Betting on Sparsity

Sahir Bhatnagar, PhD Candidate, McGill Biostatistics

Joint work with Yi Yang and Celia Greenwood (McGill)

March 1, 2018

Betting on Sparsity

Use a procedure that does well in sparse problems, since no procedure does well in dense problems.¹

¹The elements of statistical learning. Springer series in statistics, 2001.

Use a procedure that does well in sparse problems, since no procedure does well in dense problems.¹

- We often don't have enough data to estimate so many parameters
- Even when we do, we might want to identify a relatively small number of predictors (k < N) that play an important role
- Faster computation, easier to understand, and stable predictions on new datasets.

¹The elements of statistical learning. Springer series in statistics, 2001.

A Thought Experiment

How would you schedule a meeting of 20 people?

How would you schedule a meeting of 20 people?

	March 2017											
	Thu 9	Fri 10	Sel 11		Sun 12	Mon 13	Tue 14	Wed 15	Thu 16	Fri 17	Sal 18	Sun 19
11 participants	5:00 PM - 9:00 PM	5:00 PM - 9:00 PM	9:00 AM - 3:00 PM	3:00 PM - 9:00 PM	1:00 PM - 9:00 PM	1:00 PM- 9:00 PM	1:00 PM - 9:00 PM	1:00 PM - 9:00 PM	1:00 PM - 9:00 PM	1:00 PM - 9:00 PM	1:00 PM - 9:00 PM	1:00 PM - 9:00 PM
🔔 JayZ	1	1	1			1			1	1	1	
🚊 Evan										1	1	1
Omar	1	1		1		1			1	1	1	
Caitin	1	1	1						1	1	1	
Austin	1	1	1									
🚺 Ethan			1	1					1		1	
🔔 Max	1	1	1			1			1	1	1	
Tycho	1	1	1	1		1			1	1	1	
🧕 Janavi Chadha		1	1	1		1	1			1	1	
Charlotte											1	1
Darshanye	1	1				1			1	1		
1 Your name												
	5:00 PM - 9:00 PM	5:00 PM - 9:00 PM	9:00 AM - 3:00 PM	3:00 PM - 9:00 PM	1:00 PM - 9:00 PM	1:00 PM - 9:00 PM	1:00 PM- 9:00 PM	1:00 PM - 9:00 PM	1:00 PM - 9:00 PM	1:00 PM - 9:00 PM	1:00 PM - 9:00 PM	1:00 PM - 9:00 PM
	Thu 9	Fri 10	Sat 11		Sun 12	Mon 13	Tue 14	Wed 15	Thu 16	Fri 17	Sat 18	Sun 19
	March 201	7										
	7	8	7	4	0	6	1	0	7	8	9	2

Doctors Bet on Sparsity Also

Doctors Bet on Sparsity Also

Motivating Example

Predictors of NHL Salary²

²https://www.kaggle.com/camnugent/nhl-salary-data-prediction-cleaning-and-modelling

Supervised Learning

Learn the function *f*

Predictors of NHL Salary

Predictors of NHL Salary

OLS vs. Lasso Coefficients

Lasso Selected Predictors

Lasso Predictors of NHL Salary

Background on the Lasso

- Predictors x_{ij}, j = 1,..., p and outcome values y_i for the *i*th observation, i = 1,..., n
- Assume x_{ij} are standardized so that $\sum_i x_{ij}/n = 0$ and $\sum_i x_{ij}^2 = 1$.

Background on the Lasso

- Predictors x_{ij}, j = 1,..., p and outcome values y_i for the *i*th observation, i = 1,..., n
- Assume x_{ij} are standardized so that $\sum_i x_{ij}/n = 0$ and $\sum_i x_{ij}^2 = 1$. The lasso¹ solves

$$\widehat{\boldsymbol{\beta}}^{lasso} = \underset{\beta}{\arg\min} \frac{1}{2} \sum_{i=1}^{n} \left(y_{i} - \sum_{j=1}^{p} x_{ij} \beta_{j} \right)^{2}$$

subject to
$$\sum_{j=1}^{p} |\beta_{j}| \leq s, \qquad s > 0$$

¹Tibshirani. JRSSB (1996)

Background on the Lasso

- Predictors x_{ij}, j = 1,..., p and outcome values y_i for the *i*th observation, i = 1,..., n
- Assume x_{ij} are standardized so that $\sum_i x_{ij}/n = 0$ and $\sum_i x_{ij}^2 = 1$. The lasso¹ solves

$$\widehat{\boldsymbol{\beta}}^{lasso} = \underset{\beta}{\arg\min} \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$

subject to
$$\sum_{j=1}^{p} |\beta_j| \le s, \qquad s > 0$$

Equivalently, the Lagrange version of the problem, for $\lambda>0$

$$\widehat{\boldsymbol{\beta}}^{lasso} = \arg\min_{\beta} \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

