Sparse Additive Interaction Learning

Sahir Bhatnagar

Department of Epidemiology, Biostatistics and Occupational Health Department of Diagnostic Radiology

October 29,2021 https://sahirbhatnagar.com/sail https://sahirbhatnagar.com/papers

Outline

Betting on Sparsity A Thought Experiment Motivating Example: The Nurse Family Partnership sail: Strong Additive Interaction Learning Algorithm Theory Simulations sail R package **Real Data Application** Discussion Current and Future Work Acknowledgements

Betting on Sparsity A Thought Experimen

Motivating Example: The Nurse Family Partnership

sail: Strong Additive Interaction Learning

Algorithm

Theory

Simulations

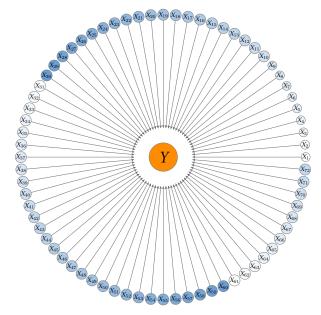
sail R package

Real Data Application

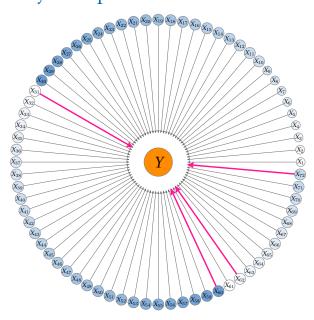
Discussion Current and Future Work

Acknowledgements

Bet on Sparsity Principle



Bet on Sparsity Principle



Bet on Sparsity Principle

Use a procedure that does well in sparse problems, since no procedure does well in dense problems.¹

- We often don't have enough data to estimate so many parameters
- Even when we do, we might want to identify a **relatively small number of predictors** (*k* < *N*) that play an important role
- Faster computation, easier to understand, and stable predictions on new datasets.

¹The elements of statistical learning. Springer series in statistics, 2001. Betting on Sparsity

How would you schedule a meeting of 20 people?

How would you schedule a meeting of 20 people?

	March 201	March 2017										
	Thu 9	Fri 10	Sal 11		Sun 12	Mon 13	Tue 14	Wed 15	Thu 16	Fri 17	Sat 18	Sun 19
1 participants	5:00 PM - 9:00 PM	5:00 PM - 9:00 PM	9:00 AM - 3:00 PM	3:00 PM - 9:00 PM	1:00 PM- 9:00 PM	1:00 PM- 9:00 PM	1:00 PM- 9:00 PM	1:00 PM- 9:00 PM	1:00 PM - 9:00 PM	1:00 PM - 9:00 PM	1:00 PM - 9:00 PM	1:00 PM- 9:00 PM
JayZ	1	1	1			1			1	1	1	
Evan										1	1	1
Omar	1	1		1		1			1	1	1	
Caitlin	1	1	1						1	1	1	
Austin	1	1	1									
Ethan			1	1					1		1	
. Max	1	1	1			1			1	1	1	
. Tycho	1	1	1	1		1			1	1	1	
Janavi Chadha		1	1	1		1	1			1	1	
Charlotte											1	1
Darshanye	1	1				1			1	1		
Your name												
	5:00 PM - 9:00 PM	5:00 PM - 9:00 PM	9.00 AM - 3.00 PM	3:00 PM - 9:00 PM	1:00 PM 9:00 PM							
	Thu 9	Fri 10	Sat 11		Sun 12	Mon 13	Tue 14	Wed 15	Thu 16	Fri 17	Sat 18	Sun 19
	March 201	7										
	7	8	7	4	0	6	1	0	7	8	9	2

Doctors Bet on Sparsity Also

Doctors Bet on Sparsity Also

Betting on Sparsity A Thought Experimen

Motivating Example: The Nurse Family Partnership

sail: Strong Additive Interaction Learning

Algorithm

Theory

Simulations

sail R package

Real Data Application

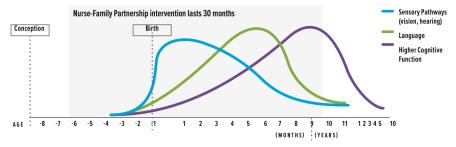
Discussion Current and Future Work

Acknowledgements

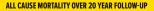
Nurse-Family Partnership is an evidence-based, community health program with over 40 years of evidence showing significant improvements in the health and lives of first-time moms and their children living in poverty.

Human Brain Development

Synapse formation dependent on early experiences



Source: Nelson, C.A., In Neurons to Neighborhoods (2000).



Mothers who did not receive nurse home visits were nearly **3 times more likely to die** from all causes of death than nurse visited mothers (3.7% versus 1.3%)¹

8x

Mothers that did not receive nurse home visits were **8 times more likely to die** from external causes – including unintentional injuries, suicide, drug overdose and homicide – than nurse visited mothers (1.7% versus 0.2%)¹

PREVENTABLE CHILD MORTALITY OVER 20 YEAR FOLLOW-UP

- Among Nurse-Family Partnership participants, there were lower rates of preventable child mortality from birth until age 20.¹
- 1.6% of the children not receiving nurse home visits died from preventable causes – including sudden infant death syndrome, unintentional injuries and homicide – while none of the nurse visited children died from these causes.¹

