High-dimensional data analysis using
penalized regression methods

Sahir Rai Bhatnagar

Department of Epidemiology, Biostatistics, and Occupational Health
Department of Diagnostic Radiology

https://sahirbhatnagar.com/

McGill Summer School in Health Data Analytics
May 8, 2019

T McGill

UNIVERSI


https://sahirbhatnagar.com/

Outline

m Classical statistical models

m Bet on sparsity

m A motivating example

m Background on the lasso and group lasso

m Generalizations



Classical Methods



Setting

m This lecture concerns the analysis of data in which we are
attempting to predict an outcome Y using a number of

explanatory factors Xi, Xo, X3, ..., some of which may not
be particularly useful



Setting

m This lecture concerns the analysis of data in which we are
attempting to predict an outcome Y using a number of
explanatory factors Xi, Xo, X3, ..., some of which may not
be particularly useful

m Although the methods we will discuss can be used solely
for prediction (i.e., as a “black box”), I will adopt the
perspective that we would like the statistical methods to
be interpretable and to explain something about the
relationship between the X and Y



Setting

m This lecture concerns the analysis of data in which we are
attempting to predict an outcome Y using a number of
explanatory factors Xi, Xo, X3, ..., some of which may not
be particularly useful

m Although the methods we will discuss can be used solely
for prediction (i.e., as a “black box”), I will adopt the
perspective that we would like the statistical methods to
be interpretable and to explain something about the
relationship between the X and Y

m Regression models are an attractive framework for
approaching problems of this type, and the focus today
will be on extending classical regression modeling to deal
with high-dimensional data



Classical Methods

m A nice and powerful toolbox for analyzing the more traditional
datasets where the sample size (N) is far greater than the
number of covariates (p):

> linear regression, logistic regression, LDA, QDA, glm,

» regression spline, smoothing spline, kernel smoothing,
local smoothing, GAM,

» Neural Network, SVM, Boosting, Random Forest, ...
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Classical Linear Regression
Data: (x1,Y1), ..., (Xn,¥n) iid from
y:xTﬁ—i-e

where E(e|x) = 0, and dim(x) = p. To include an intercept, we
can set x; = 1. Using Matrix notation:

y=XB+e
The least squares estimator

Bus = argmin |y — Xg|

Bis = (X'X)"' Xy



Classical Linear Regression
Data: (x1,Y1), ..., (Xn,¥n) iid from
y:xTﬁ—i-e

where E(e|x) = 0, and dim(x) = p. To include an intercept, we
can set x; = 1. Using Matrix notation:

y=XB+e
The least squares estimator
Bis = argmin [ly — XB|*
Bis = (X'X)"' Xy

m Question: How to find the important variables x;?



Best-subset Selection (Beal et al. 1967, Biometrika)

Predictor set model

None of x1x2 x31x34 E(Y) = [o

X1 E(Y) = o+ fixy

x E(Y) = Po + Paxz

X3 E(Y) = fo + Paxs

x4 E(Y) = Po + Paxs

X1 X2 E(Y) = o+ Prxrt Baxz

X1X3 E(Y) = fo+ Buxi+ Paxa

X1 X4 E(Y) = fo + Pux1+ Paxs

X2 X3 E(Y) = fo + Baxat Paxa

X2 X4 E(Y) = o + Paxat Paxs

X3 X4 E(Y) = Po + Paxat+ Paxs

X1 X1X3 E(Y) = fo + Prxr+ Baxzt Paxa
X1 X2 X4 E(Y) = o+ Pix1¥ PBaxzt Paxs
X1 X3 X4 E(Y) = fo + Prxr+ Baxa+ Paxs
X2 X3 X4 E(Y) = o + Paxzt Paxat Paxs
X1 X2 X3 X4 E(Y) = o + Pt Poxzt Paxst Paxs




Which variables are important?

m Scientists know only a small subset of variables (such as
genes) are important for the response variable.

m An old Idea: try all possible subset models and pick the
best one.

m Fit a subset of predictors to the linear regression model.
Let S be the subset predictors, e.g, S = {1, 3, 7}.

RSSs
o2

RSSs

o2

Cp:

(n=2|5)) =

+2|S|—n

m We pick the model with the smallest C, value.



Model selection criteria

Minimizing Cp is equivalent to minimizing
ly — XsBs]|* + 2[S|o”.

which is AIC score.
Many popular model selection criteria can be written as

ly = XsBs|* + AlS|o™.

m BIC uses A = a+/log(n)/n.



