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High Dimensional (HD) Data Analysis

Classical
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McGill Summer School in Health Data Analytics. https://sahirbhatnagar.com/assets/pdf/mcgillHDA_2021.pdf
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New challenges arise from how such data is used

Introduction

A B
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Estimated model
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Radj

y=0.66 + 1.92x,

y=0.22 4 1.78x1 4+ Ox2 4+ Ox3 + Ox4 + Oxs5 + 2.11x6 + Ox7 + Oxs
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Overarching reaserch focus: including prior information

3 € arg min{ DataFitting [X, y, 8] + A Prior [3]}
BeR?
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Overarching reaserch focus: including prior information

3 € arg min{ DataFitting [X, y, 8] + A Prior [3]}
BeR?
Examples:
ﬁr{réiﬂg’ lly — X815 + MBllo (Best subset selection)
5%@ vy — XBlI3 + Ml (Lasso regression)

. _x 2 2 Rid .
ﬁrrélelly Bllz + MlBllz  (Ridge regession)
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Accelerated GLMM
adient for .
zonconvex g i
e parameter
9CGS selection

(2021+)

Imaging
Analysis

Sparse
tensor

3 energy CT
regression 8y

High-dimensional
data:

® Genomics

* Radiomics

® Neuroimaging

Regularized
estimating
equations

Tree based
penalties

casebase
R Journal
(2021+)

Smooth
Hazards

Person-
moment
neural
networks
Stat Med
(2021+)

Penalized
competing
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hazard
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Gestational diabetes, DNA methylation and obesity

Large Data Environment
Child’s epigenome Gestational

(p =~ 450k) Diabetes

Phenotype
Obesity measures
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Differential Correlation between environments

Fig.: Gestational diabetes Fig.: Controls
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eclust: our proposed 2 step method

Original Data

Subjects


https://cran.r-project.org/package=eclust

eclust: our proposed 2 step method

Original Data 1a) Gene Similarity
E=0
u |
|} :-qu . 1|
T e | :
g i I | o ] I
Cremmms ot~ ] g mmt
Genes 8 -li
& -
1 |
| =
Genes
E=1
E
3 I“EE | f
s f ="
& A i
ek
[Pl B
LB



https://cran.r-project.org/package=eclust

eclust: our proposed 2 step method

Original Data 1a) Gene Similarity
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eclust: our proposed 2 step method

Original Data 1a) Gene Similarity 1b) Cluster
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eclust: our proposed 2 step method
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eclust: our proposed 2 step method

Original Data 1a) Gene Similarity Relpbr)es(.:el:tsz::iron 2;{:;:11::3
. E=0
s K ls L e
o
Genes Yoxi~ + xE
E=1
L
|
§H: 7‘ { nx 1 nx 1
e g

Gene

Bhatnagar et al. An analytic approach for interpretable predictive models in
high dimensional data, in the presence of interactions with exposures. Genetic
Epidemiology (2018). https://cran.r-project.org/package=eclust
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Famll Nurse-Family Partnership is an evi b d, ity health
urse_ y program with over 40 years of evidence showing significant
P ners p improvements in the health and lives of first-time moms and their

children living in poverty.
Helping First-Time Parents Succeed e

Human Brain Development
Synapse formation dependent on early experiences

Nurse-Family Partnership intervention lasts 30 months = Sensory Pathways
(vision, hearing)

Language

-—
Higher Cognitive
Function

AGE S -8 7 -6 5 -4 -3 -2 # 12 3 4 5 6 7 8 9 10 1 12345 10
V (MONTHS) * (YEARS)

Source: Nelson, C.A., In Neurons to Neighborhoods (2000).



Interactions between Intervention and Genetics

Fifth Edition (SB5)

1Q Range ("deviation 1Q") 1Q Classification

145-160 Very gifted or highly advanced
130-144 Gifted or very advanced
120-129 Superior

110-119 High average ~
30-109 Average

80-89 Low average

70-79 Borderline impaired or delayed

55-69 Midly impaired or delayed

40-54 Moderately impaired or delayed

Phenotype Large Data NFP Intervention

Environment }
IQ Score Genetic Markers
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nXxp

Error

Interaction effects

Main effects
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X, X Xp

Main effects Interaction effects



X, X Xp

Main effects Interaction effects
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Our Extension to Nonlinear Effects

Consider the basis expansion

Z bie (X)) Bye

[11(X11)  Y12(Xa2) - Y11(Xas)]
. . . A
. : . : /812
fX) = 1/J11( Xn) 12(Xe) - Yu(Xs) X Bis
: : : P14
/815 5x1
_1/111(xm) 'l/)12(.XN2) 1/111(.)(1\15)_ Nx5 "