Additional Maternal and Child Health Outcomes

Maternal Health Outcomes

- 35% fewer cases of pregnancy-induced hypertension⁶
- 18% fewer preterm births6
- 79% reduction in preterm delivery among women who smoke cigarettes?
- 31% reduction in very closely spaced (<6 months) subsequent pregnancies⁸

Child Health Outcomes

48% reduction in child abuse and neglect⁹

39% fewer health care encounters for injuries or ingestions in the first 2 years of life among children born to mothers with low psychological resources¹⁰

67% less behavioral and intellectual problems in children at age 611

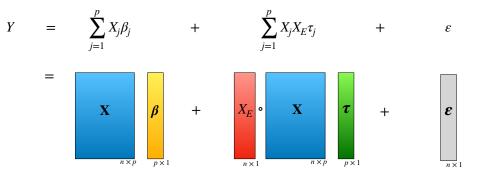
56% fewer emergency room visits for accidents and poisonings through age 212

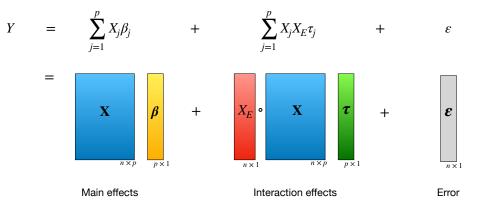
Interactions between Intervention and Genetics

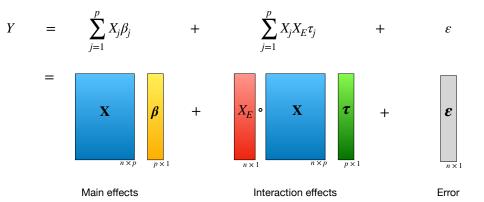
IQ Range ("deviation IQ")	IQ Classification
145-160	Very gifted or highly advanced
130-144	Gifted or very advanced
120-129	Superior
110-119	High average
90-109	Average
80-89	Low average
70-79	Borderline impaired or delayed
55-69	Mildly impaired or delayed
40-54	Moderately impaired or delayed

Phenotype IQ Score Large Data Genetic Markers **Environment** NFP Intervention

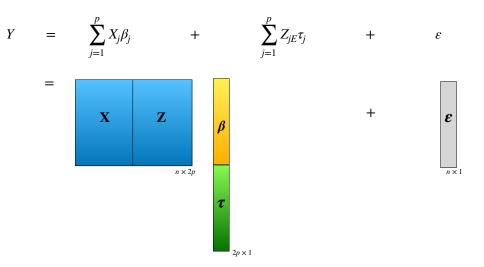
 $Y = \sum_{j=1}^{p} X_{j}\beta_{j} + \sum_{j=1}^{p} X_{j}X_{E}\tau_{j} + \varepsilon$







Let $Z_{jE} = X_E X_j$



Betting on Sparsity A Thought Experimen

Motivating Example: The Nurse Family Partnership

sail: Strong Additive Interaction Learning

Algorithm

Theory

Simulations

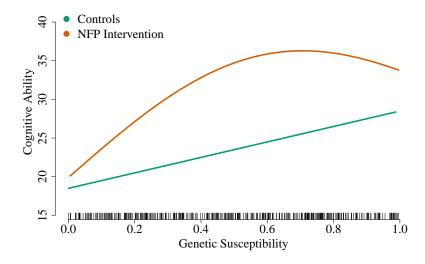
sail R package

Real Data Application

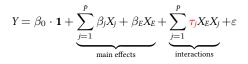
Discussion Current and Future Work

Acknowledgements

Motivation 1: Non-linear Interactions



Motivation 2: Heredity Property

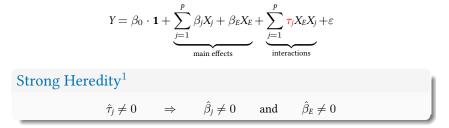


¹Chipman. Canadian Journal of Statistics (1996)

²McCullagh and Nelder. Generalized Linear Models (1983)

³Cox. International Statistical Review (1984)

Motivation 2: Heredity Property



- Heredity property is desired for the purposes of interpretability²
- Large main effects are more likely to lead to appreciable interactions³

¹Chipman. Canadian Journal of Statistics (1996)

²McCullagh and Nelder. Generalized Linear Models (1983)

³Cox. International Statistical Review (1984)

Lasso interaction model

- $Y \rightarrow$ response
- $X_E \rightarrow$ environment
- $X_j \rightarrow$ predictors, $j = 1, \ldots, p$

$$Y = \beta_0 \cdot \mathbf{1} + \sum_{j=1}^p \beta_j X_j + \beta_E X_E + \sum_{j=1}^p \tau_j X_E X_j + \varepsilon$$
$$\underset{\mathbf{\Theta} := (\beta_0, \beta, \tau)}{\operatorname{argmin}} \quad \mathcal{L}(\mathbf{\Theta}) + \lambda(\|\boldsymbol{\beta}\|_1 + \|\boldsymbol{\tau}\|_1)$$

Strong Heredity Interactions: Current State of the Art

Туре	Model	Software
Linear	CAP (Zhao et al. 2009, Ann. Stat)	X
	SHIM (Choi et al. 2009, JASA)	×
	hiernet (Bien et al. 2013, Ann. Stat)	hierNet(x, y)
	GRESH (She and Jiang 2014, JASA)	×
	FAMILY (Haris et al. 2014, JCGS)	FAMILY(x, z, y)
	glinternet (Lim and Hastie 2015, JCGS)	glinternet(x, y)
	RAMP (Hao et al. 2016, JASA)	RAMP(x, y)
	LassoBacktracking (Shah 2018, <u>JMLR</u>)	LassoBT(x, y)
Non- linear	VANISH (Radchenko and James 2010, JASA)	×
	sail (Bhatnagar et al. 2020+, in revision $\underline{\text{CSDA}}$)	<pre>sail(x, e, y, basis)</pre>