Remarks

Best subset selection plus model selection criteria (AIC, BIC,
etc.)

m Computing all possible subset models is a combinatorial
optimization problem (NP hard)

m Instability in the selection process (Breiman, 1996)



Ridge Regression
(Hoerl & Kennard 1970, Technometrics)

m 3 = argming |ly — X412 + \[|8]}3
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Ridge Regression
(Hoerl & Kennard 1970, Technometrics)
m 3 = argming [y — X8> + \|8/3
m (B3 =27, 67
= BR/dge = (XTX + M) !XTy — exact solution
m B =(XTX)"'XTy
B let XX =1,

A _ BJ(MCO)
BJ(Ridge) DY




Least squares vs. Ridge

Ridge




High-dimensional data (n << p)

mRNA
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Why can’t we fit OLS to High-dimensional data?

a
Training data: ID.. weeight - age bl
1 80 40 0
(n=2)
2 60 20 1
Model to fit: | weight = g+ (1 - age + o - sex+ € ‘
Bo=40, Bi=1, B=0
— Solutions: , with € = 0
Bo=0, B=2 B=2
b
8
. Training data
o2
e A sex =0 (m)
£ O sex =1 (f)
o8
§ Model prediction:
g — Bo=40, B=1, =0
o = fp=0, B1=2, fo=20 with:
2 ! --- forsex =0 - for sex =1

0 10 20 30 40 50 60 70
Age (in years)

Boulesteix et al., Human Genetics, 2019




High-dimensional data (n << p)

m Throughout the course, we will let
» n denote the number of independent sampling units (e.g,,
number of patients)
» p denote the number of features recorded for each unit



High-dimensional data (n << p)

m Throughout the course, we will let

» n denote the number of independent sampling units (e.g,,
number of patients)
» p denote the number of features recorded for each unit

m In high-dimensional data, p is large with respectto n
» This certainly includes the case where p > n



High-dimensional data (n << p)

m Throughout the course, we will let
» n denote the number of independent sampling units (e.g,,
number of patients)
» p denote the number of features recorded for each unit

m In high-dimensional data, p is large with respectto n
» This certainly includes the case where p > n
» However, the ideas we discuss in this course are also
relevant to many situations in which p < n; for example, if
n = 100 and p = 80, we probably don't want to use
ordinary least squares



A fundamental picture for data science

Prediction Error

High Bias Low Bias
Low Variance High Variance
-—------ L aaaa -
Test Sample
Training Sample
Low High

Model Complexity

ESL, Hastie et al. 2009



Betting on Sparsity



Bet on Sparsity Principle
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Bet on Sparsity Principle

Use a procedure that does well in sparse problems,
since no procedure does well in dense problems.’

"The elements of statistical learning. Springer series in statistics, 2001.



Bet on Sparsity Principle

Use a procedure that does well in sparse problems,
since no procedure does well in dense problems.’

m We often don't have enough data to estimate so many
parameters

m Even when we do, we might want to identify a relatively
small number of predictors (k < N) that play an important
role

m Faster computation, easier to understand, and stable
predictions on new datasets.

"The elements of statistical learning. Springer series in statistics, 2001.



A Thought Experiment



How would you schedule a meeting of 20 people?
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Doctors Bet on Sparsity Also
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Motivating Example



Predictors of NHL Salary?
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Supervised Learning

Learn the function f
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Predictors of NHL Salary
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Predictors of NHL Salary
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OLS vs. Lasso Coefficients

variables

o lLL”.m~Lr,.r.|.l.]"h,l_|\l1r| i Mu"tu.y[l,“

-2
coefficient

I lasso
I mco

29



Lasso Selected Predictors

Lasso Predictors of NHL Salary
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Background on the lasso
(Tibshirani. JRSSB, 1996)



Bridge regression (Frank and Friedman, 1993)

1
mén§||y—X,3||2+)\Hﬂ||q 0<g<2
Its constrained formulation
in < [ly — X
min — —
52"

p
subject to ||B|lq = Z 1819 <'s

j=1



Bridge regression (Frank and Friedman, 1993)

q=0.5 q=0.1

Contours of equal value for the Lq penalty for difference values
of . For g < 1, the constraint region is nonconvex.

mq=0,8l0=3F, 81" =3, 18 #0)

mg=1][Bl: =X}, |5 convex

33



Background on the Lasso

m Predictors xj, j = 1,...,p and outcome values y; for the ith
observation,i=1,...,n

m Assume x;; are standardized so that }_; x;;/n = 0 and
X =1

MTibshirani. JRSSB (1996)

34



Background on the Lasso
m Predictors xj, j = 1,...,p and outcome values y; for the ith
observation,i=1,...,n
m Assume x;; are standardized so that }_; x;;/n = 0 and
>2iX; = 1. The lasso' solves
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B = arggmn 3 Svi=D X8
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Background on the Lasso

m Predictors xj, j = 1,...,p and outcome values y; for the ith

observation,i=1,...,n
m Assume x;; are standardized so that }_; x;;/n = 0 and
>2iX; = 1. The lasso' solves

~lasso 1 L P
B = argémn 3 Svi=D X8
i=1 =1

2

p
subjectto » |B<s,  s>0
=1

m Equivalently, the Lagrange version of the problem, for
A>0

2
~lasso 1 L P P
B = arg Imin 5 Solvi=D xs ] 2> 18
i—1 j=1 j=1

MTibshirani. JRSSB (1996)