¥,
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B-Spline Expansion

X <- truncnorm::rtruncnorm(1000, a = 0, b = 1)
B <- splines::bs(x, df = 5, degree=3, intercept = FALSE)

df=5, degree=3, inner.knots at ¢(33.33%, 66.66%) percentile

- | |

o _| | |
IS

| |

bs(x)
0.4

0.0
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sail: Additive Interactions

®0;= B, 0im) € R™
® 7= (T, Tjm) €R™
® U, — n x m; matrix of evaluations of the 1;

® In our implementation, we use cubic bsplines with 5 degrees of
freedom

» »
Y=00-1+) U0+ BeXe+ > (Xeo ¥+

=1 =1

Bhatnagar et al. In revision at Computational Statistics and Data Analysis (2021+)
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sail: Strong Heredity

Reparametrization

T; = 7;Be0,;

Model

p P
Y="PB0-1+Y W0+ B:Xs+ Y _ 7Bs(Xs0 ¥))0; +¢

j=1 j=1

Objective Function

p p
argmin  £(©) + AL - ) <WEI,BE| +3 wjnean) +3a " welyl

©:=(BE,0,7) j=1 j=1

'https://cran.r-project.org/package=sail

Interaction selection
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Nurse Family Partnership Program

® The Stanford Binet IQ scores at 4 years of age were collected for 189
subjects born to women randomly assigned to control (n = 100) or
nurse-visited intervention groups (n = 89).

® For each subject, we calculated a polygenic risk score (PRS) for
educational attainment at different p-value thresholds using weights
from a previous GWAS.
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Nurse Family Partnership Program

® The Stanford Binet IQ scores at 4 years of age were collected for 189
subjects born to women randomly assigned to control (n = 100) or
nurse-visited intervention groups (n = 89).

® For each subject, we calculated a polygenic risk score (PRS) for
educational attainment at different p-value thresholds using weights
from a previous GWAS.

® In this context, individuals with a higher PRS have a propensity for
higher educational attainment.

® The goal of this analysis was to determine if there was an interaction

between genetic predisposition to educational attainment (X) and
maternal participation in the NFP program (E) on child IQ at 4 years of

age (V).

nteraction selection 18/44 .



Application of sail to NFP data

Marginal Risk

— Intervention
Control

T T
-0.001 —0.0005 0 0.0005 0.001

Polygenic risk score at 0.0001 level of significance

Fig.: The selected model, chosen via 10-fold cross-validation, contained three
variables: the main effects for the intervention and the PRS for educational
attainment using genetic variants significant at the 0.0001 level, as well as their
interaction.

Interaction selection
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Multivariable Penalized Linear mixed effects models
Our proposal: ggmix

Multivariable Penalized Linear mixed effects models
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Additional challenges in genetic data — confounding by
population structure

Subpopulation A Subpopulation B

Cases E Cases

Controls ! Controls

z2=21 2=163 12 =157
(p=0.34) (p <0.001) (p=0.46)

Genotype B aa mAa O AA

Multivariab;

ITam V. et al. Benefits and limitations of genome-wide association studies. Nat Rev Genet (2019)
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Kinship Matrix: Measuring Genetic Similarity

® Let kinship be a list of SNPs used to estimate the kinship matrix
® Let Xinship be a standardized n x q genotype matrix.

® A kinship matrix (®) can be computed as

1
P = kainshipxz—inship (1)

fultivariable Penalized Linear mixed effects models 22/44 .



Multivariable Penalized Linear mixed effects models
(LMM)

4
Y= B-SNP;+P+e (2)
j=1

P~ N(0,n0%®) e~ N(0,(1 —1)0°T)

o2 is the phenotype total variance

n € [0, 1] is the phenotype heritability
Y|(ﬁa n, 02) ~ N( f:l ﬂj : SNPja 770—2® + (1 - 77)021)

® In our applications, n << p

fultivariable Penalized Linear mixed effects models 23/44



Multivariable Penalized Linear mixed effects models
(LMM)

p
Y= B-SNP;+P+e @)

=1

P~ N(0,70°®) &~N(0,(1—n)o?T)

o2 is the phenotype total variance

n € [0, 1] is the phenotype heritability
Y|(ﬁa n, 02) ~ N( f:l ﬂj : SNPja 770—2{) + (1 - 77)021)

® In our applications, n << p

Lasso, ridge, ect. are not directly applicable to LMM

fultivariable Penalized Linear mixed effects models 23/44.



