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Bet on Sparsity Principle
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Bet on Sparsity Principle

Use a procedure that does well in sparse problems, since
no procedure does well in dense problems.1

• We often don’t have enough data to estimate so many parameters

• Even when we do, we might want to identify a relatively small
number of predictors (k < N) that play an important role

• Faster computation, easier to understand, and stable predictions on
new datasets.

1The elements of statistical learning. Springer series in statistics, 2001.
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How would you schedule a meeting of 20 people?
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Doctors Bet on Sparsity Also
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Nurse-Family Partnership is an evidence-based, community health 
program with over 40 years of evidence showing significant 

improvements in the health and lives of first-time moms and their 
children living in poverty.  





Interactions between Intervention and Genetics

Environment
NFP InterventionLarge Data

Genetic Markers
Phenotype
IQ Score

∼ ×
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Motivation 1: Non-linear Interactions
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Motivation 2: Heredity Property

Y = β0 · 1+
p∑

j=1

βjXj + βEXE︸ ︷︷ ︸
main effects

+

p∑
j=1

τjXEXj︸ ︷︷ ︸
interactions

+ε

Strong Heredity1

τ̂j ̸= 0 ⇒ β̂j ̸= 0 and β̂E ̸= 0

• Heredity property is desired for the purposes of interpretability2

• Large main effects are more likely to lead to appreciable interactions3

1Chipman. Canadian Journal of Statistics (1996)
2McCullagh and Nelder. Generalized Linear Models (1983)
3Cox. International Statistical Review (1984)
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Lasso interaction model

• Y→ response
• XE → environment
• Xj → predictors, j = 1, . . . , p

Y = β0 · 1+
p∑

j=1

βjXj + βEXE +

p∑
j=1

τjXEXj + ε

argmin
Θ:=(β0,β,τ )

L(Θ) + λ(∥β∥1 + ∥τ∥1)
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Strong Heredity Interactions: Current State of the Art

Type Model Software

Linear CAP (Zhao et al. 2009, Ann. Stat) 7
SHIM (Choi et al. 2009, JASA) 7
hiernet (Bien et al. 2013, Ann. Stat) hierNet(x, y)
GRESH (She and Jiang 2014, JASA) 7
FAMILY (Haris et al. 2014, JCGS) FAMILY(x, z, y)
glinternet (Lim and Hastie 2015, JCGS) glinternet(x, y)
RAMP (Hao et al. 2016, JASA) RAMP(x, y)
LassoBacktracking (Shah 2018, JMLR) LassoBT(x, y)

Non-
linear

VANISH (Radchenko and James 2010, JASA) 7

sail (Bhatnagar et al. 2020+, in revision CSDA) sail(x, e, y, basis)
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Our Extension to Nonlinear Effects
Consider the basis expansion

fj(Xj) =

mj∑
ℓ=1

ψjℓ(Xj)βjℓ

f(X1) =



ψ11(X11) ψ12(X12) · · · ψ11(X15)
...

... · · ·
...

...
... · · ·

...
ψ11(Xi1) ψ12(Xi2) · · · ψ11(Xi5)

...
... · · ·

...
...

... · · ·
...

ψ11(XN1) ψ12(XN2) · · · ψ11(XN5)


N×5︸ ︷︷ ︸

Ψ1

×


β11
β12
β13
β14
β15


5×1︸ ︷︷ ︸

θ1
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sail: Additive Interactions

• θj = (βj1, . . . , βjmj) ∈ Rmj

• τ j = (τj1, . . . , τjmj) ∈ Rmj

• Ψj → n×mj matrix of evaluations of the ψjℓ

• In our implementation, we use cubic bsplines with 5 degrees of
freedom

Model

Y = β0 · 1+

p∑
j=1

Ψjθj + βEXE +

p∑
j=1

(XE ◦Ψj)τ j + ε

sail: Strong Additive Interaction Learning 16 / 53 .