34



Inspection of the Lasso Solution

m Consider a single predictor setting based on the observed
data {(x;,y;)}i_;- The problem then is to solve

N 1
B9 = argmin = >~ (y; — x8)* + Al ] (1)
s 23

35



Inspection of the Lasso Solution

m Consider a single predictor setting based on the observed
data {(x;,y;)}i_;- The problem then is to solve

N 1
B9 = argmin = >~ (y; — x8)* + Al ] (1)
s 23

m With a standardized predictor, the lasso solution (1) is a
soft-thresholded version of the least-squares (LS)
estimate g

Blasso =S, (B\LS> = sign (B\LS> <|BLS‘ - >‘)+
BIS — X\, B>
—{o B <A
BS A BS< )

35



Inspection of the Lasso Solution

m When the data are standardized, the lasso solution
shrinks the LS estimate toward zero by the amount A

B(lasso)

L8 /00 Blols)

"Hastie et al. Statistical learning with sparsity: the lasso and generalizations



Why the ¢; norm?

m For g > 0, evaluate the criteria

i=1 j=1

n p 2 p
Barggnin{z (yiﬂoquﬁ/‘) +)\Zﬁjq}
j=1

m Why do we use the ¢; and not g = 2 (Ridge) or any other
norm £q?

q=4 ¢=0.1

OO+ +

m g = 1 is the smallest value which gives sparse solutions
AND is convex — scales well to high-dimensions

m For g < 1 the constrained region is not-convex



Choosing Model Complexity

Alasso
p

0.5

0.0

-05

1 16 46 83 102 115 19
3
- 8
o
=
L
c 4
s @
2
9
el
P
ot
3
|_
8
Least-Squares Prediction Error
{
[ 3 ! 5 3 ) 12 3 3 ! 5 ) 10 12
—log(\) —log(2)

S



Least-squares regression surface

m Consider the following model with two predictors (y is centered)

y = Bix1 + Boxo + €
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-3000

-4000

-5000

39



code to generate previous plot

pacman::p_load(viridis,fields,lattice,latex2exp,plotrix)

set.seed(12345)

bo <- 0

bl <- 1

b2 <- 2

X <- cbind(1,replicate(2, rnorm(100)))

y <- X %*% matrix(c(b0,b1,b2)) + sqrt(2)*rnorm(100)

# Define function for RSS

MyRss <- function(beta®, betal) {
b <- c(0, beta®, betal)
rss <- crossprod(y - X %*% b)
return(rss)

}

b0 <- seq(-3, 4, by=0.1)
bl <- seq(-3, 4, by = 0.1)
z <- outer(bo, bl, function(x,y) mapply(MyRss, x, y))

wireframe(-z,drape = TRUE, colorkey = TRUE, screen = list(z = 20, x = -70, y = 3),
xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_23%"),
zlab = TeX("$-(Y-X\\hat{\\beta})"2$"), col.regions = viridis::inferno(100))



Contours of the least-squares regression surface




code to generate previous plot

pacman::p_load(viridis,fields,lattice,latex2exp,plotrix)

set.seed(12345)

bo <- 0
bl <- 1
b2 <- 2

X <- cbind(1,replicate(2, rnorm(100)))
y <- X %*% matrix(c(b0,bl,b2)) + sqrt(2)*rnorm(160)

# Define function for RSS

MyRss <- function(beta®, betal) {
b <- c(0, beta®, betal)

rss <- crossprod(y - X %*% b)
return(rss)

b0 <- seq(-3, 4, by=0.1)
bl <- seq(-3, 4, by = 0.1)
z <- outer(b0, b1, function(x,y) mapply(MyRss, x, y))

fields::image.plot(x = b®, y = bl, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2%"),
col = viridis::inferno(100))

contour(x = b0, y = bl, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
nlevels = 10, add=TRUE)

0, lty=2)

0, lty=2)

abline(v
abline(h

7]



Contours of the least-squares regression surface
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Contours of the least-squares regression surface
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Constraint region of the lasso

(é\lvé\Z)MCO
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code to generate previous plot

fields::image.plot(x = b0, y = bl, z = -z,xlab = TeX("$\\beta_1%$"),
ylab = TeX("$\\beta_2$"),
col = viridis::inferno(100))
contour(x = b0, y = bl, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
nlevels = 10, add=TRUE)
points(x = lm.fit(x = X, y = y)$coef[2], v = Im.fit(x = X, y = y)$coef[3],
pch = 19, cex=2, col = "red")
text(x = lm.fit(x = E y)$c0ef[2]*1 2,
y = lm. f1t(x E X y = y)$coef[3]*0 80,
labels = Tex("$(\\hat{\\beta_1},\\hat{\\beta_2})_{MCO}$"),
cex = 2)
abline(v = 0)
abline(h = 0)

conditions <- function(x,y) {
cl <- (abs(x) + abs(y)) <= 1
return(cl)}

zz <- expand.grid(x=b0,y=b1)
zz <- zz[conditions(zz$x,zz$y),]

polygon(c(zz$x[which.min(zz$x)1,zz$x[which.max(zz$y)]
zz$x[which.max(zz$x)], zz$x[which.min(zz$y)])
c(zz$ylwhich.min(zz$x)1,zz$y[which.max(zz$y)]
zz$yl[which.max(zz$x)], zz$yl[which.min(zz$y)1)
col = "grey")

text(x = 0, y= 0,
labels = TeX("$|\\beta_1|+|\\beta_2| \\leq 1$"), cex = 2)



