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Alternating logistic regressions (ALRs) seem to offer some of the advantages of marginal models estimated
via generalized estimating equations (GEE) and generalized linear mixed models (GLMMs).Via simulation
study we compared ALRs to marginal models estimated via GEE and subject-specific models estimated
via GLMMs, with a focus on estimation of the correlation structure in three-level data sets (e.g. students in
classes in schools). Data set size and structure, and amount of correlation in the data sets were varied. For
simple correlation structures, ALRs performed well. For three-level correlation structures, all approaches,
but especially ALRs, had difficulty assigning the correlation to the correct level, though sample sizes used
were small. In addition, ALRs and GEEs had trouble attaching correct inference to the mean effects, though
this improved as overall sample size improved. ALRs are a valuable addition to the data analyst’s toolkit,
though care should be taken when modelling data with three-level structures.

Keywords: three-level data; alternating logistic regressions; generalized estimating equations; penalized
quasi-likelihood; generalized linear mixed models; adaptive Gaussian Hermite quadrature; hierarchical
data

AMS Subject Classification: 62J99; 62H20

1. Introduction

Increasingly, data are collected in which the standard assumption of independence between obser-
vations is not met. This could include data that consist of multiple observations on a subject over
time or subjects who are clustered in some way (e.g. classes within schools, or households within
neighbourhoods). For example, Katz et al. [1] assessed clustering of diarrhoea in preschool aged
children at the village and household level. As computational power has grown, analytic methods
have been extended to handle increasingly complex data structures.

If the association between observations on the same cluster/subject is not accounted for in the
analytic strategy, inference associated with the estimated parameters may not be correct – the
standard errors may be too small resulting in p-values that are too small and confidence intervals
that are too narrow.[2]
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Two broad analytic approaches are possible: (1) marginal or population-averaged models,
usually estimated via generalized estimating equation (GEE), and (2) generalized linear mixed
models (GLMMs), i.e. subject-specific models.[3,4]

In the marginal model, the full probability model for Y is not specified.[4] Rather, it specifies a
form for the mean value of Y. The second order, or correlation structure, is considered a nuisance
which must be accounted for in order to achieve correct inference.[4] Moreover, given that the
choice of a correlation structure is not very important (when using the robust variance estimator);
relatively few are available in commercially available software. Marginal models are very popular
for binary outcomes when observations are not independent because of their computational ease,
the fact that interpretation of the regression coefficients does not change depending on which
levels of clustering are accounted for, and because when using the robust variance estimator, the
choice of the correlation structure is not very important.[4]

GLMMs extend the linear mixed model to deal with non-continuous outcomes. In the GLMM,
usually, normally distributed subject-specific random effects are incorporated into the model.[4]
In this way, the second-order structure can be described. Interpretation of regression coefficients
is from the subject-specific point of view. To estimate the parameters in the GLMM, the exact
likelihood involves an intractable integration. Several approaches have been proposed to get
around this, though the most commonly used being penalized quasi-likelihood (PQL) [5] and
numerical integration via Gaussian Hermite quadrature (QUAD).[6]

With GLMMs, the association structure is also estimated, and has inference attached. On the
other hand, GLMMs suffer from several shortcomings: (1) they are tricky to fit in comparison to
marginal models fit via GEE; (2) estimates can be biased and it is unclear when QUAD or PQL
is best; (3) only estimation via PQL can accommodate association structures more complex than
compound symmetric with reasonable computing time; and (4) the interpretation of the parame-
ters is subject-specific and changes depending on which groupings are accounted for. Moreover,
the regression parameters in a GLMM are more sensitive to the random effects assumptions,[7]
and even the notion of normally distributed random effects, which simplify computation, is
controversial.[8]

Another option to modelling correlated binary data is alternating logistic regressions (ALRs),
proposed by Carey et al.[9] The model is arrived at by alternating between estimating the mean
structure and estimating the correlation structure.[9] Thus, for clusters i = 1, 2, . . . , m the binary
outcome is Yi = (Yi1, . . . , Yini) with mean E(Yi) = μi; and the correlation structure is described
in terms of the odds ratio (OR), ψijk , such that the OR for observations in the same cluster is
defined by Equation (1) [9]

ψijk = P(Yij = 1, Yik = 1) ∗ P(Yij = 0, Yik = 0)

P(Yij = 1, Yik = 0) ∗ P(Yij = 0, Yik = 1)
. (1)

Defining the outcome of 1 as a success and 0 as a failure, in words, ψijk represents the odds
of success for subject j in cluster i given that subject k in cluster i was a success divided by
the odds of success for subject j in cluster i given that subject k in cluster i was a failure. As
with the symmetry between exposure and disease in the exposure OR and the disease OR com-
monly used for case–control studies and exposure based studies, respectively, the Yij and Yik are
interchangeable here.

