensional data analysis using
penalized regression methods

Sahir Rai Bhatnagar

Department of Epidemiology, Biostatistics, and Occupational Health
Department of Diagnostic Radiology

https://sahirbhatnagar.com/

McGill Summer School in Health Data Analytics
May 8, 2019

https://sahirbhatnagar.com/


2

Outline

Classical statistical models

Bet on sparsity

A motivating example

Background on the lasso and group lasso

Generalizations



3

Classical Methods
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Setting

This lecture concerns the analysis of data in which we are
attempting to predict an outcome Y using a number of
explanatory factors X1, X2, X3, . . ., some of which may not
be particularly useful

Although the methods we will discuss can be used solely
for prediction (i.e., as a “black box”), I will adopt the
perspective that we would like the statistical methods to
be interpretable and to explain something about the
relationship between the X and Y
Regression models are an attractive framework for
approaching problems of this type, and the focus today
will be on extending classical regression modeling to deal
with high-dimensional data
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Classical Methods
A nice and powerful toolbox for analyzing the more traditional
datasets where the sample size (N) is far greater than the
number of covariates (p):
▶ linear regression, logistic regression, LDA, QDA, glm,
▶ regression spline, smoothing spline, kernel smoothing,
local smoothing, GAM,

▶ Neural Network, SVM, Boosting, Random Forest, ...

Xn×p =



x11 x12 · · · x1p
x21 x12 · · · x1p
x31 x12 · · · x1p
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
xn1 x12 · · · xnp


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Classical Linear Regression

Data: (x1, y1), . . . , (xn, yn) iid from

y = xTβ + ϵ

where E(ϵ|x) = 0, and dim(x) = p. To include an intercept, we
can set x1 ≡ 1. Using Matrix notation:

y = Xβ + ϵ

The least squares estimator

β̂LS = arg min
β
∥y−Xβ∥2

β̂LS = (XTX)−1XTy

Question: How to find the important variables xj?
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Best-subset Selection (Beal et al. 1967, Biometrika)
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Which variables are important?

Scientists know only a small subset of variables (such as
genes) are important for the response variable.
An old Idea: try all possible subset models and pick the
best one.
Fit a subset of predictors to the linear regression model.
Let S be the subset predictors, e.g., S = {1, 3, 7}.

Cp =
RSSS
σ2
− (n− 2|S|) = RSSS

σ2
+ 2|S| − n

We pick the model with the smallest Cp value.
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Model selection criteria

Minimizing Cp is equivalent to minimizing

∥y−XSβ̂S∥2 + 2|S|σ2.

which is AIC score.
Many popular model selection criteria can be written as

∥y−XSβ̂S∥2 + λ|S|σ2.

BIC uses λ = σ
√

log(n)/n.
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Remarks

Best subset selection plus model selection criteria (AIC, BIC,
etc.)

Computing all possible subset models is a combinatorial
optimization problem (NP hard)
Instability in the selection process (Breiman, 1996)
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Ridge Regression
(Hoerl & Kennard 1970, Technometrics)

β̂ = arg minβ ||y−Xβ||2 + λ||β||22

||β||22 =
∑p

j=1
β2
j

β̂Ridge = (X⊤X + λI)−1X⊤y→ exact solution

β̂LS = (X⊤X)−1X⊤y

Let X⊤X = Ip×p

β̂j(Ridge) =
β̂j(MCO)
1 + λ
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Least squares vs. Ridge
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High-dimensional data (n << p)

Xn×p =

x11 x12 · · · · · · · · · · · · · · · · · · · · · x1p
...

...
...

...
...

...
...

...
...

...
xn1 x12 · · · · · · · · · · · · · · · · · · · · · xnp


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Why can’t we fit OLS to High-dimensional data?

Boulesteix et al., Human Genetics, 2019
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High-dimensional data (n << p)

Throughout the course, we will let
▶ n denote the number of independent sampling units (e.g.,
number of patients)

▶ p denote the number of features recorded for each unit

In high-dimensional data, p is large with respect to n
▶ This certainly includes the case where p > n
▶ However, the ideas we discuss in this course are also
relevant to many situations in which p < n; for example, if
n = 100 and p = 80, we probably don’t want to use
ordinary least squares
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A fundamental picture for data science

ESL, Hastie et al. 2009
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Betting on Sparsity
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Bet on Sparsity Principle
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Bet on Sparsity Principle

Use a procedure that does well in sparse problems,
since no procedure does well in dense problems.1

We often don’t have enough data to estimate so many
parameters

Even when we do, we might want to identify a relatively
small number of predictors (k < N) that play an important
role

Faster computation, easier to understand, and stable
predictions on new datasets.