Constraint region of the ridge
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code to generate previous plot

fields::image.plot(x = b0, y = bl, z = -z,xlab = TeX("$\\beta_1$"),
ylab = TeX("$\\beta_2%"),
col = viridis::inferno(100))
contour(x = b@, y = bl, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
nlevels = 10, add=TRUE)
points(x = lm.fit(x = X, y = y)$coef[2], y = lm.fit(x = X, y = y)$coef[3],
pch = 19, cex=2, col = "red")
text(x = Wm.fit(x = X, y = y)$coef[2]*1.2,
y = Im.fit(x = X, y = y)$coef[3]%0.80,
labels = TeX("$(\\hat{\\beta_1},\\hat{\\beta_2})_{MCO}$"), cex = 2)
abline(v = 0)
abline(h = 0)

beta2 <- function(x,r=1) {
y <- sqrt(r"2 - x"2)
return(y)}

xseq <- seq(-1,1, length.out = 100)
polygon(cbind(c(xseq, rev(xseq)),c(beta2(x=xseq), -beta2(x=xseq))), col = "grey")
text(x = 0, y= 0,

labels = TeX("$\\beta_1"2+\\beta_2"2 \\leq 1"2%$"), cex = 2)



Lasso vs. ridge

(é\lvé\z)mco

Fig. 1: lasso
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Classic version of the previous figure

Elements of Statistical Learning




Optimality Conditions



Score functions and penalized score functions

m In classical statistical theory, the derivative of the
log-likelihood function £(6) is called the score function,
and maximum likelihood estimators are found by setting
this derivative equal to zero, thus yielding the likelihood
equations (or score equations):

2 L)



Score functions and penalized score functions

m In classical statistical theory, the derivative of the
log-likelihood function £(6) is called the score function,
and maximum likelihood estimators are found by setting
this derivative equal to zero, thus yielding the likelihood
equations (or score equations):

2 L)

m Extending this idea to penalized likelihoods involves
taking the derivatives of objective functions of the form:

W= 20 + 70

likelihood  penalty

yielding the penalized score function



Ridge vs. Lasso penalty

—— Lasso —— Ridge

P(B)




Penalized likelihood equations

m For ridge regression, the penalized likelihood is everywhere
differentiable, and the extension to penalized score equations
is straightforward

~ridge 1
" =argminglly - XI5+ N8I

m For the lasso, the penalized likelihood is not differentiable -
specifically, not differentiable at zero - and subdifferentials are
needed to characterize them

~lasso

. 1
= argﬁran(@) = axgmin 3l = XBI[5 + AllBll

http://myweb.uiowa.edu/pbreheny/7240/s19/notes/2-13.pdf ”
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Penalized likelihood equations

m For ridge regression, the penalized likelihood is everywhere
differentiable, and the extension to penalized score equations
is straightforward

~ridge 1
g =agmin 3lly = X85+ Allsll3

m For the lasso, the penalized likelihood is not differentiable -
specifically, not differentiable at zero - and subdifferentials are
needed to characterize them

~lasso

. 1
= argﬁme(@) = axgmin 3l = XBI[5 + AllBll

m Letting 9Q(6) denote the subdifferential of Q, penalized
likelihood equations are:

0€0Q(6)

http://myweb.uiowa.edu/pbreheny/7240/s19/notes/2-13.pdf ”
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m |n the optimization literature, the resulting equations are
known as the Karush-Kuhn-Tucker (KKT) conditions
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Karush-Kuhn-Tucker (KKT) Conditions

m |n the optimization literature, the resulting equations are
known as the Karush-Kuhn-Tucker (KKT) conditions

m For convex optimization problems such as the lasso, the
KKT conditions are both necessary and sufficient to
characterize the solution

. . . ~lasso .
m The idea is simple: to solve for 3, we simply replace
the derivative with the subderivative and the likelihood
with the penalized likelihood



Subdifferential for ||

The subdifferential for f(x) = |x| is:

-1 ifx<0
x| =< [-1,1] ifx=0

1 ifx>0



KKT conditions for the lasso
[ |

~lasso

. 1
= arggan(@) = arg in 5y = X3+ AllBL

~l S — L
m Result: 50550 minimizes the lasso objective function if and
only if it satisfies the KKT conditions:
1 ~ o
x| (y — XB) = Asign(5}) B #0