For ALRs, like marginal models fit via GEE, a full probability model is not specified for Y . Also
similarly to marginal models fit via GEE, ALRs are computationally easy. However, in addition
to inference on the mean structure, ALRs also give estimates of standard error and corresponding
tests for the association among observations on the same cluster/subject, characterized by an
OR.[9] Thus, in contrast to usual GEE in which the association structure is regarded as a nuisance
parameter, denoted by a vector α, here it can be explored and estimated by combining the first-order
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GEE for β given by Equation (2), and an offset logistic regression equation for α given by
Equation (3)

U1(β) =
m∑

i=1

(
∂μi

∂β

)T

Vi(μi; α)−1(Yi − μi) = 0, (2)

logit P(Yij = 1 | Yik = yik) = zT
ijkαyik + log

(
μij − νijk

1 − μij − μik + νijk

)
. (3)

Here, Vi(μi; α) is a weighting square matrix of size ni that approximates the covariance matrix
of Yi. Furthermore, zijk is a vector of pair specific covariates, α is the log OR between Yij and Yik

estimated from the logistic regression model given by Equation (3) where the second term is used
as an offset, μij = P(Yij = 1) and νijk = P(Yij = 1, Yik = 1). Thus, the ALR procedure iterates
between (1) using Equation (2) to solve for β̂(r+1) given current values β̂(r) and α̂(r), and (2) using
Equation (3) to solve for α̂(r+1) given β̂(r+1) and α̂(r).

ALRs seem to offer some of the advantages of GLMMs (i.e. association structures that can
be estimated with inference) and marginal models estimated via GEE (i.e. easy computation and
interpretation). Moreover, with ALRs, the association structure can be quite complex. There is
increasing interest in modelling the association parameters [10] and ALRs are increasingly used
in the medical literature.[11–13] However, it seems relatively unknown how well ALRs or other
approaches are able to model hierarchical data structures, especially when there are more than
two levels. In this work, we aim to systematically evaluate how well ALRs perform for two-
and three-level data and to compare it to marginal models estimated via GEE and GLMMs. In
Sections 2 and 3 we describe simulation studies to that effect. In Section 4 we apply these methods
to a real life data set looking at the association between prenatal care and community, mother,
and birth-level covariates. We end with a discussion of our study in Section 5.

2. Methods

A simulation study was conducted to compare ALRs to other regression approaches to modelling
correlated binary data.

2.1. Data generation

Two-level (e.g. subjects clustered into households) and three-level (e.g. subjects clustered into
households, clustered into neighbourhoods) data sets were generated. We denote the number
of clusters i = 1, 2, . . . , m and number of subjects per cluster j = 1, 2, . . . , n for the two-level
data structure. For the three-level structure, we denote i = 1, 2, . . . , m clusters; j = 1, 2, . . . , n
subclusters, and k = 1, 2, . . . , t subjects per subcluster.

The dichotomous independent variable, X , was generated from a Bernouilli distribution with
p = 0.5. To generate the dichotomous outcome variable Y , first the probability of the outcome was
generated from the logistic regression model given by Equation (4) for the two-level structure,
and Equation (5) for the three-level structure

logit(p) = β0 + β1X + μi, (4)

logit(p) = β0 + β1X + μi + νij, (5)



2062 S.R. Bhatnagar et al.

where μi and νij are random effects, corresponding to the cluster and subcluster, respectively, and
generated from normal distributions with mean = 0 and variance = σ 2

cluster or σ 2
subcluster, respec-

tively. Then a dichotomous Y variable was generated from a Bernouilli distribution with given
probability of the outcome, such that the overall prevalence of the outcome was either 0.1 or 0.5.

