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Bet on Sparsity Principle
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Bet on Sparsity Principle

Use a procedure that does well in sparse problems,
since no procedure does well in dense problems.1

We often don’t have enough data to estimate so many
parameters

Even when we do, we might want to identify a relatively
small number of predictors (k < N) that play an
important role

Faster computation, easier to understand, and stable
predictions on new datasets.

1The elements of statistical learning. Springer series in statistics, 2001.
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A Thought Experiment
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How would you schedule a meeting of 20 people?
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How would you schedule a meeting of 20 people?



7

Doctors Bet on Sparsity Also



7

Doctors Bet on Sparsity Also
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Motivating Example
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Predictors of NHL Salary2
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Supervised Learning

Learn the function f

f
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Predictors of NHL Salary
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OLS vs. Lasso Coefficients
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Lasso Selected Predictors

Avg. Ice Time

Misconducts

Overtime Goals

GWG

Birth Year

Draft Year

Undrafted

Defenceman

Lasso Predictors of NHL Salary

Coefficient
−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1



15

Background on the Lasso
Predictors xij, j = 1, . . . ,p and outcome values yi for the ith
observation, i = 1, . . . ,n
Assume xij are standardized so that

∑
i xij/n = 0 and∑

i x2ij = 1.

The lasso1 solves

β̂
lasso

= argmin
β

1

2

n∑
i=1

yi − p∑
j=1

xijβj

2

subject to
p∑
j=1

|βj| ≤ s, s > 0

Equivalently, the Lagrange version of the problem, for
λ > 0

β̂
lasso

= argmin
β

1

2

n∑
i=1

yi − p∑
j=1

xijβj

2

+ λ

p∑
j=1

|βj|

1Tibshirani. JRSSB (1996)
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β̂
lasso

= argmin
β

1

2

n∑
i=1

yi − p∑
j=1

xijβj

2

subject to
p∑
j=1

|βj| ≤ s, s > 0

Equivalently, the Lagrange version of the problem, for
λ > 0

β̂
lasso

= argmin
β

1

2

n∑
i=1

yi − p∑
j=1

xijβj

2

+ λ

p∑
j=1

|βj|

1Tibshirani. JRSSB (1996)
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Inspection of the Lasso Solution

Consider a single predictor setting based on the observed
data {(xi, yi)}ni=1. The problem then is to solve

β̂lasso = argmin
β

1

2

n∑
i=1

(yi − xiβ)2 + λ|β| (1)

With a standardized predictor, the lasso solution (1) is a
soft-thresholded version of the least-squares (LS)
estimate β̂LS

β̂lasso = Sλ
(
β̂LS

)
= sign

(
β̂LS

)(
|β̂LS| − λ

)
+

=


β̂LS − λ, β̂LS > λ

0 |β̂LS| ≤ λ
β̂LS + λ β̂LS ≤ −λ



17

Inspection of the Lasso Solution

When the data are standardized, the lasso solution
shrinks the LS estimate toward zero by the amount λ

1Hastie et al. Statistical learning with sparsity: the lasso and generalizations
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Choosing the Model Complexity
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Group Lasso Illustration
Extended from the lasso penalty, the group lasso estimator is:

min
(β0,β)

1

2
∥y− β0 −Xβ∥22 + λ

K∑
k=1

√
pk∥β(k)∥2 pk − group size

Credit card balance ∼ age+ age2 + height+ height2

linear

quadratic

credit card balance

age

height

(a) Lasso

linear

quadratic

credit card balance

age

height

(b) Group Lasso
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Our Software
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Overview of Our Software Packages

eclust – Bhatnagar et al. (2017, Genetic Epidemiology)
https://cran.r-project.org/package=eclust
sail – Bhatnagar, Yang and Greenwood (2018+, preprint)
https://github.com/sahirbhatnagar/sail
ggmix – Bhatnagar, Oualkacha, Yang, Greenwood (2018+, preprint)
https://github.com/sahirbhatnagar/ggmix
casebase – Bhatnagar1, Turgeon1, Yang, Hanley and Saarela (2018+,
preprint)
https://cran.r-project.org/package=casebase