1 ~
~Ix (v = XB)[ <A =0
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~lasso
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. 1
= arggan(@) = arg in 5[y = X8I+ AllBllx
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m In other words, the correAlation between a predictor and
the residuals, ij(y — X3)/n, must exceed a certain
minimum threshold X before it is included in the model



KKT conditions for the lasso
[ |

~lasso

®

. 1
= arggan(@) = arg in 5y = X3+ AllBL

~l S — L
m Result: 50550 minimizes the lasso objective function if and
only if it satisfies the KKT conditions:

%xj—r(y — X,EI) = )\sign(aj) B #0

1 ~
~Ix (v = XB)[ <A Bi=0

m In other words, the correAlation between a predictor and
the residuals, ij(y — X3)/n, must exceed a certain
minimum threshold X before it is included in the model

m When this correlation is below A, 3; = 0
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Some remarks

m If we set
A = Apax = max ‘ijy’ /n

1<j<p
then 3 = 0 satisfies the KKT conditions
m Thatis, forany A > A\nax, We have B()\) =0

m On the other hand, if we set A = 0, the KKT conditions are
simple the normal equations for OLS

] (y ~ XB) = 0-sign(3) B #0



Some

remarks

If we set

A = Apax = max ‘ijy’ /n
1<<p

then 3 = 0 satisfies the KKT conditions
That is, for any A > Amax, We have B()\) =0

On the other hand, if we set A = 0, the KKT conditions are
simple the normal equations for OLS

%ij(y — X,@) =0- sign(@-) Ej #0

Thus, the coefficient path for the lasso starts at Ay and
continues until A = 0 if X is full rank; otherwise the
solution will fail to be unique for X values below some
point Amin



Recall the Lasso Solution in the Orthonormal Design

m When the design matrix X is orthonormal, i.e,
n—1XTX =1, the lasso estimate is a soft—thresholded
version of the least-squares (LS) estimate -

Blasso =S, (B\LS> = sign (B\LS> <|BLS‘ - >‘)+
BYS N, B>
) 555 < A
BS N BS< A

m where 85 = ijy/n
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Probability that 5 = 0

m With soft thresholding, it is clear that the lasso has a
positive probability of yielding an estimate of exactly 0 - in
other words, of producing a sparse solution

m Specifically, the probability of dropping x; from the model
s P (WS‘ = A)

m Under the assumption that ¢; ~ N (0,0?), we have
B ~ N(8,0%/n) and

(=)= (5a) -+ (G

where @ is the Gaussian CDF




Sampling Distribution

Foro=1,n=10,and A =1/2:

Bo=0
1.5

1.0

Density

0.5 —

0.0 ~

— 0.5

> O —

> O | ==

Probability



Why standard inference is invalid?

m This sampling distribution is very different from that of a
classical MLE:

» The distribution is mixed: a portion is continuously
distributed, but there is also a point mass at zero

» The continuous portion is not normally distributed
» The distribution is asymmetric (unless 8 = 0)

» The distribution is not centered at the true value of 8



Algorithms



Algorithms for the lasso

m The KKT conditions only allow us to check a solution
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Algorithms for the lasso

m The KKT conditions only allow us to check a solution

m They do not necessarily help us to find the solution in the
first place
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Coordinate descent!

m The idea behind coordinate descent is, simply, to optimize
a target function with respect to a single parameter at a
time, iteratively cycling through all parameters until
convergence is reached

Fu (1998), Friedman et al. (2007), Wu and Lange (2008)
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Coordinate descent!

m The idea behind coordinate descent is, simply, to optimize
a target function with respect to a single parameter at a
time, iteratively cycling through all parameters until
convergence is reached

m Coordinate descent is particularly suitable for problems,
like the lasso, that have a simple closed form solution in a
single dimension but lack one in higher dimensions

Fu (1998), Friedman et al. (2007), Wu and Lange (2008)
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Coordinate descent

m Let us consider minimizing Q with respect to j;, while
temporarily treating the other regression coefficients 3_; as
fixed:

n

2
Q818 = Zln > (Yi = XjBr— Xijﬁj) + B+ A Bl

i=1 k#j k#j
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m Let us consider minimizing Q with respect to j;, while
temporarily treating the other regression coefficients 3_; as
fixed:

n

2
Q818 = Zln > ()/i = XjBr— Xijﬁj) + B+ A Bl

i=1 k#j k#j

2]' — A, Zj > A
fj = argmin Q(BB_;) = SA(z) = { 0 Z)] < A
g Zj + A 2)' < =A



Coordinate descent

m Let us consider minimizing Q with respect to j;, while
temporarily treating the other regression coefficients 3_; as
fixed:

2
Q818 = Zln > ()/i = XjBr— Xijﬁj) + B+ A Bl

i=1 k#j k#j
Zj — A, Zj > A

Ej = arg min Q(ﬂ,|5,,) =5x(2) =10 7] < A

~ -~ ~ _ n ~
W T =Yi— D ks XikDBr zp=n"" 3L Xyl

m {7} are the partial residuals with respect to the j* predictor,

and z; OLS estimator based on {ry, x;}7_;