Our Extension to Nonlinear Effects

Consider the basis expansion

$$f_j(X_j) = \sum_{\ell=1}^{m_j} \psi_{j\ell}(X_j) \beta_{j\ell}$$

$$f(X_{1}) = \underbrace{\begin{bmatrix} \psi_{11}(X_{11}) & \psi_{12}(X_{12}) & \cdots & \psi_{11}(X_{15}) \\ \vdots & \vdots & \cdots & \vdots \\ \psi_{11}(X_{i1}) & \psi_{12}(X_{i2}) & \cdots & \psi_{11}(X_{i5}) \\ \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \cdots & \vdots \\ \psi_{11}(X_{N1}) & \psi_{12}(X_{N2}) & \cdots & \psi_{11}(X_{N5}) \end{bmatrix}_{N \times 5}}_{N \times 5} \times \underbrace{\begin{bmatrix} \beta_{11} \\ \beta_{12} \\ \beta_{13} \\ \beta_{14} \\ \beta_{15} \end{bmatrix}_{5 \times 1}}_{\theta_{1}}$$

sail: Additive Interactions

•
$$\boldsymbol{\theta}_j = (\beta_{j1}, \dots, \beta_{jm_j}) \in \mathbb{R}^{m_j}$$

•
$$\boldsymbol{\tau}_j = (\tau_{j1}, \ldots, \tau_{jm_j}) \in \mathbb{R}^m$$

- $\Psi_j
 ightarrow n imes m_j$ matrix of evaluations of the $\psi_{j\ell}$
- In our implementation, we use cubic bsplines with 5 degrees of freedom

Model

$$Y = \beta_0 \cdot \mathbf{1} + \sum_{j=1}^p \Psi_j \theta_j + \beta_E X_E + \sum_{j=1}^p (X_E \circ \Psi_j) \boldsymbol{\tau}_j + \varepsilon$$

sail: Strong Heredity

Reparametrization¹

$$\boldsymbol{\tau}_{j} = \gamma_{j} \beta_{E} \boldsymbol{\theta}_{j}$$

Model

$$Y = \beta_0 \cdot \mathbf{1} + \sum_{j=1}^{p} \boldsymbol{\Psi}_j \boldsymbol{\theta}_j + \beta_E X_E + \sum_{j=1}^{p} \gamma_j \beta_E (X_E \circ \boldsymbol{\Psi}_j) \boldsymbol{\theta}_j + \varepsilon$$

Objective Function

$$\underset{\boldsymbol{\Theta}:=(\beta_{E},\boldsymbol{\theta},\boldsymbol{\gamma})}{\operatorname{argmin}} \quad \mathcal{L}(\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E}|\beta_{E}| + \sum_{j=1}^{p} w_{j} \|\boldsymbol{\theta}_{j}\|_{2} \right) + \lambda \alpha \sum_{j=1}^{p} w_{jE}|\gamma_{j}|$$

¹Choi et al. JASA (2010) sail: Strong Additive Interaction Learning

sail: Weak Heredity

Reparametrization

$$\boldsymbol{\tau}_j = \gamma_j (\beta_E \cdot \mathbf{1}_{m_j} + \boldsymbol{\theta}_j)$$

Model

$$Y = \beta_0 \cdot \mathbf{1} + \sum_{j=1}^p \Psi_j \theta_j + \beta_E X_E + \sum_{j=1}^p \gamma_j (X_E \circ \Psi_j) (\beta_E \cdot \mathbf{1}_{m_j} + \boldsymbol{\theta}_j) + \varepsilon$$

Objective Function

$$\underset{\beta_{E}, \boldsymbol{\theta}, \boldsymbol{\gamma}}{\operatorname{argmin}} \quad \mathcal{L}(\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(\mathsf{w}_{E} |\beta_{E}| + \sum_{j=1}^{p} \mathsf{w}_{j} \|\theta_{j}\|_{2} \right) + \lambda \alpha \sum_{j=1}^{p} \mathsf{w}_{jE} |\gamma_{j}|$$

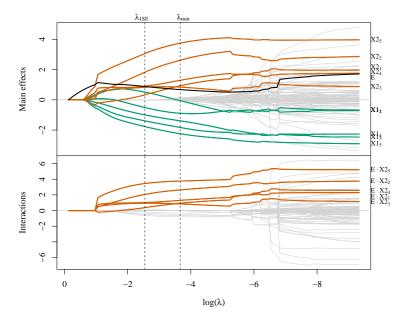
Toy example

- With a sample size of n = 100, we sample p = 20 covariates X₁,... X_p independently from a N(0, 1) distribution truncated to the interval [0,1].
- Data were generated from a model which follows the strong heredity principle, but where only one covariate, *X*₂, is involved in an interaction with a binary exposure variable (*E*):

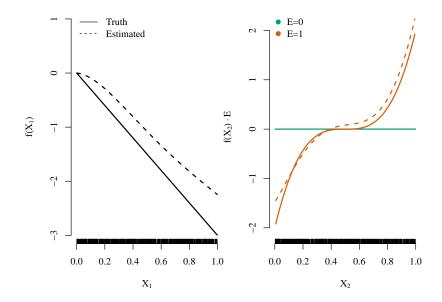
$$Y = f_1(X_1) + f_2(X_2) + 1.75E + 1.5E \cdot f_2(X_2) + \varepsilon.$$

• For illustration, function $f_1(\cdot)$ is assumed to be linear, whereas function $f_2(\cdot)$ is non-linear: $f_1(x) = -3x$, $f_2(x) = 2(2x-1)^3$.