sail: Strong Heredity

Reparametrization1

τ j = γjβEθj

Model

Y = β0 · 1+

p∑
j=1

Ψjθj + βEXE +

p∑
j=1

γjβE(XE ◦Ψj)θj + ε

Objective Function

argmin
Θ:=(βE,θ,γ)

L(Θ) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

1Choi et al. JASA (2010)
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sail: Weak Heredity

Reparametrization

τ j = γj(βE · 1mj + θj)

Model

Y = β0 · 1+

p∑
j=1

Ψjθj + βEXE +

p∑
j=1

γj(XE ◦Ψj)(βE · 1mj + θj) + ε

Objective Function

argmin
βE,θ,γ

L(Θ) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|
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Toy example

• With a sample size of n = 100, we sample p = 20 covariates X1, . . .Xp
independently from a N(0, 1) distribution truncated to the interval
[0,1].

• Data were generated from a model which follows the strong heredity
principle, but where only one covariate, X2, is involved in an
interaction with a binary exposure variable (E):

Y = f1(X1) + f2(X2) + 1.75E+ 1.5E · f2(X2) + ε.

• For illustration, function f1(·) is assumed to be linear, whereas
function f2(·) is non-linear: f1(x) = −3x, f2(x) = 2(2x− 1)3.

sail: Strong Additive Interaction Learning 19 / 53 .



Toy example - Solution path
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Toy example - Estimated effects
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Block Relaxation (De Leeuw, 1994)

Algorithm 1: Block Relaxation Algorithm

Set the iteration counter k← 0 and fix α ∈ (0, 1);
for each λ do

repeat

γ(k+1) ← argmin
γ

Qλ

(
γ, β

(k)
E ,θ(k)

)
θ(k+1) ← argmin

θ

Qλ

(
θ, β

(k)
E ,γ(k+1)

)
β
(k+1)
E ← argmin

βE
Qλ

(
θ(k+1), βE,γ

(k+1)
)

k← k+ 1
until convergence criterion is satisfied;

end
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Implementation

Objective Function

argmin
βE,θ,γ

L(Y;Θ) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

Lasso problem

argmin
γ

L(Y;Θ) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

1https://cran.r-project.org/package=sail
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Sparsity

Theorem 1

Θ̂n = argmin
βE,θ,γ

L(Θ) + λ(1−α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

A1 = {j : θj ̸= 0, βj ̸= 0}
A2 = {k : γk ̸= 0} , A = A1 ∪ A2

Under certain regularity conditions and the existence of a local minimizer
Θ̂n that is

√
n-consistent

P
(
Θ̂Ac = 0

)
→ 1

Theorem 1 shows that when the tuning parameters for the nonzero
coefficients converge to 0 faster than n−1/2 sail can consistently remove
the noise terms with probability tending to 1.
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Asymptotic normality

Theorem 2

Θ̂n = argmin
βE,θ,γ

L(Θ) + λ(1−α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

Under certain regularity conditions, the component Θ̂A of the local
minimizer Θ̂n satisfies

√
n
(
Θ̂A −ΘA

)
→d N

(
0, I−1 (ΘA)

)
Theorem 2 shows that the sail estimates for nonzero coefficients in the
true model have the same asymptotic distribution as they would have if the
zero coefficients were known in advance.

Theorem 1 + 2 –> Oracle property (Fan and Li, 2001)
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Simulation Scenarios

1. Truth obeys strong hierarchy (right in our wheel house):

Y =
4∑

j=1

fj(Xj) + βE · XE + XE × (f3(X3) + f4(X4)) + ε

2. Truth obeys weak hierarchy
3. Truth only has interactions
4. Truth is linear
5. Truth only has main effects

• ntrain = ntuning = 200, ntest = 800, p = 1000, βE = 1, SNR = 2

• Xj ∼ truncnorm(0,1), j = 1, . . . , 1000, E ∼ truncnorm(-1,1)
• sail needs to estimate 1000× 5× 2 = 10k parameters
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Scenario 1: Main Effects for 500 Simulations
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Scenario 1: Estimated Interaction Effects for E · f(X3)
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Scenario 1: Estimated Interaction Effects for E · f(X4)
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Right in Our Wheel House Simulation Results
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Strong Heredity

Simulations 35 / 53 .