1The elements of statistical learning. Springer series in statistics, 2001.
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A Thought Experiment
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How would you schedule a meeting of 20 people?
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How would you schedule a meeting of 20 people?
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Doctors Bet on Sparsity Also
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Doctors Bet on Sparsity Also
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Motivating Example



25

Predictors of NHL Salary2
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Supervised Learning

Learn the function f

f
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Predictors of NHL Salary
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Predictors of NHL Salary
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OLS vs. Lasso Coefficients
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Lasso Selected Predictors

Avg. Ice Time

Misconducts

Overtime Goals

GWG

Birth Year

Draft Year

Undrafted

Defenceman

Lasso Predictors of NHL Salary

Coefficient
−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1
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Background on the lasso
(Tibshirani. JRSSB, 1996)
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Bridge regression (Frank and Friedman, 1993)

min
β

1

2
∥y−Xβ∥2 + λ∥β∥q 0 ≤ q ≤ 2.

Its constrained formulation

min
β

1

2
∥y−Xβ∥2

subject to ∥β∥q =
p∑
j=1

|βj|q ≤ s
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Bridge regression (Frank and Friedman, 1993)

Contours of equal value for the Lq penalty for difference values
of q. For q < 1, the constraint region is nonconvex.

q = 0, ∥β∥0 =
∑p

j=1
|βj|0 =

∑p
j=1

I(βj ̸= 0)

q = 1, ∥β∥1 =
∑p

j=1
|βj| convex
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Background on the Lasso
Predictors xij, j = 1, . . . ,p and outcome values yi for the ith
observation, i = 1, . . . ,n
Assume xij are standardized so that

∑
i xij/n = 0 and∑

i x2ij = 1.

The lasso1 solves

β̂
lasso

= arg min
β

1

2

n∑
i=1

yi − p∑
j=1

xijβj

2

subject to
p∑
j=1

|βj| ≤ s, s > 0

Equivalently, the Lagrange version of the problem, for
λ > 0

β̂
lasso

= arg min
β

1

2

n∑
i=1

yi − p∑
j=1

xijβj

2

+ λ

p∑
j=1

|βj|

1Tibshirani. JRSSB (1996)
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Inspection of the Lasso Solution
Consider a single predictor setting based on the observed
data {(xi, yi)}ni=1. The problem then is to solve

β̂lasso = arg min
β

1

2

n∑
i=1

(yi − xiβ)2 + λ|β| (1)

With a standardized predictor, the lasso solution (1) is a
soft-thresholded version of the least-squares (LS)
estimate β̂LS

β̂lasso = Sλ
(
β̂LS

)
= sign

(
β̂LS

)(
|β̂LS| − λ

)
+

=


β̂LS − λ, β̂LS > λ

0 |β̂LS| ≤ λ

β̂LS + λ β̂LS ≤ −λ
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Inspection of the Lasso Solution

When the data are standardized, the lasso solution
shrinks the LS estimate toward zero by the amount λ

1Hastie et al. Statistical learning with sparsity: the lasso and generalizations
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Why the ℓ1 norm?

For q ≥ 0, evaluate the criteria

β̃ = arg min
β


n∑
i=1

yi − β0 −
p∑
j=1

xijβj

2

+ λ

p∑
j=1

|βj|q


Why do we use the ℓ1 and not q = 2 (Ridge) or any other
norm ℓq?

q = 1 is the smallest value which gives sparse solutions
AND is convex→ scales well to high-dimensions
For q < 1 the constrained region is not-convex
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Choosing Model Complexity
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Least-squares regression surface
Consider the following model with two predictors (y is centered)

y = β1x1 + β2x2 + ε

β1

β2

− (Y−Xβ̂)2

−5000

−4000

−3000

−2000

−1000

0
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code to generate previous plot

pacman::p_load(viridis,fields,lattice,latex2exp,plotrix)

set.seed(12345)
b0 <- 0
b1 <- 1
b2 <- 2
X <- cbind(1,replicate(2, rnorm(100)))
y <- X %*% matrix(c(b0,b1,b2)) + sqrt(2)*rnorm(100)