The total number of subjects, number of clusters and subclusters, number of subjects per cluster,
variances of the random effects, and proportion of subjects with the outcome were all varied, with
levels described in Table 1. For each combination of parameters, 250 and 500 data sets were
generated for the two- and three-level structure, respectively.

2.2. Data analysis

Each data set was analysed to estimate the association between the continuous exposure X as the
independent variable and the binary outcome Y as the dependent variable, using the following
approaches:

(1) ALRs with one OR estimated to describe the clustering of subjects in the same cluster for the
two-level data sets, and two ORs estimated to describe the clustering of subjects in the same
cluster and/or subcluster for the three-level data sets.

(2) GEE using an exchangeable correlation structure (accounting for the top-level of clustering
only for the three-level data sets).

(3) GLMMs estimated via PQL that included a random intercept for the two-level data sets, and
two random intercepts, one for the cluster and another for the subcluster for the three-level
data sets.

(4) For the two-level data sets, we also estimated GLMMs via adaptive QUAD that included a
random intercept.

For the two-level data, to calculate the true value of the population average β1, we first generated
4000 subject-specific random effects from a normal distribution with mean = 0 and variance =
σ 2

cluster. Then using the true values of β0, β1 and σ 2
cluster, and the generated values, we calculated

subject-specific probabilities. Finally, we took the average probabilities and from these, calculated
the true population average regression coefficient and corresponding OR. We followed a similar
procedure for the three-level data but generated the random effects from a normal distribution
with variance equal to the sum of σ 2

cluster and σ 2
subcluster.

2.3. Measures of performance

For both the two- and three-level data simulations, we estimated type I error and power for the
tests on the association ORs from ALRs. Because how the association structure is modelled can
affect estimation of the regression coefficients, we compared absolute percent bias in the OR for
the effect of X, and mean squared error of the regression coefficient (β1) across all approaches.
For these calculations, for ALRs and marginal models estimated via GEE, the population average
regression coefficient or OR were used. We also estimated type I error and power for testing the
effect of X. For ALRs and marginal models estimated via GEE, the robust variance estimate was
used for these calculations. We compared the mean, standard deviation (SD), and the coefficient of
variation (CV) of the association parameters across all approaches. All simulations and analyses
were performed using SAS/STAT software version 9.3,[14] and default procedure values were
used unless otherwise noted.
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Table 1. Parameters used for data generation.

Values

Two-level data simulation
σcluster 0, 0.7, 1, 3
Number of clusters, number of subjects per cluster 15, 10

30, 5
75, 2
15, 50
150, 5
375, 2

Proportion of subjects with outcome 0.1, 0.5

Three-level data simulation
σcluster , σsubcluster 0, 0

0, 1
0, 2
1, 0
1, 1
1, 2
2, 0
2, 1
2, 2

Number of clusters, number of subclusters per 10, 5, 20
cluster, number of subjects per subcluster 10, 10, 10

10, 20, 5
20, 2, 25
20, 5, 10
20, 10, 5
20, 25, 2
25, 2, 20
25, 4, 10
25, 10, 4
25, 20, 2
25, 16, 25
25, 20, 20
25, 16, 25
25, 20, 20
25, 25, 16
50, 5, 40
50, 10, 20
50, 20, 10
50, 40, 5
100, 5, 20
100, 10, 10
100, 20, 5

3. Results

3.1. Two-level data

For data with two levels, type I error for the test of the association OR in ALRs ranged from
0.03 to 0.16 depending on data generation parameters (Table 2). In general, among data sets with
the same overall sample size, type I error decreased as the size of the clusters decreased, but did
not vary systematically by proportion with the outcome (results not shown). Type I error was
significantly inflated when fewer large clusters made up the data set.

For data with two levels, power for the test of the association OR in ALRs decreased as the
number of clusters increased in data sets of the same overall sample size. Power increased as the
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Table 2. Type 1 errora and 95% confidence interval for testing the association ORb,c from ALRs
for data sets with two levels and proportion with the outcome 0.1.