Main Effects Only
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sail R package: Solution Path results
f.basis <- function(x) splines::bs(x, degree = 5)
fit <- sail(x, y, e, basis = f.basis)
plot(fit)
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sail R package: Cross-validation results
sail::plot(cvfit)
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Nurse Family Partnership Program

• Early intervention in young children has been shown to positively impact
intellectual abilities.

• Genome-wide association studies (GWAS) suggest that 20% of the variance in
educational attainment (years of education) may be accounted for by common
genetic variation.

• An interesting query that arises is how the environment interacts with these
genetics variants to predict measures of cognitive function.
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Nurse Family Partnership Program

• The Stanford Binet IQ scores at 4 years of age were collected for 189 subjects
born to women randomly assigned to control (n = 100) or nurse-visited
intervention groups (n = 89).

• For each subject, we calculated a polygenic risk score (PRS) for educational
attainment at different p-value thresholds using weights from a previous
GWAS.

• In this context, individuals with a higher PRS have a propensity for higher
educational attainment.

• The goal of this analysis was to determine if there was an interaction between
genetic predisposition to educational attainment (X) and maternal
participation in the NFP program (E) on child IQ at 4 years of age (Y).
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Application of sail to NFP data
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Fig.: The selected model, chosen via 10-fold cross-validation, contained three
variables: the main effects for the intervention and the PRS for educational
attainment using genetic variants significant at the 0.0001 level, as well as their
interaction.
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Strengths and Limitations

Strengths
• Non-linear environment interactions with strong heredity property in

p >> N
• sail allows for flexible modeling of input variables

Limitations
• sail can currently only handle E · f(X) or f(E) · X
• Does not allow for f(X1, E) or f(X1,X2)

• Memory footprint is an issue
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Dynamic Treatment Regimes (DTRs)
Notation

X A Y

Pre-treatment
covariates

Treatment
received

Outcome

Age 'Healthiness
metric'

Drug A or
Drug B?

Goal: find treatment Aopt maximizing E [Y |x ].

E[Y | X,A;ψ,β] = Xβ︸︷︷︸
Impact of patient history

in the absence of treatment

+ ψ0A+ψAX︸ ︷︷ ︸
Impact of treatment

on outcome
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Extension of sail to DTRs

1In revision at Biometrics. https://arxiv.org/abs/2101.07359
Discussion 47 / 53 .
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Hierarchical Penalty Structure

1Bach, Jenatton, Mairal and Obozinski (2011). Optimization with Sparsity-Inducing Penalties.
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Bi-level selection

• Bi-level selection:

f(X1) =



X11 ψ11(X11) ψ12(X12) · · · ψ11(X15)
...

... · · ·
...

...
... · · ·

...
Xi1 ψ11(Xi1) ψ12(Xi2) · · · ψ11(Xi5)

...
... · · ·

...
...

... · · ·
...

XN1 ψ11(XN1) ψ12(XN2) · · · ψ11(XN5)


N×5︸ ︷︷ ︸

Ψ1

×


βlinear

β11
β12
β13
β14
β15


6×1︸ ︷︷ ︸

θ1
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Session Info
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B-Spline Expansion

x <- truncnorm::rtruncnorm(1000, a = 0, b = 1)
B <- splines::bs(x, df = 5, degree=3, intercept = FALSE)
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sail A Note on the Second Tuning Parameter results
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Why the L1 norm ?

• For a fixed real number q ≥ 0 consider the criterion

β̃ = argmin
β


n∑

i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

|βj|q


• Why do we use the ℓ1 norm? Why not use the q = 2 (Ridge) or any ℓq
norm?

• q = 1 is the smallest value that yields a sparse solution and yields a
convex problem→ scalable to high-dimensional data

• For q < 1 the constrained region is nonconvex

57 / 53 .



Linear Effects Simulation - Comparison
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