# Define function for RSS
MyRss <- function(beta0, beta1) {

b <- c(0, beta0, beta1)
rss <- crossprod(y - X %*% b)
return(rss)

}

b0 <- seq(-3, 4, by=0.1)
b1 <- seq(-3, 4, by = 0.1)
z <- outer(b0, b1, function(x,y) mapply(MyRss, x, y))

wireframe(-z,drape = TRUE, colorkey = TRUE, screen = list(z = 20, x = -70, y = 3),
xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
zlab = TeX("$-(Y-X\\hat{\\beta})^2$"), col.regions = viridis::inferno(100))
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Contours of the least-squares regression surface
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code to generate previous plot

pacman::p_load(viridis,fields,lattice,latex2exp,plotrix)

set.seed(12345)
b0 <- 0
b1 <- 1
b2 <- 2
X <- cbind(1,replicate(2, rnorm(100)))
y <- X %*% matrix(c(b0,b1,b2)) + sqrt(2)*rnorm(100)

# Define function for RSS
MyRss <- function(beta0, beta1) {
b <- c(0, beta0, beta1)
rss <- crossprod(y - X %*% b)
return(rss)
}

b0 <- seq(-3, 4, by=0.1)
b1 <- seq(-3, 4, by = 0.1)
z <- outer(b0, b1, function(x,y) mapply(MyRss, x, y))

fields::image.plot(x = b0, y = b1, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
col = viridis::inferno(100))

contour(x = b0, y = b1, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
nlevels = 10, add=TRUE)

abline(v = 0, lty=2)
abline(h = 0, lty=2)
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Contours of the least-squares regression surface
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Contours of the least-squares regression surface
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Constraint region of the lasso
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code to generate previous plot

fields::image.plot(x = b0, y = b1, z = -z,xlab = TeX("$\\beta_1$"),
ylab = TeX("$\\beta_2$"),
col = viridis::inferno(100))

contour(x = b0, y = b1, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
nlevels = 10, add=TRUE)

points(x = lm.fit(x = X, y = y)$coef[2], y = lm.fit(x = X, y = y)$coef[3],
pch = 19, cex=2, col = "red")

text(x = lm.fit(x = X, y = y)$coef[2]*1.2,
y = lm.fit(x = X, y = y)$coef[3]*0.80,
labels = TeX("$(\\hat{\\beta_1},\\hat{\\beta_2})_{MCO}$"),
cex = 2)

abline(v = 0)
abline(h = 0)

conditions <- function(x,y) {
c1 <- (abs(x) + abs(y)) <= 1
return(c1)}

zz <- expand.grid(x=b0,y=b1)
zz <- zz[conditions(zz$x,zz$y),]

polygon(c(zz$x[which.min(zz$x)],zz$x[which.max(zz$y)],
zz$x[which.max(zz$x)], zz$x[which.min(zz$y)]),
c(zz$y[which.min(zz$x)],zz$y[which.max(zz$y)],
zz$y[which.max(zz$x)], zz$y[which.min(zz$y)]),
col = "grey")

text(x = 0, y= 0,
labels = TeX("$|\\beta_1|+|\\beta_2| \\leq 1$"), cex = 2)
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Constraint region of the ridge

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

4

β1

β 2

−5000

−4000

−3000

−2000

−1000

 −4500 

 −4000 
 −3500 

 −3000  −3000 
 −2500 

 −2000 

 −1500 

 −1500 

 −1000 

 −500 

●

(β1
^ ,β2

^ )MCO

β1
2 + β2

2 ≤ 12



48

code to generate previous plot

fields::image.plot(x = b0, y = b1, z = -z,xlab = TeX("$\\beta_1$"),
ylab = TeX("$\\beta_2$"),
col = viridis::inferno(100))

contour(x = b0, y = b1, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
nlevels = 10, add=TRUE)

points(x = lm.fit(x = X, y = y)$coef[2], y = lm.fit(x = X, y = y)$coef[3],
pch = 19, cex=2, col = "red")