Current solution: Two Stage Procedure
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Response
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Current solution: Two Stage Procedure

Y

P

Response
IDI D2 D3 D4 D5 D6 ID7 D8 ID9 D10
255 D1 097 0 0 0 -002 003 002 -0.01 -0.02 0.03
Step 1 706329 D2 0 1 0 -001 0 -001 -0.01 © 0 0 + E
- =Y ~ D3 0 0 098 001 001 001 0 003 -0.01 -0.01 1
0.809 D4 0 -001 001 103 004 001 -001 001 001 -0.01
0.279 ID5 -002 0 001 004 097 -001 -0.01 0.01 003 0.3
-0.421 ID6 0.03 -001 001 001 -001 1.02 0 0 0 001
-0.454 ID7 002 -001 0 -001 -001 0 1002 002 0
1.383 /D8 -001 0 003 001 001 0 002 101 001 0
-2.29 D9 -002 0 -001 001 003 ©0 002 001 1.04 0.01
2.289 ID10 003 0 -001 -0.01 003 001 0 0 001 095
Genel Gene2 Gene3 Gene4 Gene5 Gene6
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from Step 1 Pz 2 2 2 1
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D10 1 2 B 1 2 7z

Multivariable Penal Linear mixed effects mod
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Our proposal: ggmix

® We propose, ggmix, a one stage procedure which simultaneously
controls for structured populations and performs variable selection in
Linear Mixed Models (LMMs)

PLOS GENETICS

RESEARCH ARTICLE

Simultaneous SNP selection and adjustment
for population structure in high dimensional
prediction models

Sahir R. Bhatnagar "2+, Yi Yang®, Tianyuan Lu@*®, Erwin Schurr®, JC Loredo-Osti”,
Marie Forest,%, Karim Oualkacha :®, Celia M. T. Greenwood o 51011

1D of Epi ics and O ional Health, McGill University, Montréal, Québec,
Canada, 2 Department of Diagnostic Radiology, McGill University, Montréal, Québec, Canada, 3 Department

I of Mathematics and Statistics, McGill University, Montréal, Québec, Canada, 4 Quantitative Life Sciences,
McGill University, Montréal, Québec, Canada, 5 Lady Davis Institute, Jewish General Hospital, Montréal,
Québec, Canada, 6 Department of Medicine, McGill University, Montréal, Québec, Canada, 7 Department of
Mathematics and Statistics, Memorial University, St. John's, Newfoundland and Labrador, Canada, 8 Ecole

Check for de Technologie Supérieure, Montréal, Québec, Canada, 9 Département de Mathématiques, Université du
updates Québec a Montréal, Montréal, Québec, Canada, 10 Gerald Bronfman Department of Oncology, McGil

University, Montréal, Québec, Canada, 11 Department of Human Genetics, McGill University, Montréal,
Québec, Canada

# sahir.bhatnagar@megill.ca

IR package: sahirbhatnagar.com/ggmix, https://cran.r-project.org/package=ggmix
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sahirbhatnagar.com/ggmix
https://cran.r-project.org/package=ggmix

Data and Model

® Phenotype: Y = (y1,...,¥s) € R"

® SNPs: X = (X3;...,X,)T € R™P, where p>> n

® Twice the Kinship matrix or Realized Relationship matrix: ® € R"*"
® Regression Coefficients: 3 = (f1,...,3,)T € R?

® Polygenic random effect: P = (Py,...,P,) € R"

® Error: € = (g1,...,&,) € R"

® We consider the following LMM with a single random effect:
Y=XB+P+e¢
P ~ N(0,75%®) e ~N(0,(1 —n)o*T)

® o2 is the phenotype total variance
® 7 € [0, 1] is the phenotype heritability (narrow sens)
* Y|(B,1,0%) ~ N(XB,no*® + (1 — n)o’I)

riable Penalized Linear mixed effects models 27/44 .



Likelihood

® The negative log-likelihood is given by

—0(®) x glog(a2) + % log (det(V)) + 2%2 (Y-XB8)"V ' (Y-XP)

where
V=n®+(1-nI

fultivariable Penalized Linear mixed effects models 28/44



Likelihood

® The negative log-likelihood is given by

—0(®) x glog(a2) + % log (det(V)) + 2%2 (Y-XB8)"V ' (Y-XP)

where
V=n®+(1-nI

® Assume the spectral decomposition of ®
® =UDU'

® Uis an n X northogonal matrix and D is an n x n diagonal matrix
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Likelihood

® The negative log-likelihood is given by

—0(®) x glog(a2) + % log (det(V)) + 2%2 (Y-XB8)"V ' (Y-XP)

where
V=n®+(1-nI

Assume the spectral decomposition of ®
® =UDU'

® Uis an n X northogonal matrix and D is an n x n diagonal matrix

® One can write
V=U#nD+ (1-nZ)U" =Uuwu '

with W = dlag (Wi)l'nzl’ W = UD,‘,' + (1 — 7])

Multivariable Penalized Linear mixed effects models 28/44 .