Sample size Number of clusters Type I error 95% CId

150 15 0.16 (0.11, 0.20)
150 30 0.03 (0.01, 0.05)
150 75 0.04 (0.01, 0.06)
750 15 0.15 (0.10, 0.19)
750 30 0.12 (0.08, 0.16)
750 75 0.08 (0.04, 0.11)
750 150 0.03 (0.01, 0.05)
750 375 0.05 (0.02, 0.08)

aFor each combination of data generation parameters, 250 data sets were generated.
bTesting if the association OR equals 1.
cFor data with normally distributed random effects with σcluster = 0.
dExact 95% confidence interval.

variance of the random effect increased, and as overall sample size increased (Figure 1). Power
was greater when the proportion with the outcome was 0.5 rather than 0.1 (results not shown).

For two-level data, when the true correlation between observations in the same cluster was 0,
GEE and ALRs estimated intraclass correlation coefficients (ICC) and ORs that were close to 0
or 1 on average, respectively. GLMMs estimated small covariance parameters whether PQL or
QUAD was used. For all approaches, the estimated association parameters increased as the true
σ 2

cluster increased. GLMMs estimated via PQL under-estimated the covariance parameter; this was
worse as cluster sizes decreased. GLMMs estimated via QUAD estimated covariance parameters
that were close to the true values, however the CV was higher than for PQL. The CV of the
estimated association parameters increased as cluster size decreased for all methods, except for
the highest σ 2

cluster (Table 3). In general, the CV of the estimated correlation parameter was lowest
for ALR than for other methods, and lower for PQL than for QUAD, except at the highest σ 2

cluster.
Results were similar, though coefficients of variation were somewhat higher when 10% of subjects
had the outcome (results not shown).

For two-level data, the mean percent bias in exp(β1), and mean squared error in β1 was similar
when estimated via ALR or GEE, as expected (results not shown).

3.2. Three-level data

Type I error was always inflated for the top-level OR, ranging from 0.05 to 0.24. It was more inflated
as overall observations increased or number of top-level clusters increased, but did not vary by the
amount of correlation in subclusters. Type I error for ORsubcluster was similarly inflated, especially
when σ 2

cluster was nonzero. In that case it was near 1. Power for testing if log(OR)cluster = 0
(Figure 2(a)) varied from 0.054 to 1, and was lower as σsubcluster increased. Power for testing
log(OR)subcluster (Figure 2(b)) was always near 1.

For three-level data, type 1 error for β1 was also elevated when estimated using ALRs, though
this decreased as total sample size increased, and as σ 2

cluster and σ 2
subcluster increased. When using

GEEs accounting for the top level of correlation, type I error was furthest from the nominal
level (0.05) compared to all other models, across all data structures, sample sizes and variance of
random effects. We also found that in general, all models performed better when the number of
top-level clusters increased (results not shown).

For three-level data, for all approaches, absolute percent bias in the OR (exp(β̂1)) and mean
square error (MSE) for β̂1, decreased as sample size increased. The bias and MSE among ALRs
and GEEs produced very similar results (data not shown).
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Figure 1. Power for the test of the association OR from ALRs by data set size, number of clusters and true σcluster for
data sets with proportion with the outcome 0.1 for 250 iterations for two-level data.

When σ 2
cluster = 0 and σ 2

subcluster = 0, both estimated association parameters (σ̂ 2
cluster and

σ̂ 2
subcluster) were near 0 for GLMMs estimated via PQL as shown by the kernel density plots

in Figure 3. σ 2
cluster was under-estimated as σ 2

subcluster increased (Figure 3(a)), whereas σ̂ 2
subcluster

was less influenced by σ 2
cluster (Figure 3(b)).

ALRs had a harder time assigning the correct level of correlation as described by the log(ORs)
between subjects in the same cluster and subcluster (Figure 4). σcluster was under-estimated as
σsubcluster increased. This is most evident in the top panel of Figure 4(a) where the true σcluster is
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Table 3. Comparing how different approaches estimatea the association structure in two-level data with β1 = 0.69, and
proportion with the outcome 0.5.