text(x = lm.fit(x = X, y = y)$coef[2]*1.2,
y = lm.fit(x = X, y = y)$coef[3]*0.80,
labels = TeX("$(\\hat{\\beta_1},\\hat{\\beta_2})_{MCO}$"), cex = 2)

abline(v = 0)
abline(h = 0)

beta2 <- function(x,r=1) {
y <- sqrt(r^2 - x^2)
return(y)}

xseq <- seq(-1,1, length.out = 100)
polygon(cbind(c(xseq, rev(xseq)),c(beta2(x=xseq), -beta2(x=xseq))), col = "grey")
text(x = 0, y= 0,

labels = TeX("$\\beta_1^2+\\beta_2^2 \\leq 1^2$"), cex = 2)
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Lasso vs. ridge
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Fig. 1: lasso
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Fig. 2: ridge
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Classic version of the previous figure

Elements of Statistical Learning
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Optimality Conditions
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Score functions and penalized score functions

In classical statistical theory, the derivative of the
log-likelihood function L(θ) is called the score function,
and maximum likelihood estimators are found by setting
this derivative equal to zero, thus yielding the likelihood
equations (or score equations):

0 =
∂

∂θ
L(θ)

Extending this idea to penalized likelihoods involves
taking the derivatives of objective functions of the form:

Q(θ) = L(θ)︸︷︷︸
likelihood

+ P(θ)︸︷︷︸
penalty

yielding the penalized score function



52

Score functions and penalized score functions

In classical statistical theory, the derivative of the
log-likelihood function L(θ) is called the score function,
and maximum likelihood estimators are found by setting
this derivative equal to zero, thus yielding the likelihood
equations (or score equations):

0 =
∂

∂θ
L(θ)

Extending this idea to penalized likelihoods involves
taking the derivatives of objective functions of the form:

Q(θ) = L(θ)︸︷︷︸
likelihood

+ P(θ)︸︷︷︸
penalty

yielding the penalized score function



53

Ridge vs. Lasso penalty

β

P
(β

)
Lasso Ridge
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Penalized likelihood equations
For ridge regression, the penalized likelihood is everywhere
differentiable, and the extension to penalized score equations
is straightforward

β̂
ridge

= arg min
β

1

2
||y−Xβ||22 + λ||β||22

For the lasso, the penalized likelihood is not differentiable -
specifically, not differentiable at zero - and subdifferentials are
needed to characterize them

β̂
lasso

= arg min
β

Q(θ) = arg min
β

1

2
||y−Xβ||22 + λ||β||1

Letting ∂Q(θ) denote the subdifferential of Q, penalized
likelihood equations are:

0 ∈ ∂Q(θ)

http://myweb.uiowa.edu/pbreheny/7240/s19/notes/2-13.pdf

http://myweb.uiowa.edu/pbreheny/7240/s19/notes/2-13.pdf
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Penalized likelihood equations
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http://myweb.uiowa.edu/pbreheny/7240/s19/notes/2-13.pdf
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Karush-Kuhn-Tucker (KKT) Conditions

In the optimization literature, the resulting equations are
known as the Karush-Kuhn-Tucker (KKT) conditions

For convex optimization problems such as the lasso, the
KKT conditions are both necessary and sufficient to
characterize the solution

The idea is simple: to solve for β̂lasso, we simply replace
the derivative with the subderivative and the likelihood
with the penalized likelihood
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Subdifferential for |x|

The subdifferential for f(x) = |x| is:

∂|x| =


−1 if x < 0
[−1, 1] if x = 0
1 if x > 0
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KKT conditions for the lasso

β̂
lasso

= arg min
β

Q(θ) = arg min
β

1

2
||y−Xβ||22 + λ||β||1

Result: β̂lasso minimizes the lasso objective function if and
only if it satisfies the KKT conditions:

1

nx⊤
j (y−Xβ̂) = λsign(β̂j) β̂j ̸= 0

1

n |x
⊤
j (y−Xβ̂)| ≤ λ β̂j = 0

In other words, the correlation between a predictor and
the residuals, x⊤

j (y−Xβ̂)/n, must exceed a certain
minimum threshold λ before it is included in the model

When this correlation is below λ, β̂j = 0
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Some remarks
If we set