Toy example - Solution path



Toy example - Estimated effects



Betting on Sparsity A Thought Experiment

Motivating Example: The Nurse Family Partnership

sail: Strong Additive Interaction Learning

Algorithm

Theory

Simulations

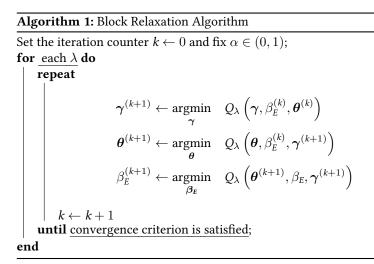
sail R package

Real Data Application

Discussion Current and Future Work

Acknowledgements

Block Relaxation (De Leeuw, 1994)



Implementation

Objective Function

$$\underset{\beta_{E},\boldsymbol{\theta},\boldsymbol{\gamma}}{\operatorname{argmin}} \quad \mathcal{L}(Y;\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E}|\beta_{E}| + \sum_{j=1}^{p} w_{j} \|\theta_{j}\|_{2} \right) + \lambda \alpha \sum_{j=1}^{p} w_{jE}|\gamma_{j}|$$

Implementation

Objective Function

$$\underset{\beta_{E},\boldsymbol{\theta},\boldsymbol{\gamma}}{\operatorname{argmin}} \quad \mathcal{L}(Y;\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E}|\beta_{E}| + \sum_{j=1}^{p} w_{j} \|\theta_{j}\|_{2} \right) + \lambda \alpha \sum_{j=1}^{p} w_{jE}|\gamma_{j}|$$

Lasso problem

$$\underset{\gamma}{\operatorname{argmin}} \quad \mathcal{L}(Y; \Theta) + \lambda(1 - \alpha) \left(w_{E} | \theta_{E} | + \sum_{j=1}^{p} w_{j} | | \theta_{j} | |_{2} \right) + \lambda \alpha \sum_{j=1}^{p} w_{jE} | \gamma_{j} |$$

Implementation

Objective Function

$$\underset{\beta_{E},\boldsymbol{\theta},\boldsymbol{\gamma}}{\operatorname{argmin}} \quad \mathcal{L}(Y;\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E}|\beta_{E}| + \sum_{j=1}^{p} w_{j} \|\theta_{j}\|_{2} \right) + \lambda \alpha \sum_{j=1}^{p} w_{jE}|\gamma_{j}|$$

Implementation

Objective Function

$$\underset{\beta_{E},\boldsymbol{\theta},\boldsymbol{\gamma}}{\operatorname{argmin}} \quad \mathcal{L}(Y;\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E}|\beta_{E}| + \sum_{j=1}^{p} w_{j} \|\theta_{j}\|_{2} \right) + \lambda \alpha \sum_{j=1}^{p} w_{jE}|\gamma_{j}|$$

Group Lasso problem

$$\underset{\beta_{E},\boldsymbol{\theta}}{\operatorname{argmin}} \quad \mathcal{L}(Y;\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E}|\beta_{E}| + \sum_{j=1}^{p} w_{j} \|\theta_{j}\|_{2} \right) + \lambda \alpha \sum_{i=1}^{p} w_{iE}|\gamma_{i}|$$

fetting on Sparsity A Thought Experiment Motivating Example: The Nur

sail: Strong Additive Interaction Learning

Algorithm

Theory

Simulations

sail R package

Real Data Application

Discussion Current and Future Work

Acknowledgements

Sparsity

Theorem 1

$$\begin{split} \widehat{\boldsymbol{\Theta}}_{n} &= \operatorname*{argmin}_{\beta_{E},\boldsymbol{\theta},\boldsymbol{\gamma}} \quad \mathcal{L}(\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E}|\beta_{E}| + \sum_{j=1}^{p} w_{j}||\theta_{j}||_{2} \right) + \lambda\alpha \sum_{j=1}^{p} w_{jE}|\gamma_{j}| \\ \mathcal{A}_{1} &= \{j:\theta_{j} \neq 0, \beta_{j} \neq 0\} \\ \mathcal{A}_{2} &= \{k:\gamma_{k} \neq 0\}, \qquad \mathcal{A} = \mathcal{A}_{1} \cup \mathcal{A}_{2} \end{split}$$

Under certain regularity conditions and the existence of a local minimizer $\widehat{\Theta}_n$ that is $\sqrt{n}\text{-consistent}$

$$P\left(\widehat{\mathbf{\Theta}}_{\mathcal{A}^c}=0\right) \to 1$$

Sparsity

Theorem 1

$$\begin{split} \widehat{\boldsymbol{\Theta}}_{n} &= \operatorname*{argmin}_{\beta_{E},\boldsymbol{\theta},\boldsymbol{\gamma}} \quad \mathcal{L}(\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E}|\beta_{E}| + \sum_{j=1}^{p} w_{j}||\theta_{j}||_{2} \right) + \lambda\alpha \sum_{j=1}^{p} w_{jE}|\gamma_{j}| \\ \mathcal{A}_{1} &= \{j: \theta_{j} \neq 0, \beta_{j} \neq 0\} \\ \mathcal{A}_{2} &= \{k: \gamma_{k} \neq 0\}, \qquad \mathcal{A} = \mathcal{A}_{1} \cup \mathcal{A}_{2} \end{split}$$