GLMMe GLMMf

Sample n ALRb GEEd via PQL via QUAD
σ 2

cluster size cluster Mean (SD) CVc Mean (SD) CV Mean (SD) CV Mean (SD) CV

0 150 15 0.99(0.17) 0.17 −0.01(0.04) −7.05 0.07(0.13) 1.77 0.06(0.12) 2.03
0 150 30 0.99(0.28) 0.28 −0.01(0.06) −5.83 0.09(0.16) 1.67 0.10(0.19) 1.9
0 150 75 1.14(0.54) 0.48 0.01(0.11) 18.83 0.13(0.17) 1.25 0.27(0.41) 1.52
0 750 15 1.00(0.03) 0.03 0.00(0.01) −774.6 0.02(0.03) 1.6 0.01(0.02) 1.79
0 750 75 1.00(0.08) 0.08 0.00(0.02) −105.88 0.03(0.05) 1.5 0.03(0.05) 1.58
0 750 375 1.00(0.21) 0.21 −0.01(0.05) −10.15 0.04(0.06) 1.49 0.08(0.14) 1.65
0.49 150 15 1.51(0.46) 0.31 0.09(0.06) 0.74 0.48(0.36) 0.77 0.49(0.43) 0.86
0.49 150 30 1.51(0.53) 0.35 0.09(0.07) 0.85 0.40(0.33) 0.83 0.51(0.50) 0.98
0.49 150 75 1.73(0.93) 0.54 0.10(0.12) 1.14 0.30(0.26) 0.85 0.74(0.82) 1.11
0.49 750 15 1.48(0.25) 0.17 0.09(0.04) 0.41 0.48(0.23) 0.47 0.46(0.22) 0.48
0.49 750 75 1.49(0.18) 0.12 0.09(0.03) 0.3 0.41(0.14) 0.34 0.48(0.17) 0.36
0.49 750 375 1.54(0.36) 0.23 0.10(0.05) 0.55 0.23(0.12) 0.55 0.53(0.34) 0.65
1 150 15 1.98(0.73) 0.37 0.15(0.08) 0.52 0.85(0.52) 0.62 0.94(0.65) 0.69
1 150 30 2.03(0.73) 0.36 0.15(0.08) 0.53 0.72(0.42) 0.58 0.99(0.67) 0.68
1 150 75 2.47(1.49) 0.6 0.18(0.13) 0.71 0.49(0.32) 0.66 1.38(1.29) 0.93
1 750 15 1.99(0.41) 0.21 0.16(0.05) 0.3 0.97(0.37) 0.38 0.95(0.37) 0.39
1 750 75 2.06(0.30) 0.15 0.17(0.04) 0.2 0.85(0.22) 0.26 1.03(0.29) 0.28
1 750 375 2.07(0.44) 0.22 0.17(0.05) 0.3 0.40(0.13) 0.32 1.04(0.42) 0.41
9 150 15 14.34(12.00) 0.84 0.51(0.11) 0.22 5.33(2.13) 0.4 10.05(8.36) 0.83
9 150 30 13.96(8.95) 0.64 0.53(0.09) 0.16 3.87(1.08) 0.28 9.88(5.01) 0.51
9 150 75 14.37(9.68) 0.67 0.54(0.10) 0.19 1.65(0.42) 0.25 9.61(5.16) 0.54
9 750 15 14.20(11.57) 0.81 0.53(0.10) 0.18 7.63(2.77) 0.36 9.19(4.28) 0.47
9 750 75 12.19(3.79) 0.31 0.54(0.05) 0.1 4.99(0.90) 0.18 9.18(2.50) 0.27
9 750 375 12.03(2.71) 0.23 0.54(0.04) 0.07 1.58(0.16) 0.1 8.84(1.72) 0.19

Notes: Results are presented for the mean (SD) and CV for association parameters estimated via ALRs, GEE, GLMMs via PQL and
GLMMs via QUAD.
aFor each combination of data generation parameters, 250 data sets were generated.
bMean (SD) and CV for the OR for the association between two observations in the same cluster estimated via ALRs.
cCV. In some cases the CV does not equal the SD/mean as presented in the table due to rounding of the SD and mean.
dMean (SD) and CV for the ICC estimated via GEE.
eMean (SD) and CV for the variance of the random effect from a GLMM estimated via PQL.
f Mean (SD) and CV for the variance of the random effect from a GLMM estimated via adaptive QUAD.