λ = λmax ≡ max
1≤j≤p

∣∣∣xTj y∣∣∣ /n
then β̂ = 0 satisfies the KKT conditions

That is, for any λ ≥ λmax, we have β̂(λ) = 0

On the other hand, if we set λ = 0, the KKT conditions are
simple the normal equations for OLS

1

nx⊤
j (y−Xβ̂) = 0 · sign(β̂j) β̂j ̸= 0

Thus, the coefficient path for the lasso starts at λmax and
continues until λ = 0 if X is full rank; otherwise the
solution will fail to be unique for λ values below some
point λmin
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Recall the Lasso Solution in the Orthonormal Design

When the design matrix X is orthonormal, i.e.,
n−1X⊤X = I, the lasso estimate is a soft-thresholded
version of the least-squares (LS) estimate β̂LS

β̂lasso = Sλ
(
β̂LS

)
= sign

(
β̂LS

)(
|β̂LS| − λ

)
+

=


β̂LS − λ, β̂LS > λ

0 |β̂LS| ≤ λ

β̂LS + λ β̂LS ≤ −λ

where β̂LS = x⊤
j y/n
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Probability that β̂j = 0

With soft thresholding, it is clear that the lasso has a
positive probability of yielding an estimate of exactly 0 - in
other words, of producing a sparse solution

Specifically, the probability of dropping xj from the model
is P

(∣∣∣βLSj ∣∣∣ ≤ λ
)

Under the assumption that ϵi
⊥⊥∼ N

(
0, σ2

)
, we have

βLSj ∼ N (β, σ2/n) and

P
(
β̂j(λ) = 0

)
= Φ

(
λ− β

σ/
√
n

)
− Φ

(
−λ− β

σ/
√
n

)
where Φ is the Gaussian CDF
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Sampling Distribution

For σ = 1, n = 10, and λ = 1/2:
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Why standard inference is invalid?

This sampling distribution is very different from that of a
classical MLE:
▶ The distribution is mixed: a portion is continuously
distributed, but there is also a point mass at zero

▶ The continuous portion is not normally distributed

▶ The distribution is asymmetric (unless β = 0)

▶ The distribution is not centered at the true value of β
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Algorithms
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Algorithms for the lasso

The KKT conditions only allow us to check a solution

They do not necessarily help us to find the solution in the
first place
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Coordinate descent1

The idea behind coordinate descent is, simply, to optimize
a target function with respect to a single parameter at a
time, iteratively cycling through all parameters until
convergence is reached

Coordinate descent is particularly suitable for problems,
like the lasso, that have a simple closed form solution in a
single dimension but lack one in higher dimensions

1Fu (1998), Friedman et al. (2007), Wu and Lange (2008)
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Coordinate descent
Let us consider minimizing Q with respect to βj, while
temporarily treating the other regression coefficients β−j as
fixed:

Q(βj|β−j) =
1

2n

n∑
i=1

yi −∑
k ̸=j

xijβk − xijβj

2

+ λ|βj|+ λ
∑
k̸=j

|βk|

β̃j = arg min
βj

Q(βj|β−j) = Sλ(z̃j) =


z̃j − λ, z̃j > λ

0 |z̃j| ≤ λ

z̃j + λ z̃j < −λ

r̃ij = yi −
∑

k̸=j xikβ̃k z̃j = n−1
∑n

i=1 xijr̃ij

{r̃ij}ni=1 are the partial residuals with respect to the jth predictor,
and z̃j OLS estimator based on {r̃ij, xij}ni=1
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Convergence

Numerical analysis of optimization problems of the form

Q(θ) = L(θ) + P(θ)

has shown that coordinate descent algorithms converge to
a solution of the penalized likelihood equations provided
that:

▶ the function L(β) is differentiable and

▶ the penalty function Pλ(β) is separable
→ Pλ(β) =

∑
j Pλ(βj)

Lasso-penalized linear regression satisfies both of these
criteria



67

Convergence

Numerical analysis of optimization problems of the form

Q(θ) = L(θ) + P(θ)

has shown that coordinate descent algorithms converge to
a solution of the penalized likelihood equations provided
that:
▶ the function L(β) is differentiable and

▶ the penalty function Pλ(β) is separable
→ Pλ(β) =

∑
j Pλ(βj)