1joint co-authors

https://cran.r-project.org/package=eclust
https://github.com/sahirbhatnagar/sail
https://github.com/sahirbhatnagar/ggmix
https://cran.r-project.org/package=casebase
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Overview of Our Software Packages

eclust sail ggmix casebase
Model
Least-Squares 3 3 3

Binary Classification 3

Survival Analysis 3

Penalty
Ridge 3 3 3

Lasso 3 3 3 3

Elastic Net 3 3 3

Group Lasso 3 3

Feature
Interactions 3 3 3

Flexible Modeling 3 3 3

Random Effects 3

Data (x, y, e) (x, y, e) (x, y,Ψ) (x, t, δ)
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sail: Strong Additive Interaction Learning
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Motivation 1: Non-linear Interactions

Environment
Gestational
Diabetes

Large Data
Child’s epigenome

(p ≈ 450k)

Phenotype
Obesity measures

∼ ×
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Motivation 1: Non-linear Interactions
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Motivation 2: Heredity Property

Y = β0 · 1 +

p∑
j=1

βjXj + βEXE︸ ︷︷ ︸
main effects

+

p∑
j=1

αjXEXj︸ ︷︷ ︸
interactions

+ε

Strong Heredity1

α̂j ̸= 0 ⇒ β̂j ̸= 0 and β̂E ̸= 0

Heredity property is desired for the purposes of
interpretability2

Large main effects are more likely to lead to appreciable
interactions3

1Chipman. Canadian Journal of Statistics (1996)
2McCullagh and Nelder. Generalized Linear Models (1983)
3Cox. International Statistical Review (1984)
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Lasso interaction model

Y→ response
XE → environment
Xj → predictors, j = 1, . . . ,p

Y = β0 · 1 +

p∑
j=1

βjXj + βEXE +
p∑
j=1

αjXEXj + ε

argmin
β0,β,α

L(Y;Θ) + λ(∥β∥1 + ∥α∥1)
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Strong Heredity Interactions: Current State of the Art

Type Model Software

Linear CAP (Zhao et al. 2009, Ann. Stat) 7

SHIM (Choi et al. 2009, JASA) 7

hiernet (Bien et al. 2013, Ann. Stat) hierNet(x, y)
GRESH (She and Jiang 2014, JASA) 7

FAMILY (Haris et al. 2014, JCGS) FAMILY(x, z, y)
glinternet (Lim and Hastie 2015, JCGS) glinternet(x, y)
RAMP (Hao et al. 2016, JASA) RAMP(x, y)
LassoBacktracking (Shah 2018, JMLR) LassoBT(x, y)

Non-
linear VANISH (Radchenko and James 2010, JASA) 7

sail (Bhatnagar et al. 2018+) sail(x, e, y, degree)
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Our Extension to Nonlinear Effects
Consider the basis expansion

fj(Xj) =
pj∑
ℓ=1

ψjℓ(Xj)βjℓ

f(X1) =



ψ11(X11) ψ12(X12) · · · ψ11(X15)
...

... · · ·
...

...
... · · ·

...
ψ11(Xi1) ψ12(Xi2) · · · ψ11(Xi5)

...
... · · ·

...
...

... · · ·
...

ψ11(XN1) ψ12(XN2) · · · ψ11(XN5)


N×5︸ ︷︷ ︸

Ψ1

×


β11
β12
β13
β14
β15


5×1︸ ︷︷ ︸

θ1
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B-Spline Expansion

x <- truncnorm::rtruncnorm(1000, a = 0, b = 1)
B <- splines::bs(x, df = 5, degree=3, intercept = FALSE)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

df=5, degree=3, inner.knots at c(33.33%, 66.66%) percentile

x

bs
(x

)
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sail: Additive Interactions

θj = (βj1, . . . , βjpj) ∈ Rpj

αj = (αj1, . . . , αjpj) ∈ Rpj

Ψj → n× pj matrix of evaluations of the ψjℓ
In our implementation, we use cubic bsplines with 5
degrees of freedom

Model

Y = β0 · 1+

p∑
j=1

Ψjθj + βEXE +
p∑
j=1

XEΨjαj + ε
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sail: Strong Heredity
Reparametrization1

αj = γjβEθj

Model

Y = β0 · 1+

p∑
j=1

Ψjθj + βEXE +
p∑
j=1

γjβEXEΨjθj + ε

Objective Function

argmin
βE,θ,γ

L(Y;Θ) + λ(1− α)

wE|βE|+ p∑
j=1

wj∥θj∥2

+ λα

p∑
j=1

wjE|γj|

1Choi et al. JASA (2010)
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Algorithm
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Block Relaxation (De Leeuw, 1994)