2, however the majority of its estimated values are around 1 (for true σsubcluster = 2). There is no
such pattern shown for estimating σsubcluster (Figure 4(b)) as it was overestimated for large and
under-estimated for small values of σcluster.

4. Example

We now consider an example using the data collected from the National Survey of Maternal and
Child Health in Guatemala in 1987.[15] Rodriguez and Goldman [16] performed an analysis
based on 2449 births, to 1558 mothers in 161 communities. The outcome of interest was whether
or not mothers received prenatal care and covariates included community, mother, and birth-level
covariates. Here we model the outcome using GEE accounting for the top level of clustering and
ALRs and PQL both accounting for both levels of clustering, with the covariates found to be
significant in Rodriguez and Goldman [16] (i.e. child and mother’s age, ethnicity, mother and
husband’s education, husband’s occupation, presence of a modern toilet, proportion indigenous
and distance to the nearest clinic). The results are presented in Table 4. GLMM coefficients
estimated via PQL were further from the null than the population average coefficients from ALR
or GEE, as expected. Both GLMM and ALR attributed more correlation to babies born to the
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same mother than to babies born in the same community, as expected. Results from the simulation
suggests that the PQL estimated σ̂community and σ̂mother are likely to be under-estimated. The
log(ORs) estimated via ALR were also likely to be under-estimated since the association between
two observations in the same family was much stronger than the community level association.

5. Discussion

In this paper, we compared ALRs to several other approaches to modelling correlated binary
data, with particular emphasis on estimating the correlation structure of the data. The correlation
structure might give some insight into disease transmission, aetiology, risk factors and can inform
the targeting of interventions.[1] Methods for continuous data do not extend naturally to binary
data. For example, when the outcome is continuous, the association among observations on the
same cluster/subject is well-characterized via the ICC.[4] However, when the outcome is binary,
the range of ICC values depends on the probabilities of positive responses.[17] Modelling the
association between subjects in the same cluster using the OR, as is done in ALRs, may be a
more natural characterization.[4,9] Additionally, hypothesis testing of the variance parameters
in GLMMs (and indeed linear mixed models) is problematic because variance parameters are
usually constrained to be positive. ALRs also avoid this problem.

We found that ALRs behaved similarly to marginal models estimated via GEE for mean effects.
We also found that type I error and power for tests of the association parameters in ALRs were
reasonable for one-level structures, but type I error was inflated and power was lower for more
complex data structures.

In general, results from the simulation study on three-level data suggested that it was difficult
to ascribe clustering to the correct level, particularly for ALRs. Subcluster log(ORs) increased
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Table 4. Parameter estimates of prenatal care among women for GEE top level, ALR and PQL methods.

GEE TOP ALR PQL

Fixed effects
Individual
Child aged 3–4 years −0.14 (−0.29, 0.01) −0.18 (−0.3, −0.06) −0.21 (−0.44, 0.02)
Mother aged greater 25 years 0.18 (−0.05, 0.41) 0.18 (0.01, 0.36) 0.22 (−0.04, 0.47)

Family
Indigenous, no Spanish −1.23 (−1.89, −0.57) −1.18 (−1.81, −0.56) −1.36 (−2.05, −0.67)
Indigenous Spanish −0.57 (−0.95, −0.18) −0.63 (−0.99, −0.27) −0.70 (−1.2, −0.2)
Mother’s education primary 0.42 (0.16, 0.68) 0.42 (0.16, 0.68) 0.49 (0.19, 0.78)
Mother’s education secondary or better 0.96 (0.37, 1.54) 0.97 (0.38, 1.55) 1.16 (0.4, 1.91)
Husband’s education secondary or better 0.57 (0.06, 1.07) 0.70 (0.22, 1.17) 0.78 (0.21, 1.34)
Husband agricultural employee −0.21 (−0.52, 0.09) −0.32 (−0.61, −0.03) −0.32 (−0.64, 0)
Modern toilet in household 0.39 (0.01, 0.78) 0.48 (0.1, 0.86) 0.58 (0.15, 1.02)

Community
Proportion indigenous, 1981 −1.05 (−1.67, −0.43) −0.88 (−1.46, −0.3) −1.17 (−1.91, −0.43)
Distance to nearest clinic −0.01 (−0.02, −0.01) −0.01 (−0.02, 0.00) −0.01 (−0.02, −0.01)