Under certain regularity conditions and the existence of a local minimizer $\widehat{\Theta}_n$ that is \sqrt{n} -consistent

$$P\left(\widehat{\mathbf{\Theta}}_{\mathcal{A}^c}=0\right) \to 1$$

Theorem 1 shows that when the tuning parameters for the nonzero coefficients converge to 0 faster than $n^{-1/2}$ sail can consistently remove the noise terms with probability tending to 1.

Asymptotic normality

Theorem 2

$$\widehat{\boldsymbol{\Theta}}_{n} = \underset{\beta_{E},\boldsymbol{\theta},\boldsymbol{\gamma}}{\operatorname{argmin}} \quad \mathcal{L}(\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E}|\beta_{E}| + \sum_{j=1}^{p} w_{j} ||\theta_{j}||_{2} \right) + \lambda \alpha \sum_{j=1}^{p} w_{jE}|\gamma_{j}|$$

Under certain regularity conditions, the component $\widehat{\Theta}_{\mathcal{A}}$ of the local minimizer $\widehat{\Theta}_n$ satisfies

$$\sqrt{n}\left(\widehat{\boldsymbol{\Theta}}_{\mathcal{A}}-\boldsymbol{\Theta}_{\mathcal{A}}\right)\rightarrow_{d}\mathcal{N}\left(0,\mathbf{I}^{-1}\left(\boldsymbol{\Theta}_{\mathcal{A}}\right)\right)$$

Theorem 2 shows that the sail estimates for nonzero coefficients in the true model have the same asymptotic distribution as they would have if the zero coefficients were known in advance.

Asymptotic normality

Theorem 2

$$\widehat{\boldsymbol{\Theta}}_{n} = \underset{\beta_{E},\boldsymbol{\theta},\boldsymbol{\gamma}}{\operatorname{argmin}} \quad \mathcal{L}(\boldsymbol{\Theta}) + \lambda(1-\alpha) \left(w_{E} |\beta_{E}| + \sum_{j=1}^{p} w_{j} ||\theta_{j}||_{2} \right) + \lambda \alpha \sum_{j=1}^{p} w_{jE} |\gamma_{j}|$$

Under certain regularity conditions, the component $\widehat{\Theta}_{\mathcal{A}}$ of the local minimizer $\widehat{\Theta}_n$ satisfies

$$\sqrt{n}\left(\widehat{\boldsymbol{\Theta}}_{\mathcal{A}}-\boldsymbol{\Theta}_{\mathcal{A}}\right)\rightarrow_{d}\mathcal{N}\left(0,\mathbf{I}^{-1}\left(\boldsymbol{\Theta}_{\mathcal{A}}\right)\right)$$

Theorem 2 shows that the sail estimates for nonzero coefficients in the true model have the same asymptotic distribution as they would have if the zero coefficients were known in advance.

Theorem 1 + 2 -> Oracle property (Fan and Li, 2001)

Setting on Sparsity A Thought Experiment

Motivating Example: The Nurse Family Partnership

sail: Strong Additive Interaction Learning

Algorithm

Theory

Simulations

sail R package

Real Data Application

Discussion Current and Future Work

Acknowledgements

$$Y = \sum_{j=1}^4 f_j(X_j) + \beta_E \cdot X_E + X_E \times (f_3(X_3) + f_4(X_4)) + \varepsilon$$

1. Truth obeys strong hierarchy (right in our wheel house):

$$Y = \sum_{j=1}^4 f_j(X_j) + \beta_E \cdot X_E + X_E \times (f_3(X_3) + f_4(X_4)) + \varepsilon$$

2. Truth obeys weak hierarchy

$$Y = \sum_{j=1}^4 f_j(X_j) + \beta_E \cdot X_E + X_E \times (f_3(X_3) + f_4(X_4)) + \varepsilon$$

- 2. Truth obeys weak hierarchy
- 3. Truth only has interactions

$$Y = \sum_{j=1}^4 f_j(X_j) + \beta_E \cdot X_E + X_E \times (f_3(X_3) + f_4(X_4)) + \varepsilon$$

- 2. Truth obeys weak hierarchy
- 3. Truth only has interactions
- 4. Truth is linear

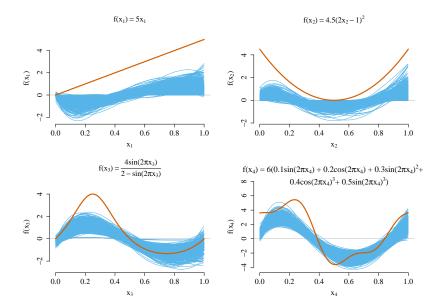
$$Y = \sum_{j=1}^4 f_j(X_j) + \beta_E \cdot X_E + X_E \times (f_3(X_3) + f_4(X_4)) + \varepsilon$$

- 2. Truth obeys weak hierarchy
- 3. Truth only has interactions
- 4. Truth is linear
- 5. Truth only has main effects