Lasso-penalized linear regression satisfies both of these
criteria



67

Convergence

Numerical analysis of optimization problems of the form

Q(θ) = L(θ) + P(θ)

has shown that coordinate descent algorithms converge to
a solution of the penalized likelihood equations provided
that:
▶ the function L(β) is differentiable and

▶ the penalty function Pλ(β) is separable
→ Pλ(β) =

∑
j Pλ(βj)

Lasso-penalized linear regression satisfies both of these
criteria



68

Convergence

Furthermore, because the lasso objective is a convex
function, the sequence of the objective functions{
Q
(
β̃
(s))} converges to the global minimum

However, because the lasso objective is not strictly convex,
there may be multiple solutions

In such situations, coordinate descent will converge to
one of those solutions, but which solution it converges to
is essentially arbitrary, as it depends on the order of the
features
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Coordinate descent, pathwise optimization, warm
starts

We are typically interested in determining β̂Lasso for a
range of values of λ, thereby obtaining the coefficient path

In applying the coordinate descent algorithm to determine
the lasso path, an efficient strategy is to compute
solutions for decreasing values of λ, starting at
λmax = max1≤j≤p

∣∣∣xTj y∣∣∣ /n, the point at which all
coefficients are 0

Warm starts→ By continuing along a decreasing grid of λ
values, we can use the solutions β̂ (λk) as initial values
when solving for β̂ (λk+1)
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Group Lasso
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Motivating Dataset
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Groups of Predictors Affect the Response
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Group lasso for Categorical variables and Basis
expansions

Useful for groups of variables (factor with > 2 categories, Age,
Age2). Group lasso estimator is:

min
(β0,β)

1

2
∥y− β0 −Xβ∥22+λ

K∑
k=1

√
pk∥β(k)∥2 pk−taille de group

linéaire

quadratique

solde d’une carte de crédit

age

poids

(a) Lasso

linéaire

quadratique

solde d’une carte de crédit

age

poids

(b) Groupe lasso
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Group Lasso Model

Assume the predictors in X ∈ Rn×p belong to K
non-overlapping groups with pre-defined group membership
and cardinality pk
Let β(k) to denote the segment of β corresponding to group k

We consider the group lasso penalized estimator

min
β
L(β|D) + λ

K∑
k=1

wk∥β(k)∥2, (2)

where
L(β | D) =

1

2

[
Y− Ŷ

]⊤
W

[
Y− Ŷ

]
(3)

Ŷ =
∑p

j=1 βjXj, D is the working data {Y,X}, and Wn×n is an
observation weight matrix
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Groupwise Descent: Exploiting Sparsity Structure
Minimize the objective function

1

2

[
Y− Ŷ

]⊤
W

[
Y− Ŷ

]
+ λ

K∑
k=1

wk∥β(k)∥2

During each sub-iteration only optimize β(k). Set β(k′) = β̃
(k′)

for
k′ ̸= k at their current value.

1. Initialization: β̃

2. Cyclic groupwise descent: for k = 1, 2, . . . , K, update β(k) by
minimizing the objective function

β̃
(k)

(new)← arg min
β(k)

L(β | D) + λwk∥β(k)∥2

3. Repeat (2) till convergence.
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]⊤
W

[
Y− Ŷ
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Quadratic Majorization Condition

arg min
β(k)

1

2

[
Y− Ŷ

]⊤
W

[
Y− Ŷ

]
+ λ

K∑
k=1

wk∥β(k)∥2 (4)

Unfortunately, there is no closed form solution to (4)

However, the loss function L(β|D) satisfies the quadratic
majorization (QM) condition1, since there exists
▶ a p× p matrix H = X⊤WX, and
▶ ∇L(β|D) = −

(
Y− Ŷ

)⊤
WX

which may only depend on the data D, such that for all
β,β∗,

L(β | D) ≤ L(β∗ | D)+(β−β∗)⊺∇L(β∗|D)+
1

2
(β−β∗)⊺H(β−β∗)

1Yang and Zou. Statistical Computing (2014)
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]⊤
W

[
Y− Ŷ
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Generalized Coordinate Descent (GCD)