¹Tibshirani. JRSSB (1996)

Inspection of the Lasso Solution

Consider a single predictor setting based on the observed data $\{(x_i, y_i)\}_{i=1}^n$. The problem then is to solve

$$\widehat{\beta}^{lasso} = \arg\min_{\beta} \frac{1}{2} \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda |\beta|$$
(1)

With a standardized predictor, the lasso solution (1) is a soft-thresholded version of the least-squares (LS) estimate β^{LS}

$$\begin{split} \widehat{\beta}^{\text{lasso}} &= \mathsf{S}_{\lambda} \left(\widehat{\beta}^{\text{LS}} \right) = \mathsf{sign} \left(\widehat{\beta}^{\text{LS}} \right) \left(|\widehat{\beta}^{\text{LS}}| - \lambda \right)_{+} \\ &= \begin{cases} \widehat{\beta}^{\text{LS}} - \lambda, & \widehat{\beta}^{\text{LS}} > \lambda \\ 0 & |\widehat{\beta}^{\text{LS}}| \le \lambda \\ \widehat{\beta}^{\text{LS}} + \lambda & \widehat{\beta}^{\text{LS}} \le -\lambda \end{cases} \end{split}$$

Inspection of the Lasso Solution

When the data are standardized, the lasso solution shrinks the LS estimate toward zero by the amount λ

¹Hastie et al. Statistical learning with sparsity: the lasso and generalizations

Choosing the Model Complexity

Group Lasso Illustration

Extended from the lasso penalty, the group lasso estimator is:

$$\min_{(\beta_0,\boldsymbol{\beta})} \frac{1}{2} \|\mathbf{y} - \beta_0 - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda \sum_{k=1}^{K} \sqrt{p_k} \|\boldsymbol{\beta}^{(k)}\|_2 \qquad p_k - \text{group size}$$

Group Lasso Illustration

Extended from the lasso penalty, the group lasso estimator is:

$$\min_{(\beta_0,\boldsymbol{\beta})} \frac{1}{2} \|\mathbf{y} - \beta_0 - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda \sum_{k=1}^K \sqrt{p_k} \|\boldsymbol{\beta}^{(k)}\|_2 \qquad p_k - \text{group size}$$

Credit card balance \sim age + age² + height + height²

Our Software

Overview of Our Software Packages

- eclust Bhatnagar et al. (2017, Genetic Epidemiology)
 https://cran.r-project.org/package=eclust
- sail Bhatnagar, Yang and Greenwood (2018+, preprint) https://github.com/sahirbhatnagar/sail
- **ggmix** Bhatnagar, Oualkacha, Yang, Greenwood (2018+, preprint) https://github.com/sahirbhatnagar/ggmix
- casebase Bhatnagar¹, Turgeon¹, Yang, Hanley and Saarela (2018+, preprint) https://cran.r-project.org/package=casebase

Overview of Our Software Packages

	eclust	sail	ggmix	casebase
Model				
Least-Squares	1	1	1	
Binary Classification	\checkmark			
Survival Analysis				1
Penalty				
Ridge	1		1	1
Lasso	✓	1	1	1
Elastic Net	✓		1	1
Group Lasso		1	1	
Feature				
Interactions	1	1		1
Flexible Modeling	1	1		1
Random Effects			1	
Data	(x, y, e)	(x, y, e)	$(x, y, \mathbf{\Psi})$	(x, t, δ)

sail: Strong Additive Interaction Learning

Motivation 1: Non-linear Interactions

 \times

Phenotype Obesity measures Large Data Child's epigenome $(p \approx 450 \text{k})$

Environment Gestational Diabetes

Motivation 1: Non-linear Interactions

Motivation 2: Heredity Property

¹Chipman. Canadian Journal of Statistics (1996)

²McCullagh and Nelder. Generalized Linear Models (1983)

³Cox. International Statistical Review (1984)

Motivation 2: Heredity Property

- Heredity property is desired for the purposes of interpretability²
- Large main effects are more likely to lead to appreciable interactions³

¹Chipman. Canadian Journal of Statistics (1996)

²McCullagh and Nelder. Generalized Linear Models (1983)

³Cox. International Statistical Review (1984)