Convergence

m Numerical analysis of optimization problems of the form
Q(0) = L(0) + P(0)
has shown that coordinate descent algorithms converge to

a solution of the penalized likelihood equations provided
that:
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Convergence

m Numerical analysis of optimization problems of the form
Q(0) = L(0) + P(0)

has shown that coordinate descent algorithms converge to
a solution of the penalized likelihood equations provided
that:

> the function £(3) is differentiable and

> the penalty function P»(8) is separable
— PA(B) = > PA(5)

m Lasso-penalized linear regression satisfies both of these
criteria



Convergence

m Furthermore, because the lasso objective is a convex
function, the sequence of the objective functions

{Q (B(s)>} converges to the global minimum

m However, because the lasso objective is not strictly convex,
there may be multiple solutions

m |n such situations, coordinate descent will converge to
one of those solutions, but which solution it converges to
is essentially arbitrary, as it depends on the order of the
features



Coordinate descent, pathwise optimization, warm
starts

m We are typically interested in determining 3" for a
range of values of A, thereby obtaining the coefficient path

m In applying the coordinate descent algorithm to determine
the lasso path, an efficient strategy is to compute
solutions for decreasing values of ), starting at
Amax = Max <j<p ‘x}y‘ /n, the point at which all
coefficients are 0

m Warm starts — By continuing along a decreasing grid of A
values, we can use the solutions 3 () as initial values
when solving for 8 (Ary1)
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Group Lasso
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Motivating Dataset

ID Response Genel Gene2 Gene3 Gened4 Gene5 Geneb

1 2610781  -1.255 1 2 0 0 0 1
2 4114347  -0.339 1 2 0 2 0 1
3 4399930 -0.6 1 2 1 1 0 1
4 2081319 0.809 1 2 0 1 0 2
5 1347380 0.279 2 2 0 0 0 0
6 3262449 -0.421 2 2 0 1 0 1
7 4870063  -0.454 2 2 0 0 0 2
8 1141212 1.383 2 2 1 1 1 0
9 2997954 -2.29 1 2 0 0 0 1
10 5805218 2.289 1 2 0 1 1 1



Groups of Predictors Affect the Response

ID Response |Genel Gene2| |Gene3 Gene4 (Gene5 Geneb
1 2610781 -1.255 1 2 0 0 0 1
2 4114347 -0.339 1 2 0 2 0 1
3 4399930 -0.6 1 2 1 1 0 1
4 2081319 0.809 1 2 0 1 0 2
5 1347380 0.279 2 2 0 0 0 0
6 3262449 -0.421 2 2 0 1 0 1
7 4870063 -0.454 2 2 0 0 0 2
8 1141212 1.383 2 2 1 1 1 0
9 2997954 -2.29 1 2 0 0 0 1
10 5805218 2.289 1 2 0 1 1 1




Group lasso for Categorical variables and Basis

expansions , . .
Useful for groups of variables (factor with > 2 categories, Age,

Age?). Group lasso estimator is:

K

1 )

in 5 Iy — Bo — XBl34A Y VPrllB™ ]2 pr—taille de group
0 k=1

solde d'une carte de crédit solde d'une carte de crédit

linéaire linéaire

quadratique quadratique

(a) Lasso (b) Groupe lasso



Group Lasso Model

m Assume the predictors in X € R"P belong to K

non-overlapping groups with pre-defined group membership
and cardinality pg

m Let By to denote the segment of B corresponding to group R



Group Lasso Model

m Assume the predictors in X € R"P belong to K
non-overlapping groups with pre-defined group membership
and cardinality pg

m Let By to denote the segment of B corresponding to group R

m We consider the group lasso penalized estimator

K
minL(BID) +A>_ will Bl (2)
k=1
m where ) .
o0y = [v7] v 0

Y= Zle B;X;, D is the working data {Y, X}, and Wy, is an
observation weight matrix



Groupwise Descent: Exploiting Sparsity Structure

Minimize the objective function

i, o7 TGy
S[Y=9] W =9 a3 wills®e
k=1



Groupwise Descent: Exploiting Sparsity Structure

Minimize the objective function

1, o7 TGy
S[Y=Y] WY =Y+ A wels
k=1

. . . .. ’ ~ (K
During each sub-iteration only optimize ﬁ(’?). Set ﬁ(h ) = ﬁ( ) for

R" # k at their current value.

1. Initialization: 3



Groupwise Descent: Exploiting Sparsity Structure

Minimize the objective function

1, o7 TGy
S[Y=Y] WY =Y+ A wels
k=1

(k)

During each sub-iteration only optimize 8. Set ﬁ(’?/) =8 for

R" # k at their current value.