−3 −2 −1 0 1 2

7.
5

8.
0

8.
5

9.
0

9.
5

10
.0

10
.5

ob
je

ct
iv

e 
fu

nc
tio

n

βj
(k)βj

(k+1)

F
Q1

Q2



78

Groupwise Majorization Descent
Update β in a groupwise fashion

β − β̃ = (0, . . . , 0︸ ︷︷ ︸
k−1

,β(k) − β̃
(k)

, 0, . . . , 0︸ ︷︷ ︸
K−k

)

Only need to compute the majorization function on group level

L(β | D) ≤ L(β̃ | D)− (β(k) − β̃
(k)

)⊺U(k) +
1

2
γk(β

(k) − β̃
(k)

)⊺(β(k) − β̃
(k)

)

U(k) =
∂

∂β(k)
L(β | D) = −

(
Y− Ŷ

)⊤
WX(k)

H(k) =
∂2

∂β(k)∂β
⊤
(k)
L(β | D) = X⊤

(k)WX(k)

γk = eigenmax(H(k))

Update β̃
(k)
with a fast operation:

β̃
(k)

(new) =
1

γk

(
U(k) + γkβ̃

(k))(
1− λwk

∥U(k) + γkβ̃
(k)

∥2

)
+
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)
+
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Lasso vs. Group Lasso
Logistic regression with group lasso: n = 50, p = 6.
Group lasso: specify (β1, β2, β3), (β4, β5, β6). Variable selection at the
group level.
Solution path: view β as function of λ.
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Generalizations of the Lasso
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Generalizations of the Lasso Penalty

Generalized penalties arise in a wide variety of settings:
Group lasso, Hierarchical group lasso: handle structurally
grouped features. e.g. dummy variables.
Adaptive lasso: a lasso with the Oracle property.
Elastic net: handle highly correlated features. e.g. genes.
SCAD and MCP: non-convex penalties with the Oracle
property.
Multitask lasso: handle between-tasks sparsity while
allowing within-task sparsity.
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Asymptotic Properties

Consider yi = x⊤
i β

∗ + ϵi, β∗ = (β∗
1 , . . . , β

∗
p), ϵi ∼ D(0, σ2) .

A∗ = {j : β∗
j ̸= 0} – the support of β∗

An = {j : β̂j ̸= 0} – the support of the penalized estimator
β̂n = (β̂n,1, . . . , β̂n,p).
Oracle Property: an important property that any penalized
estimator β̂n should possess
▶ Variable selection consistency:

lim
n→∞

P(An → A∗) = 1

▶ √n-estimation consistency:
√
n(β̂n,A∗ − β∗

A∗)
d→ N (0,Σ0)

where Σ0 is the covariance matrix knowing the true subset
model.
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Adaptive Lasso
The adaptive lasso estimator

β̂
alasso

= argmin
β

1

2
∥y−Xβ∥2 + λn

p∑
j=1

ŵj|βj|, (5)

where ŵj = 1
|β̂j|γ

for some γ > 0 and a
√
n-consistent estimator

β̂j of βj.
For Lasso, if an irrelevant variable is highly correlated with
variables in the true model, the lasso may fail to
distinguish it from the true variables even with large n.
As n→∞, the weights corresponding to insignificant
variables tend to infinity, while the weights corresponding
to significant variables converge to a finite constant.
Zou (2006) showed that, under certain regularity
conditions, the adaptive lasso has the oracle property.
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Elastic Net

The elastic net (Zou and Hastie, 2005) solves the convex
program

min
β

1

2
∥y−Xβ∥2 + λ

[
1

2
(1− α)∥β∥22 + α∥β∥1

]
where α ∈ [0, 1] is a parameter. The penalty applied to an
individual coefficient (disregarding the regularization weight
λ > 0) is given by

1

2
(1− α)β2

j + α|βj|.

The coefficients are selected approximately together in
their groups.
The coefficients approximately share their values equally.