Algorithm 1: Block Relaxation Algorithm
Set the iteration counter k← 0 and fix α ∈ (0, 1);
for each λ do

repeat

γ(k+1) ← argmin
γ

Qλ

(
γ, β

(k)
E ,θ(k)

)
θ(k+1) ← argmin

θ
Qλ

(
θ, β

(k)
E ,γ(k+1)

)
β
(k+1)
E ← argmin

βE

Qλ

(
θ(k+1), βE,γ

(k+1)
)

k← k+ 1
until convergence criterion is satisfied;

end
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Implementation

Objective Function

argmin
βE,θ,γ

L(Y;Θ)+λ(1−α)

wE|βE|+ p∑
j=1

wj∥θj∥2

+λα

p∑
j=1

wjE|γj|

Lasso problem

argmin
γ

L(Y;Θ)+λ(1− α)

wE|βE|+ p∑
j=1

wj∥θj∥2

+λα

p∑
j=1

wjE|γj|

1https://github.com/sahirbhatnagar/sail
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Implementation

Objective Function

argmin
βE,θ,γ

L(Y;Θ)+λ(1−α)

wE|βE|+ p∑
j=1

wj∥θj∥2

+λα

p∑
j=1

wjE|γj|

Group Lasso problem

argmin
βE,θ

L(Y;Θ)+λ(1−α)

wE|βE|+ p∑
j=1

wj∥θj∥2

+λα

p∑
j=1

wjE|γj|

1https://github.com/sahirbhatnagar/sail
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Implementation
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Simulations
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Simulation Scenarios

1. Truth obeys strong hierarchy (right in our wheel house):

Y =

4∑
j=1

fj(Xj) + βE · XE + XE × (f3(X3) + f4(X4)) + ε

2. Truth only has main effects:

Y =

4∑
j=1

fj(Xj) + βE · XE + ε

n = 200, p = 1000, βE = 1, SNR = 2

Xj ∼ truncnorm(0,1), j = 1, . . . , 1000,
E ∼ truncnorm(-1,1)
sail needs to estimate 1000× 5× 2 = 10k parameters
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Scenario 1: Main Effects for 500 Simulations
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Scenario 1: Estimated Interaction Effects for E · f(X3)
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Scenario 1: Estimated Interaction Effects for E · f(X4)
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Right in Our Wheel House Simulation Results
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Right in Our Wheel House Simulation - Comparison
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GLinternet: 70% of points below the line
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10-Fold CV MSE vs. Training MSE Comparison
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Right in Our Wheel House Simulation - Comparison
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No Interactions Simulation - Comparison
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sail with degree=1 when Truth is Linear
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Computing time
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sail R package
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sail R package: Solution Path results
sail::plot(fit)
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sail R package: Cross-validation results
sail::plot(cvfit)
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sail A Note on the Second Tuning Parameter results
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Real Data Application
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Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Alzheimer’s is an irreversible neurodegenerative disease that
results in a loss of mental function due to the deterioration of
brain tissue.
The overall goal of ADNI is to validate biomarkers for use in
Alzheimer’s disease clinical treatment trials
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Interaction between Aβ Protein and APOE gene
E: APOE4 allele increases the risk for Alzheimer’s and
lowers the age of onset
X: PET amyloid imaging to assess Aβ protein load in 96
brain regions
Y: General cognitive decline measured by mini-mental
state examination
3× 96× 2 + 1 = 577 parameters to estimate

Y343 x 1 X343 x 96 E343 x 1

Mini–Mental State Examination Amyloid Beta acide aminé Gène APOE
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Variable Selection Results: sail vs. lasso