Lasso interaction model

Y → response
X_E → environment
X_j → predictors, j = 1,..., p

$$Y = \beta_0 \cdot \mathbf{1} + \sum_{j=1}^{p} \beta_j X_j + \beta_E X_E + \sum_{j=1}^{p} \alpha_j X_E X_j + \varepsilon$$
$$\underset{\beta_0, \beta, \alpha}{\operatorname{argmin}} \quad \mathcal{L}(Y; \mathbf{\Theta}) + \lambda(\|\boldsymbol{\beta}\|_1 + \|\boldsymbol{\alpha}\|_1)$$

Strong Heredity Interactions: Current State of the Art

Туре	Model	Software
Linear	CAP (Zhao et al. 2009, Ann. Stat) SHIM (Choi et al. 2009, JASA) hiernet (Bien et al. 2013, Ann. Stat) GRESH (She and Jiang 2014, JASA) FAMILY (Haris et al. 2014, JCGS) glinternet (Lim and Hastie 2015, JCGS) RAMP (Hao et al. 2016, JASA) LassoBacktracking (Shah 2018, JMLR)	<pre>X X hierNet(x, y) X FAMILY(x, z, y) glinternet(x, y) RAMP(x, y) LassoBT(x, y)</pre>
Non- linear	VANISH (Radchenko and James 2010, JASA) sail (Bhatnagar et al. 2018+)	<pre>x sail(x, e, y, degree)</pre>
Our Extension to Nonlinear Effects

Consider the basis expansion

$$f_j(X_j) = \sum_{\ell=1}^{p_j} \psi_{j\ell}(X_j) \beta_{j\ell}$$

B-Spline Expansion

```
x <- truncnorm::rtruncnorm(1000, a = 0, b = 1)
B <- splines::bs(x, df = 5, degree=3, intercept = FALSE)</pre>
```


Х

sail: Additive Interactions

$$\boldsymbol{\theta}_j = (\beta_{j1}, \dots, \beta_{jp_j}) \in \mathbb{R}^{p_j}$$

• $\Psi_j \rightarrow n \times p_j$ matrix of evaluations of the $\psi_{j\ell}$

In our implementation, we use cubic bsplines with 5 degrees of freedom

Model

$$Y = \beta_0 \cdot \mathbf{1} + \sum_{j=1}^{p} \Psi_j \theta_j + \beta_E X_E + \sum_{j=1}^{p} X_E \Psi_j \alpha_j + \varepsilon$$

sail: Strong Heredity

Reparametrization¹

$$\alpha_j = \gamma_j \beta_E \theta_j$$

Model

$$Y = \beta_0 \cdot \mathbf{1} + \sum_{j=1}^{p} \Psi_j \theta_j + \beta_E X_E + \sum_{j=1}^{p} \gamma_j \beta_E X_E \Psi_j \theta_j + \varepsilon$$

Objective Function

$$\underset{\beta_{E},\boldsymbol{\theta},\boldsymbol{\gamma}}{\operatorname{argmin}} \quad \mathcal{L}(Y;\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(\mathsf{W}_{E}|\beta_{E}| + \sum_{j=1}^{p} \mathsf{W}_{j} \|\boldsymbol{\theta}_{j}\|_{2} \right) + \lambda \alpha \sum_{j=1}^{p} \mathsf{W}_{jE}|\gamma_{j}|$$

¹Choi et al. JASA (2010)

Algorithm

Block Relaxation (De Leeuw, 1994)

Objective Function

$$\underset{\beta_{E},\boldsymbol{\theta},\boldsymbol{\gamma}}{\operatorname{argmin}} \quad \mathcal{L}(Y;\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E}|\beta_{E}| + \sum_{j=1}^{p} w_{j} \|\theta_{j}\|_{2} \right) + \lambda \alpha \sum_{j=1}^{p} w_{jE}|\gamma_{j}|$$

¹https://github.com/sahirbhatnagar/sail

Objective Function

$$\underset{\beta_{E},\boldsymbol{\theta},\boldsymbol{\gamma}}{\operatorname{argmin}} \quad \mathcal{L}(Y;\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E}|\beta_{E}| + \sum_{j=1}^{p} w_{j} \|\theta_{j}\|_{2} \right) + \lambda \alpha \sum_{j=1}^{p} w_{jE}|\gamma_{j}|$$

Lasso problem
$$\underset{\boldsymbol{\gamma}}{\operatorname{argmin}} \quad \mathcal{L}(\boldsymbol{Y}; \boldsymbol{\Theta}) + \lambda(1 - \alpha) \left(W_{\mathcal{E}} |\beta_{\mathcal{E}}| + \sum_{j=1}^{p} W_{j} \|\theta_{j}\|_{2} \right) + \lambda \alpha \sum_{j=1}^{p} W_{j\mathcal{E}} |\gamma_{j}|$$