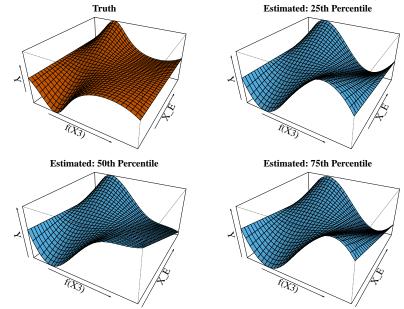
$$Y = \sum_{j=1}^{4} f_j(X_j) + \beta_E \cdot X_E + X_E \times (f_3(X_3) + f_4(X_4)) + \varepsilon$$

- 2. Truth obeys weak hierarchy
- 3. Truth only has interactions
- 4. Truth is linear
- 5. Truth only has main effects
- $n_{train} = n_{tuning} = 200, n_{test} = 800, p = 1000, \beta_E = 1, SNR = 2$
- $X_j \sim \text{truncnorm(0,1)}, j = 1, ..., 1000, E \sim \text{truncnorm(-1,1)}$
- sail needs to estimate $1000 \times 5 \times 2 = 10$ k parameters

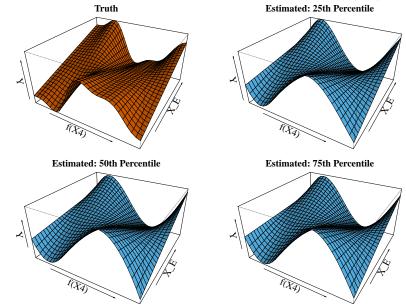
Scenario 1: Main Effects for 500 Simulations



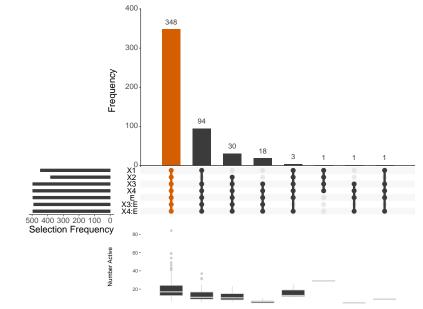
Scenario 1: Estimated Interaction Effects for $E \cdot f(X_3)$



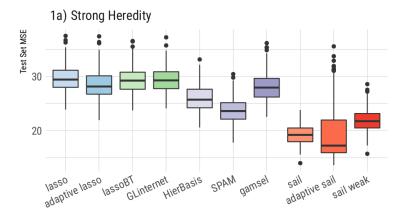
Scenario 1: Estimated Interaction Effects for $E \cdot f(X_4)$



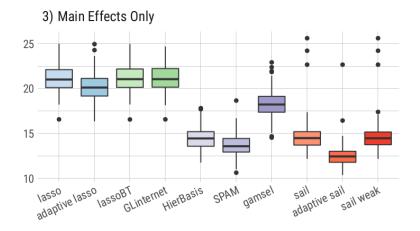
Right in Our Wheel House Simulation Results



Strong Heredity



Main Effects Only



Betting on Sparsity A Thought Experiment

Motivating Example: The Nurse Family Partnership

sail: Strong Additive Interaction Learning

Algorithm

Theory

Simulations

sail R package

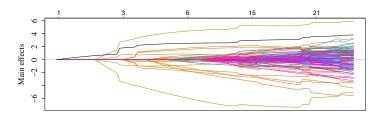
Real Data Application

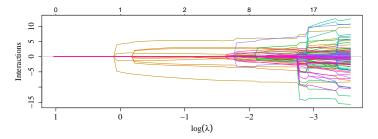
Discussion Current and Future Work

Acknowledgements

sail R package: Solution Path results

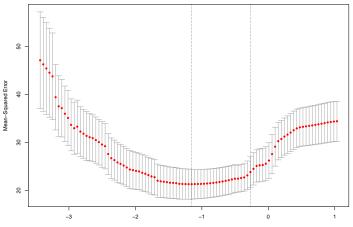
```
f.basis <- function(x) splines::bs(x, degree = 5)
fit <- sail(x, y, e, basis = f.basis)
plot(fit)</pre>
```





sail R package: Cross-validation results

sail::plot(cvfit)



40 40 39 36 31 29 29 26 23 18 15 13 11 9 8 8 6 6 5 5 4 3 2 2 1 1 1 1 0

log(Lambda)

Betting on Sparsity A Thought Experiment

Motivating Example: The Nurse Family Partnership

sail: Strong Additive Interaction Learning

Algorithm

Theory

Simulations

sail R package

Real Data Application

Discussion Current and Future Work

Acknowledgements

- Early intervention in young children has been shown to positively impact intellectual abilities.
- Genome-wide association studies (GWAS) suggest that 20% of the variance in educational attainment (years of education) may be accounted for by common genetic variation.
- An interesting query that arises is how the environment interacts with these genetics variants to predict measures of cognitive function.

- Early intervention in young children has been shown to positively impact intellectual abilities.
- Genome-wide association studies (GWAS) suggest that 20% of the variance in educational attainment (years of education) may be accounted for by common genetic variation.
- An interesting query that arises is how the environment interacts with these genetics variants to predict measures of cognitive function.

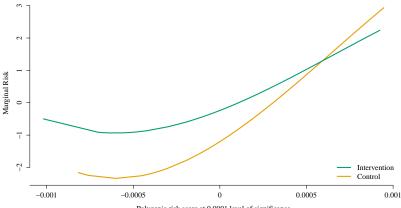
• The Stanford Binet IQ scores at 4 years of age were collected for 189 subjects born to women randomly assigned to control (*n* = 100) or nurse-visited intervention groups (*n* = 89).