1. Initialization: 3

2. Cyclic groupwise descent: for k = 1,2, ..., K, update 8% by
minimizing the objective function

~(R
B (new) « argmin L(8 | D) + w8



Groupwise Descent: Exploiting Sparsity Structure

Minimize the objective function

1, o7 TGy
S[Y=Y] WY =Y+ A wels
k=1

(k)

During each sub-iteration only optimize 8. Set ﬁ(’?/) =8 for

R" # k at their current value.

1. Initialization: 3

2. Cyclic groupwise descent: for k = 1,2, ..., K, update 8% by
minimizing the objective function

~(R
B (new) « argmin L(8 | D) + w8

3. Repeat (2) till convergence.



Quadratic Majorization Condition

K
alrgmin1 [Y —?]TW [Y — ﬂ + Azwkllﬁ(k’lb (4)
B® k=1

m Unfortunately, there is no closed form solution to (%)

"Yang and Zou. Statistical Computing (2014)



Quadratic Majorization Condition

K
1 T ~

arg min ~ [Y —Y] w [Y—Y} A w18 @)

B k=1

m Unfortunately, there is no closed form solution to (%)

m However, the loss function L(3|D) satisfies the quadratic
majorization (QM) condition?, since there exists

> apxpmatrix H=XTWX, and
AT
> VL(BD) = — (Yf v) WX
which may only depend on the data D, such that for all
B’IB*I

L(B D) <L(B" | D)+(ﬁ—ﬁ*)TVL(ﬁ*ID)+%(ﬁ—ﬁ*)TH(ﬁ—ﬂ*)

"Yang and Zou. Statistical Computing (2014)



Generalized Coordinate Descent (GCD)

objective function
75 80 85 90 95 100 10t
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1
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Groupwise Majorization Descent

m Update B in a groupwise fashion

ﬁ—ﬁz(05707ﬂ(k)—ﬁ
——

k—1

= (k)

,0,...
—

K—k

70)



Groupwise Majorization Descent

m Update B in a groupwise fashion

ﬁilfé:(Oa"'707ﬁ<h)715(,?)705"'70)
N—— N——

k—1 K—k

m Only need to compute the majorization function on group level

(8| D) <L(B|D) - (B - 3"

U + 28" - By (8" -

k 0 AT
U = mL(ﬂ |D) = — (Y— Y) WX
o _ 9

m oy, = eigenmax(HM))

=
B

)



Groupwise Majorization Descent

m Update B in a groupwise fashion

ﬁilfé:(Oa"'707ﬁ<h)71’6(,?)705"'70)
N—— N——

k—1 K—Fk

m Only need to compute the majorization function on group level

(8| D) <L(B|D) - (B - 3"

(k)

k 0 AT
U = mL(ﬂ |D) = — (Y— Y) WX
o _ 9

m oy, = eigenmax(Hw))
~(k . .
m Update ﬂ( ) with a fast operation:

3" new) = 1 u® +’7k~<k) 1-— S S
(k)
e IU® + 3B ll2/ +

U + S8 - By - B

)



Lasso vs. Group Lasso

B Logistic regression with group lasso: n = 50, p = 6.

B Group lasso: specify (81, B2, B83), (B4, Bs,B6). Variable selection at the
group level.

B Solution path: view 8 as function of A.

5 5 Lasso 2 4 Group Lasso
o N ]
o 7 o
; -
o
S o
2 2 °
c T
o o
o 5« |
% 3 <
S 84 3
g o
S
m
< S 7
34
=
3
T T T T T T T T T T T
-3.5 -3.0 -25 -2.0 -30 -28 -26 -24 -22 -20 -18

Log Lambda Log Lambda



Generalizations of the Lasso



Generalizations of the Lasso Penalty

Generalized penalties arise in a wide variety of settings:

m Group lasso, Hierarchical group lasso: handle structurally
grouped features. e.g. dummy variables.

m Adaptive lasso: a lasso with the Oracle property.

m Elastic net: handle highly correlated features. e.g. genes.

m SCAD and MCP: non-convex penalties with the Oracle
property.

m Multitask lasso: handle between-tasks sparsity while
allowing within-task sparsity.



Asymptotic Properties

m Considery; = X,T,B* + €, B = (B1,...,Bp), € ~ D(0, a?).

m A ={: B # 0} - the support of g*

m A, = {j: B; # 0} - the support of the penalized estimator
Bn = (5n,17 cee ,Bn,p)'

m Oracle Property: an important property that any penalized
estimator 3, should possess
» Variable selection consistency:

lim P(A, — A*) =1

n—oo

> \/n-estimation consistency:

VN(Bya- — Bie) > N (0, %)

where X is the covariance matrix knowing the true subset
model.
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Adaptive Lasso

The adaptive lasso estimator

p
~alasso 1 2 N
= argming [ly — XB|I" + An E 1: w5, (5)
j:

where W; = ﬁ for some v > 0 and a v/n-consistent estimator
)
ﬁ}‘ of 51‘.
m For Lasso, if an irrelevant variable is highly correlated with

variables in the true model, the lasso may fail to
distinguish it from the true variables even with large n.