¹https://github.com/sahirbhatnagar/sail

Objective Function

$$\underset{\beta_{E},\boldsymbol{\theta},\boldsymbol{\gamma}}{\operatorname{argmin}} \quad \mathcal{L}(Y;\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E}|\beta_{E}| + \sum_{j=1}^{p} w_{j} \|\theta_{j}\|_{2} \right) + \lambda \alpha \sum_{j=1}^{p} w_{jE}|\gamma_{j}|$$

¹https://github.com/sahirbhatnagar/sail

Objective Function

$$\underset{\beta_{E},\boldsymbol{\theta},\boldsymbol{\gamma}}{\operatorname{argmin}} \quad \mathcal{L}(Y;\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E}|\beta_{E}| + \sum_{j=1}^{p} w_{j} \|\theta_{j}\|_{2} \right) + \lambda \alpha \sum_{j=1}^{p} w_{jE}|\gamma_{j}|$$

Group Lasso problem

$$\underset{\beta_{E},\boldsymbol{\theta}}{\operatorname{argmin}} \quad \mathcal{L}(Y;\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E}|\beta_{E}| + \sum_{j=1}^{p} w_{j} \|\theta_{j}\|_{2} \right) + \lambda \alpha \sum_{j=1}^{p} w_{jE}|\gamma_{j}|$$

¹https://github.com/sahirbhatnagar/sail

Simulations

Simulation Scenarios

1. Truth obeys strong hierarchy (right in our wheel house):

$$Y = \sum_{j=1}^{4} f_j(X_j) + \beta_E \cdot X_E + X_E \times (f_3(X_3) + f_4(X_4)) + \varepsilon$$

Simulation Scenarios

1. Truth obeys strong hierarchy (right in our wheel house):

$$Y = \sum_{j=1}^{4} f_j(X_j) + \beta_E \cdot X_E + X_E \times (f_3(X_3) + f_4(X_4)) + \varepsilon$$

2. Truth only has main effects:

$$Y = \sum_{j=1}^{4} f_j(X_j) + \beta_E \cdot X_E + \varepsilon$$

Simulation Scenarios

1. Truth obeys strong hierarchy (right in our wheel house):

$$Y = \sum_{j=1}^{4} f_j(X_j) + \beta_E \cdot X_E + X_E \times (f_3(X_3) + f_4(X_4)) + \varepsilon$$

2. Truth only has main effects:

$$Y = \sum_{j=1}^{4} f_j(X_j) + \beta_E \cdot X_E + \varepsilon$$

- n = 200, p = 1000, $\beta_E = 1$, SNR = 2
- $X_j \sim \text{truncnorm(0,1)}, j = 1, ..., 1000, E \sim \text{truncnorm(-1,1)}$

sail needs to estimate $1000 \times 5 \times 2 = 10k$ parameters

Scenario 1: Main Effects for 500 Simulations

Scenario 1: Estimated Interaction Effects for $E \cdot f(X_3)$

Scenario 1: Estimated Interaction Effects for $E \cdot f(X_4)$

Right in Our Wheel House Simulation Results

Right in Our Wheel House Simulation - Comparison

GLinternet: 70% of points below the line

10-Fold CV MSE vs. Training MSE Comparison

Right in Our Wheel House Simulation - Comparison

No Interactions Simulation - Comparison

sail with degree=1 when Truth is Linear

Computing time

sail R package

sail R package: Solution Path results

sail::plot(fit)

sail R package: Cross-validation results

sail::plot(cvfit)

40 40 39 36 31 29 29 26 23 18 15 13 11 9 8 8 6 6 5 5 4 3 2 2 1 1 1 1 0

log(Lambda)

sail A Note on the Second Tuning Parameter results

Real Data Application

Alzheimer's Disease Neuroimaging Initiative (ADNI)

- Alzheimer's is an irreversible neurodegenerative disease that results in a loss of mental function due to the deterioration of brain tissue.
- The overall goal of ADNI is to validate biomarkers for use in Alzheimer's disease clinical treatment trials

Interaction between A β Protein and APOE gene

- **E**: APOE4 allele increases the risk for Alzheimer's and lowers the age of onset
- X: PET amyloid imaging to assess Aβ protein load in 96 brain regions
- **Y**: General cognitive decline measured by mini-mental state examination
- $3 \times 96 \times 2 + 1 = 577$ parameters to estimate