Association structure
Family – α2 = 4.61 (4.07, 5.15)a σ 2

1 = 1.61 (0.19)b

Community ICC = 0.17c α1 = 0.59 (0.38, 0.80)d σ 2
2 = 0.80 (0.18)b

aLog(OR) and 95% CI for the association between two observations in the same family estimated via ALRs.
bVariance of the random effect and standard error from a GLMM estimated via PQL.
cICC estimated via GEE accounting for the top level of clustering, i.e. families within communities.
dLog(OR) and 95% CI for the association between two observations in the same community estimated via ALRs.

as cluster level correlation increased, whereas cluster level log(ORs) decreased as subcluster
correlation increased. GLMMs estimated via PQL performed somewhat better though variance
components were under-estimated.

While there is a large literature on the performance of GLMMs (estimated via PQL or numerical
integration), this work is usually directed at the mean response parameters or focuses on simple
correlation structures. For example, Moineddin et al. [18] found that with two levels, the variance
components were extremely overestimated with small groups, and were slightly under-estimated
with moderate group size for GLMMs (estimated using QUAD). On the other hand, for two-level
GLMMs, PQL under-estimated the variance components when the denominator was small,[19,
20] which we also observed. Other research has focused on bias in the regression parameters,
depending on cluster size, number of clusters, and heterogeneity across clusters.[8,9,21] In other
work, a three-level GLMM was developed and results of a limited simulation study suggested
that the association parameters were reasonably well estimated.[22] However, in at least one
application using a three-level GLMM, the estimated association parameters were quite different
depending on whether estimation was by QUAD or PQL.[23]

One of the challenges inherent in comparing these approaches is that the models all have
different assumptions and the resulting parameters often have different interpretations. Despite
this, we believe that if the correlation structure is of scientific interest, it is helpful to know the
performance of the various approaches in terms of estimating it. Of note, while in theory it is
possible to estimate a nested random effects model via adaptive QUAD, it is often difficult, at
least on run-of-the-mill computers, to complete unless the design matrix is suitably small. In
our investigations, GLMMs estimated via adaptive QUAD for two levels of clustering did not
converge. This may depend on the software package used or features of the generated data.

We compared the performance of the approaches via simulation study. The models and their
associated estimation techniques are complicated, and thus the theoretical derivation of the proper-
ties of the estimated model parameters is challenging. Indeed, simulation studies are necessary here
and offer an important tool.[24] However, we have made many simplifications. We only included
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one dichotomous independent variable, and only considered one- and two-level exchangeable cor-
relation structures. For the three-level data structure simulations, we were limited to small sample
sizes. Still, we believe that understanding performance in the simplest case can still provide insight
to more complicated scenarios. Another weakness of our work is that data were generated from
a random effects model. Thus, it is difficult to assess whether ALRs estimated the association
structure correctly when σcluster or σsubcluster were greater than 0. Despite this, our investigations
have allowed us to assess performance.

We have omitted two alternative approaches that might also be of interest. Second-order GEEs
(GEE2s) extend the theory of GEEs to estimate the second-moment parameters, which allows
inference about the regression parameters and the association parameters.[24–26] The association
structure can be characterized via ORs,[26] as inALRs. For this reason, and because interpretation
is from the population average perspective, this method is closely related method to ALRs, but
is computationally more tricky.[2] Moreover, GEE2s assume that the higher order moments are
equal to 0, while ALRs make no assumptions about higher order moments.[2] Moreover, GEE2s
are not available in most software packages. We also did not compare GLMMs estimated using
Bayesian approaches, which might be particularly useful when the number of clusters is small or
the model is complicated.[27,28]

Certainly, when choosing from among possible methods to model correlated binary data, there
are several considerations including: whether the method is implemented in commercial software;
the interpretation of the parameters; whether the second-order structure is of interest scientifically;
if the method can incorporate the correlation structure of interest, and finally, the statistical prop-
erties of the model for both the mean structure and the second-order structure. Our results suggest
that ALRs do offer a middle road between GLMMs and marginal models estimated via GEE,
but also that caution is needed, no matter the approach used, when modelling three-level data
structures.
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