APOE e4 = 1
Age 1
Age 2
Age 3

Age 1 x APOE
Age 2 x APOE
Age 3 x APOE

Diagnosis 1
Diagnosis 2
Diagnosis 3

Diagnosis 1 x APOE
Diagnosis 2 x APOE
Diagnosis 3 x APOE

lateral front−orbital gyrus right 1
lateral front−orbital gyrus right 2
lateral front−orbital gyrus right 3

lateral front−orbital gyrus right 1 x APOE
lateral front−orbital gyrus right 2 x APOE
lateral front−orbital gyrus right 3 x APOE

medial front−orbital gyrus right 1
medial front−orbital gyrus right 2
medial front−orbital gyrus right 3

medial front−orbital gyrus right 1 x APOE
medial front−orbital gyrus right 2 x APOE
medial front−orbital gyrus right 3 x APOE

occipital pole left 1
occipital pole left 2
occipital pole left 3

occipital pole left 1 x APOE
occipital pole left 2 x APOE
occipital pole left 3 x APOE
supramarginal gyrus right 1
supramarginal gyrus right 2
supramarginal gyrus right 3

supramarginal gyrus right 1 x APOE
supramarginal gyrus right 2 x APOE
supramarginal gyrus right 3 x APOE

sail

Coefficient

−4 −2 0 2 4 6 8

Fig.: sail: 7 variables

medial front−orbital gyrus left

supramarginal gyrus right

angular gyrus left

lateral occipitotemporal gyrus right

middle occipital gyrus left

occipital lobe WM right

background

scalp

nucleus accumbens left

anterior limb of internal capsule right

Age

Diagnosis

Diagnosis x APOE

lasso

Coefficient

−1.5 −1.0 −0.5 0.0 0.5 1.0

Fig.: lasso: 13 variables
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5-Fold Cross-Validated MSE
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sail: Interactions with the supramarginal gyrus
region
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Discussion
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Strengths and Limitations

Strengths
Non-linear environment interactions with strong heredity
property in p >> N
sail allows for flexible modeling of input variables

Limitations
sail can currently only handle E · f(X) or f(E) · X
Does not allow for f(X1, E) or f(X1, X2)
Memory footprint is an issue
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Future Directions
Weak heredity property→ αj = γj(|βj|+ |βE|)

Implement ADMM algorithm for scalability. Distributed
computing (GPU)
Binary Outcomes
bi-level selection:

f(X1) =



X11 ψ11(X11) ψ12(X12) · · · ψ11(X15)
...

... · · ·
...

...
... · · ·

...
Xi1 ψ11(Xi1) ψ12(Xi2) · · · ψ11(Xi5)

...
... · · ·

...
...

... · · ·
...

XN1 ψ11(XN1) ψ12(XN2) · · · ψ11(XN5)


N×5︸ ︷︷ ︸

Ψ1

×


βlinear
β11
β12
β13
β14
β15


6×1︸ ︷︷ ︸

θ1
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Session Info
R version 3.4.1 (2017-06-30)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.3 LTS

Matrix products: default
BLAS: /usr/lib/openblas-base/libblas.so.3
LAPACK: /usr/lib/libopenblasp-r0.2.18.so

attached base packages:
[1] stats graphics grDevices utils datasets base

other attached packages:
[1] xtable_1.8-2 rpart.plot_2.1.2 rpart_4.1-11
[4] data.table_1.10.4-3 ISLR_1.2 ggplot2_2.2.1.9000
[7] knitr_1.19

loaded via a namespace (and not attached):
[1] Rcpp_0.12.15 magrittr_1.5 splines_3.4.1
[4] munsell_0.4.3 colorspace_1.3-2 rlang_0.1.6
[7] stringr_1.2.0 highr_0.6 plyr_1.8.4

[10] tools_3.4.1 grid_3.4.1 gtable_0.2.0
[13] pacman_0.4.6 lazyeval_0.2.1 digest_0.6.15
[16] tibble_1.4.2 RSkittleBrewer_1.1 codetools_0.2-15
[19] evaluate_0.10.1 stringi_1.1.5 compiler_3.4.1
[22] pillar_1.1.0 methods_3.4.1 scales_0.5.0.9000
[25] truncnorm_1.0-7
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Appendix
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Why the L1 norm ?
For a fixed real number q ≥ 0 consider the criterion

β̃ = argmin
β


n∑
i=1

yi − β0 − p∑
j=1

xijβj

2

+ λ

p∑
j=1

|βj|q


Why do we use the ℓ1 norm? Why not use the q = 2
(Ridge) or any ℓq norm?

q = 1 is the smallest value that yields a sparse solution
and yields a convex problem→ scalable to
high-dimensional data
For q < 1 the constrained region is nonconvex
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Linear Effects Simulation - Comparison
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