Variable Selection Results: sail vs. lasso

Fig.: lasso: 13 variables

Fig.: sail: 7 variables

5-Fold Cross-Validated MSE

sail: Interactions with the supramarginal gyrus
region

Discussion
Strengths and Limitations

Strengths

- Non-linear environment interactions with strong heredity property in p >> N
- **sail** allows for flexible modeling of input variables

Strengths and Limitations

Strengths

- Non-linear environment interactions with strong heredity property in p >> N
- sail allows for flexible modeling of input variables

Limitations

- **sail** can currently only handle $E \cdot f(X)$ or $f(E) \cdot X$
- Does not allow for $f(X_1, E)$ or $f(X_1, X_2)$
- Memory footprint is an issue

Future Directions

- Weak heredity property $\rightarrow \alpha_j = \gamma_j(|\beta_j| + |\beta_E|)$
- Implement ADMM algorithm for scalability. Distributed computing (GPU)
- Binary Outcomes
- bi-level selection:

$$f(X_{1}) = \underbrace{\begin{bmatrix} X_{11} & \psi_{11}(X_{11}) & \psi_{12}(X_{12}) & \cdots & \psi_{11}(X_{15}) \\ \vdots & \vdots & \ddots & \vdots \\ X_{i1} & \psi_{11}(X_{i1}) & \psi_{12}(X_{i2}) & \cdots & \psi_{11}(X_{i5}) \\ \vdots & \vdots & \ddots & \vdots \\ X_{N1} & \psi_{11}(X_{N1}) & \psi_{12}(X_{N2}) & \cdots & \psi_{11}(X_{N5}) \end{bmatrix}_{N \times 5}}_{N \times 5} \times \underbrace{\begin{bmatrix} \beta_{\text{linear}} \\ \beta_{11} \\ \beta_{12} \\ \beta_{13} \\ \beta_{14} \\ \beta_{15} \end{bmatrix}_{6 \times 1}}_{\theta_{1}}$$

Acknowledgements

References

- Radchenko, P., & James, G. M. (2010). Variable selection using adaptive nonlinear interaction structures in high dimensions. Journal of the American Statistical Association, 105(492), 1541-1553.
- Choi, N. H., Li, W., & Zhu, J. (2010). Variable selection with the strong heredity constraint and its oracle property. Journal of the American Statistical Association, 105(489), 354-364.
- Chipman, H. (1996). Bayesian variable selection with related predictors. Canadian Journal of Statistics, 24(1), 17-36.
- Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1)
- Yang, Y., & Zou, H. (2015). A fast unified algorithm for solving group-lasso penalize learning problems. Statistics and Computing, 25(6), 1129-1141
- De Leeuw, J. (1994). Block-relaxation algorithms in statistics. In Information systems and data analysis (pp. 308-324). Springer Berlin Heidelberg.

sahirbhatnagar.com

Session Info

```
R version 3.4.1 (2017-06-30)
Platform: x86 64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.3 LTS
Matrix products: default
BLAS: /usr/lib/openblas-base/libblas.so.3
LAPACK: /usr/lib/libopenblasp-r0.2.18.so
attached base packages:
[1] stats graphics grDevices utils datasets base
other attached packages:
[1] xtable_1.8-2 rpart.plot_2.1.2 rpart_4.1-11
[4] data.table_1.10.4-3 ISLR_1.2
                                        ggplot2 2.2.1.9000
[7] knitr 1.19
loaded via a namespace (and not attached):
 [1] Rcpp 0.12.15
                     magrittr 1.5 splines 3.4.1
 [4] munsell_0.4.3 colorspace_1.3-2 rlang_0.1.6
 [7] stringr 1.2.0
                      highr 0.6
                                       plyr 1.8.4
[10] tools 3.4.1
                     grid 3.4.1
                                       gtable 0.2.0
[13] pacman 0.4.6
                     lazyeval 0.2.1 digest 0.6.15
[16] tibble 1.4.2
                      RSkittleBrewer 1.1 codetools 0.2-15
[19] evaluate 0.10.1
                      stringi 1.1.5
                                       compiler 3.4.1
[22] pillar 1.1.0
                      methods 3.4.1
                                       scales 0.5.0.9000
25] truncnorm 1.0-7
```

Appendix

Why the L1 norm ?

For a fixed real number $q \ge 0$ consider the criterion

$$\widetilde{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}$$

Why do we use the ℓ_1 norm? Why not use the q = 2 (Ridge) or any ℓ_q norm?

- q = 1 is the smallest value that yields a sparse solution and yields a convex problem → scalable to high-dimensional data
- For *q* < 1 the constrained region is **nonconvex**

Linear Effects Simulation - Comparison