- The Stanford Binet IQ scores at 4 years of age were collected for 189 subjects born to women randomly assigned to control (*n* = 100) or nurse-visited intervention groups (*n* = 89).
- For each subject, we calculated a polygenic risk score (PRS) for educational attainment at different p-value thresholds using weights from a previous GWAS.

- The Stanford Binet IQ scores at 4 years of age were collected for 189 subjects born to women randomly assigned to control (*n* = 100) or nurse-visited intervention groups (*n* = 89).
- For each subject, we calculated a polygenic risk score (PRS) for educational attainment at different p-value thresholds using weights from a previous GWAS.
- In this context, individuals with a higher PRS have a propensity for higher educational attainment.

- The Stanford Binet IQ scores at 4 years of age were collected for 189 subjects born to women randomly assigned to control (*n* = 100) or nurse-visited intervention groups (*n* = 89).
- For each subject, we calculated a polygenic risk score (PRS) for educational attainment at different p-value thresholds using weights from a previous GWAS.
- In this context, individuals with a higher PRS have a propensity for higher educational attainment.
- The goal of this analysis was to determine if there was an interaction between genetic predisposition to educational attainment (*X*) and maternal participation in the NFP program (*E*) on child IQ at 4 years of age (*Y*).

Application of sail to NFP data



Polygenic risk score at 0.0001 level of significance

Fig.: The selected model, chosen via 10-fold cross-validation, contained three variables: the main effects for the intervention and the PRS for educational attainment using genetic variants significant at the 0.0001 level, as well as their interaction. Real Data Application

Betting on Sparsity A Thought Experimen

Motivating Example: The Nurse Family Partnership

sail: Strong Additive Interaction Learning

Algorithm

Theory

Simulations

sail R package

Real Data Application

Discussion Current and Future Work

Acknowledgements

Strengths and Limitations

Strengths

- Non-linear environment interactions with strong heredity property in p>>N
- sail allows for flexible modeling of input variables

Strengths and Limitations

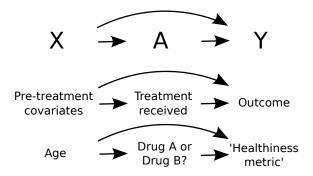
Strengths

- Non-linear environment interactions with strong heredity property in p>>N
- sail allows for flexible modeling of input variables

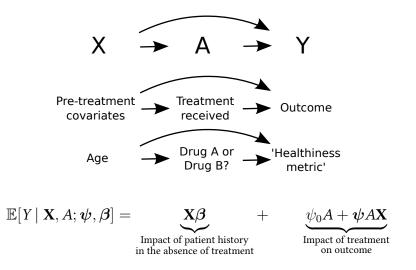
Limitations

- sail can currently only handle $E \cdot f(X)$ or $f(E) \cdot X$
- Does not allow for $f(X_1, E)$ or $f(X_1, X_2)$
- Memory footprint is an issue

Dynamic Treatment Regimes (DTRs)



Dynamic Treatment Regimes (DTRs)



Extension of sail to DTRs

arXiv.org > stat > arXiv:2101.07359

Statistics > Methodology

[Submitted on 18 Jan 2021]

Variable Selection in Regression-based Estimation of Dynamic Treatment Regimes

Zeyu Bian, Erica EM Moodie, Susan M Shortreed, Sahir Bhatnagar

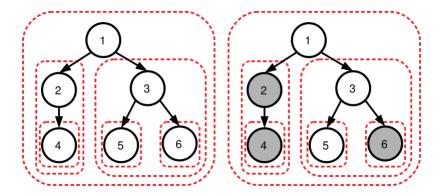
Dynamic treatment regimes (DTRs) consist of a sequence of decision rules, one per stage of intervention, that finds effective treatments for individual pat between treatment and a small number of covariates which are often chosen a priori. However, with increasingly large and complex data being collected, driven approach of selecting these covariates might improve the estimated decision rules and simplify models to make them easier to interpret. We propore method has the strong heredity property, that is, an interaction term can be included in the model only if the corresponding main terms have also been se property, and the newly proposed methods compare favorably with other variable selection approaches.

Subjects: Methodology (stat.ME); Computation (stat.CO) Cite as: arXiv:2101.07359 [stat.ME] (or arXiv:2101.07359v1 [stat.ME] for this version)

¹In revision at Biometrics. https://arxiv.org/abs/2101.07359

Discussion

Hierarchical Penalty Structure



¹Bach, Jenatton, Mairal and Obozinski (2011). Optimization with Sparsity-Inducing Penalties.