B As n — oo, the weights corresponding to insignificant
variables tend to infinity, while the weights corresponding
to significant variables converge to a finite constant.

m Zou (2006) showed that, under certain regularity
conditions, the adaptive lasso has the oracle property.
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Elastic Net

The elastic net (Zou and Hastie, 2005) solves the convex
program

1 1
mén§|]y—XﬁH2+)\ 5(1—&)”[3“%4—0{”,6”1

where « € [0,1] is a parameter. The penalty applied to an
individual coefficient (disregarding the regularization weight
A > 0) is given by

1
5(1— )8 +alB]|.
m The coefficients are selected approximately together in

their groups.
m The coefficients approximately share their values equally.
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An illustration example

m Two independent “hidden” factors z; and zo
z1 ~ U(0,20), 2y ~ U(0,20)

m Generate the response vectory = z; +0.1 -z + N(0,1)
m Suppose only observe predictors

X1 =21 t€, Xo=12 +€, X3=12z te€3

X4 =Zo+ €4, X5 =122+ €5, Xg=122+ €

m Fit the model on (X,y)

m An “oracle” would identify x;, x» and x3 (the z; group) as
the most important variables.
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Simulation 1

Lasso

Elastic Net lambda = 0.5
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86



Simulation 2

Lasso

Elastic Net lambda = 0.5
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Hierarchical Group Lasso
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A node can be active only if its ancestors are active.

The selected patterns are rooted subtrees.
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Optimization via efficient proximal methods (same cost as (3

(Jenatton, Mairal, Obozinski, and Bach 2010)



Multitask Lasso

Suppose that we have K regression tasks

y® = x0g" 4 *) k=1,...,K

B The k-th task has n,, observations fork =1,...,K

R 3 3 3 3
u y(h):(yg)’._.yy())T X() ((/)7“.7 gkj))
m X® = (x ... x{”) be the n, x p design matrix for task k

k k

.ﬁ(k):(/3§)77 lg)) andl@/:(/81<17aﬁ](,<)

B find commonly shared relevant covariates and retains the ability to
recover covariates unique to individual data sources.

K
1 2
n}aing g HY(M — X(k),@(k) H + AP (8),

p

= 2w (= a)lgle-+ ol
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Recall the bias of the lasso

q Formula
1 sign(B°)(18°| — M)+
2 BS/(14 2
Ridge Lasso
1
A
P 4
e
e d
- 7’
..~ "|(0,0) ’ (0,0)




SCAD (Fan et Li, JASA, 2001), MCP (Zhang, Ann. Stat,
2010)

SCAD
4 —
2 MCP
Lasso
< 0 —
_2 —
_4 —




Discussion

m Variable selection is an active area of research

m Few inference tools exist

m Robust software has been developed, but more scalable
algorithms and implementations are needed



References

Fan, J. and Li, R, 2001. Variable selection via nonconcave penalized likelihood
and its oracle properties. Journal of the American statistical Association,
96(456), pp1348-1360.

Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58(1), pp.267-288.
Friedman, J., Hastie, T, Hofling, H. and Tibshirani, R., 2007. Pathwise coordinate
optimization. The annals of applied statistics, 1(2), pp.302-332.

Buhlmann, P. & van de Geer, S. (2011), Statistics for High-Dimensional Data,
Springer.

m Breheny, P. BIOS 7240 class notes (accessed March 15, 2019).
m Tibshirani, R. A Closer Look at Sparse Regression (accessed March 15, 2019).
m Gaillard, P. and Rudi, A. Introduction to Machine Learning (accessed March 15,

2019).

Hastie, T, Tibshirani, R. & Friedman, J. (2009), The Elements of Statistical
Learning; Data Mining, Inference and Prediction, Springer. Second edition.

Hastie, T, Tibshirani, R. & Wainwright, M. (2015), Statistical Learning with Sparsity:

the Lasso and Generalizations, Chapman & Hall.

slides available at
https://sahirbhatnagar.com/talks/

93


http://myweb.uiowa.edu/pbreheny/7240/s19/notes.html
http://www.stat.cmu.edu/~larry/=sml/sparsity.pdf
https://www.di.ens.fr/appstat/spring-2019/
https://www.di.ens.fr/appstat/spring-2019/
https://sahirbhatnagar.com/talks/

Contexte sur la validation croisée
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SCAD

. A= |5
p'(181; X) = Asign(;) {’(mgx) + w/(mn)} , a>2

The penalty is expressed in terms of its derivative. The SCAD is
a combination of the HARD, LASSO, and Clipped penalties.
This leads to the solution

5’9”(5; OLS)(|/6/ otsl — A+ |Bj,OLS| < 2A

2 a—1 sign ax -~
/Bj,SCAD — ( ):3/ OLSO 29 (/61 OLS) 22 < ’ﬁj,OLS| S a\

5,‘,05 1Bj.01s] > aX
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MCP, Zhang (2010)

1812
18— 25 18] <4

p(IBl: A y) = { 2
: et 18] > A
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