85

An illustration example

Two independent “hidden” factors z1 and z2

z1 ∼ U(0, 20), z2 ∼ U(0, 20)

Generate the response vector y = z1 + 0.1 · z2 + N(0, 1)
Suppose only observe predictors

x1 = z1 + ϵ1, x2 = z1 + ϵ2, x3 = z1 + ϵ3

x4 = z2 + ϵ4, x5 = z2 + ϵ5, x6 = z2 + ϵ6

Fit the model on (X,y)
An “oracle” would identify x1, x2 and x3 (the z1 group) as
the most important variables.
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Simulation 1
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Simulation 2
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Hierarchical Group Lasso

(Jenatton, Mairal, Obozinski, and Bach 2010)
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Multitask Lasso

Suppose that we have K regression tasks

Y(k) = X(k)β(k) + ϵ(k), k = 1, . . . , K.

The k-th task has nk observations for k = 1, . . . , K
Y(k) = (y(k)1 , . . . , y(k)nk )

⊺, X(k)j = (x(k)1j , . . . , x
(k)
nk j

)⊤

X(k) = (X(k)1 , . . . , X(k)p ) be the nk × p design matrix for task k

β(k) = (β
(k)
1 , · · · , β(k)

p )⊤ and βj = (β
(1)

j , · · · , β(K)
j )⊤

find commonly shared relevant covariates and retains the ability to
recover covariates unique to individual data sources.

min
β

1

2

K∑
k=1

∥∥∥Y(k) − X(k)β(k)
∥∥∥2 + λPα(β),

Pα(β) =
p∑
j=1

wj
[
(1− α)||βj||q + α||βj||1

]
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Recall the bias of the lasso
q Estimator Formula

1 Lasso sign(β̂LSj )(|β̂LSj | − λ)+

2 Ridge β̂LSj /(1 + λ)
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SCAD (Fan et Li, JASA, 2001), MCP (Zhang, Ann. Stat.,
2010)
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Discussion

Variable selection is an active area of research

Few inference tools exist

Robust software has been developed, but more scalable
algorithms and implementations are needed



93

References
Fan, J. and Li, R., 2001. Variable selection via nonconcave penalized likelihood
and its oracle properties. Journal of the American statistical Association,
96(456), pp.1348-1360.
Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58(1), pp.267-288.
Friedman, J., Hastie, T., Höfling, H. and Tibshirani, R., 2007. Pathwise coordinate
optimization. The annals of applied statistics, 1(2), pp.302-332.
Buhlmann, P. & van de Geer, S. (2011), Statistics for High-Dimensional Data,
Springer.
Breheny, P. BIOS 7240 class notes (accessed March 15, 2019).
Tibshirani, R. A Closer Look at Sparse Regression (accessed March 15, 2019).
Gaillard, P. and Rudi, A. Introduction to Machine Learning (accessed March 15,
2019).
Hastie, T., Tibshirani, R. & Friedman, J. (2009), The Elements of Statistical
Learning; Data Mining, Inference and Prediction, Springer. Second edition.
Hastie, T., Tibshirani, R. & Wainwright, M. (2015), Statistical Learning with Sparsity:
the Lasso and Generalizations, Chapman & Hall.

slides available at
https://sahirbhatnagar.com/talks/

http://myweb.uiowa.edu/pbreheny/7240/s19/notes.html
http://www.stat.cmu.edu/~larry/=sml/sparsity.pdf
https://www.di.ens.fr/appstat/spring-2019/
https://www.di.ens.fr/appstat/spring-2019/
https://sahirbhatnagar.com/talks/


94

Contexte sur la validation croisée
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z

l’échantillion complet

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z

O  P  Q  R  S  T

E  F  G  H

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  ZA  B  C  D

1

2

3

4

5

apprentissage

test
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SCAD

p′(|β|;λ) = λsign(βj)
{
I(|βj|≤λ) +

(aλ− |βj|)+
(a− 1)λ

I(|βj|>λ)

}
, a > 2

The penalty is expressed in terms of its derivative. The SCAD is
a combination of the HARD, LASSO, and Clipped penalties.
This leads to the solution

β̂j,SCAD =


sign(β̂j,OLS)(|β̂j,OLS| − λ)+ |β̂j,OLS| ≤ 2λ
(a−1)β̂j,OLS−sign(β̂j,OLS)aλ

a−2 2λ < |β̂j,OLS| ≤ aλ
β̂j,OLS |β̂j,OLS| > aλ
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MCP, Zhang (2010)

p(|β|j;λ, γ) =
{
λ|βj| −

|βj|2
2γ |βj| ≤ γλ

γλ2

2 |βj| > γλ
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