Bi-level selection

• Bi-level selection:

$$f(X_{1}) = \underbrace{\begin{bmatrix} X_{11} & \psi_{11}(X_{11}) & \psi_{12}(X_{12}) & \cdots & \psi_{11}(X_{15}) \\ \vdots & \vdots & \ddots & \vdots \\ X_{i1} & \psi_{11}(X_{i1}) & \psi_{12}(X_{i2}) & \cdots & \psi_{11}(X_{i5}) \\ \vdots & \vdots & \ddots & \vdots \\ X_{N1} & \psi_{11}(X_{N1}) & \psi_{12}(X_{N2}) & \cdots & \psi_{11}(X_{N5}) \end{bmatrix}_{N \times 5}}_{N \times 5} \times \underbrace{\begin{bmatrix} \beta_{\text{linear}} \\ \beta_{11} \\ \beta_{12} \\ \beta_{13} \\ \beta_{14} \\ \beta_{15} \end{bmatrix}_{6 \times 1}}_{\theta_{1}}$$

```
Betting on Sparsity
A Thought Experiment
Motivating Example: The Nurse P
```

```
sai1: Strong Additive Interaction Learning
```

```
Algorithm
```

```
Theory
```

```
Simulations
```

```
sail R package
```

```
Real Data Application
```

```
Discussion
Current and Future Work
```

Acknowledgements

Acknowledgements

Zeyu Bian, PhD (c)

C A N S S I I N C A S S

Acknowledgements

Acknowledgements

- Tianyuan Lu (McGill)
- Yi Yang (McGill)
- Celia Greenwood (Lady Davis Institute)
- Erica Moodie (McGill)
- Kieran O'Donnell (Yale)

compute	calcul
canada	l canada

References

- Bhatnagar, SR, Lu, T, Lovato, A, Olds, DL, Kobor, MS, Meaney, MJ, O'Donnell, K, Yang, Y, and Greenwood, CMT (2021+). A Sparse Additive Model for High-Dimensional Interactions with an Exposure Variable. bioRxiv. DOI 10.1101/445304. In revision at Computational Statistics and Data Analysis.
- Bian Z, Moodie EEM, Shortreed S, Bhatnagar SR (2021+). Variable Selection in Regression-based Estimation of Dynamic Treatment Regimes. https://arxiv.org/abs/2101.07359. In revision at Biometrics.
- De Leeuw, J. (1994). Block-relaxation algorithms in statistics. In Information systems and data analysis (pp. 308-324). Springer Berlin Heidelberg.
- Choi, N. H., Li, W., & Zhu, J. (2010). Variable selection with the strong heredity constraint and its oracle property. Journal of the American Statistical Association, 105(489), 354-364.
- Chipman, H. (1996). Bayesian variable selection with related predictors. Canadian Journal of Statistics, 24(1), 17-36.

sahirbhatnagar.com

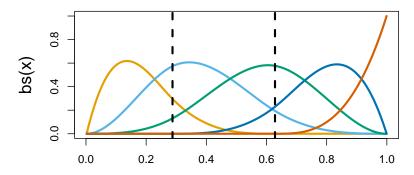
Session Info

```
R version 4.1.1 (2021-08-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Pop! OS 21.04
Matrix products: default
BLAS:
       /usr/lib/x86 64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86 64-linux-gnu/openblas-pthread/libopenblasp-r0.3.13.so
attached base packages:
[1] stats
             graphics grDevices utils
                                           datasets methods
                                                              base
other attached packages:
[1] xtable_1.8-4
                     rpart.plot_3.1.0 rpart_4.1-15
                                                          data.table 1.14.2
[5] ISLR 1.2
                     ggplot2 3.3.5
                                       knitr 1.36
loaded via a namespace (and not attached):
 [1] pillar 1.6.4
                        compiler 4.1.1
                                          highr 0.9
                                                             tools 4.1.1
 [5] digest_0.6.28
                        evaluate 0.14
                                          lifecycle_1.0.1
                                                             tibble_3.1.5
 [9] gtable 0.3.0
                       pkgconfig 2.0.3
                                          rlang 0.4.12
                                                             DBI 1.1.1
[13] xfun 0.26
                       withr 2.4.2
                                          dplyr 1.0.7
                                                             stringr 1.4.0
[17] generics_0.1.0
                       vctrs 0.3.8
                                          grid 4.1.1
                                                             tidyselect_1.1.1
[21] glue 1.4.2
                        R6 2.5.1
                                          fansi 0.5.0
                                                             pacman 0.5.1
[25] purrr 0.3.4
                                                             magrittr 2.0.1
                        RSkittleBrewer 1.1 blob 1.2.1
[29] scales 1.1.1
                        ellipsis 0.3.2
                                          assertthat 0.2.1
                                                             colorspace_2.0-2
[33] utf8 1.2.2
                                                             crayon 1.4.1
                        stringi 1.7.5
                                          munsell 0.5.0
```

B-Spline Expansion

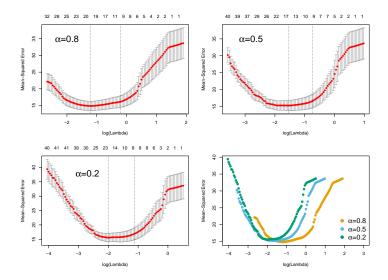
```
x <- truncnorm::rtruncnorm(1000, a = 0, b = 1)
B <- splines::bs(x, df = 5, degree=3, intercept = FALSE)</pre>
```

df=5, degree=3, inner.knots at c(33.33%, 66.66%) percentile



Х

sail A Note on the Second Tuning Parameter results

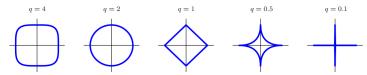


Why the L1 norm ?

• For a fixed real number $q \ge 0$ consider the criterion

$$\widetilde{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}$$

• Why do we use the ℓ_1 norm? Why not use the q = 2 (Ridge) or any ℓ_q norm?



- q = 1 is the smallest value that yields a sparse solution and yields a **convex** problem \rightarrow scalable to high-dimensional data
- For *q* < 1 the constrained region is **nonconvex**

Linear Effects Simulation - Comparison