Likelihood

® Projection of Y (and columns of X) into Span(U) leads to a simplified
correlation structure for the transformed data: Y = UTY

* Y|(B,1,0%) ~ N(XB,0°W), with X = UTX
® The negative log-likelihood can then be expressed as

—0(®) x flog Zlog wi +—( - ,B)wa1 (Y-XB)

riable Penalized Linear mixed effects models 29/44



Likelihood

® Projection of Y (and columns of X) into Span(U) leads to a simplified
correlation structure for the transformed data: Y = UTY

Y|(B,1,0%) ~ N(XB,0°W), with X = UTX
® The negative log-likelihood can then be expressed as

—0(®) x flog 2Zlog wi +—( - ,B)wal (Y-XB)

For fixed o and 7, solving for 3 is a weighted least squares problem

fultivariable Penalized Linear mixed effects models 29/44 .



Penalized Maximum Likelihood Estimator

® Define the objective function:

A(®) =—{(0O) + Aij(ﬁj)

® pi(-) is a penalty term on 31, ..., 3,

® An estimate of the model parameters ©, is obtained by

©, = argmin 0)(O)
e

fultivariable Penalized Linear mixed effects models 30/44 .



Real data applications

1. UK Biobank
> 10,000 LD-pruned SNPs (Essentially un-correlated variables) to predict
standing height in 18k related individuals
» Standing height is highly polygenic (many variables associated with
response)
2. GAW20 Simulated dataset
> 50,000 SNPs (all on chromosome 1) to predict high-density lipoproteins
in 679 related individuals
> Not much correlation between causal SNP and others
» Very sparse signals (only 1 causal variant)
3. Mouse Crosses
> Find loci associated with mouse sensitivity to mycobacterial infection
> 189 samples, and 625 microsatellite markers
» Highly correlated variables

Multivariable Penalized Linear mixed effects models

31/44.



Results: UK Biobank

A (8)

13 1.000
— [ ]
]
2]
c 12
8 = 0.975
(8]
9 =2
g1 g
— -
5]
g = 0.950
£ 10 0
£ =
L & 0925
009
= o
@
0.8 09001 ¢
0 25 50 75 100 9 10 11 12
A index log,(Number of active variables)
= twostep == lasso == ggmix e twostep o lasso e ggmix ® bsimm
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Survival Analysis

Survival Analysis
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Neural network survival analysis

® DeepSurv — Cox neural networks.

> Cox regression extended using neural networks.
> Only uses proportional hazards (PH).

® DeepHit - First Hitting Time neural networks.

» Inverse Gaussian distribution used as baseline hazard.
» Does not let model determine baseline hazard.

® DeepSurvivalMachines (DSM) — Mixture model used for baseline
hazard.

> User specifies a set of distributions to be used as the baseline hazard.
> Does not permit time-varying interactions.

Survival Analysis 34/44



Neural network survival analysis

® DeepSurv — Cox neural networks.

> Cox regression extended using neural networks.
> Only uses proportional hazards (PH).

® DeepHit - First Hitting Time neural networks.
» Inverse Gaussian distribution used as baseline hazard.
» Does not let model determine baseline hazard.
® DeepSurvivalMachines (DSM) — Mixture model used for baseline
hazard.

> User specifies a set of distributions to be used as the baseline hazard.
> Does not permit time-varying interactions.

® Person-moment neural networks (PMNN)

» Provides a flexible baseline hazard.
> Permits time-varying interactions of covariates.
> Applicable to high-dimensional datasets

Survival Analysis 34/44.



Case-base sampling

its
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Base: All the person-moments
experienced in the study.

35/44.



Case-base sampling

Time (weeks)

Participants
o ]

o

Survival Analysis

t>4, Censored

Participants

Time (weeks)

1 2 3 4
Alt1
Fes®

B t=2 o

c

b t>4, Censored 4
Sevseveces sss e

E

Base: All the person-moments
experienced in the study.
Case series: all the person-
moments where an event
occurred.

36/44 .



Case-base sampling

Time (weeks)

Participants
o

o

Survival Analysis

1 2 3 4

| =1 o
=

—2—e

t=3

t>4, Censored

t=5

Participants

Time (weeks)

B e
c ® e *0 e ...
D t>4, Censored

Base: All the person-moments
experienced in the study.

Case series: all the person-
moments where an event
occurred.

Base series: sample of the base.
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Case-base sampling and logistic regression

Time (weeks)

1 2 3 4 sy _ Pr(Y =1z, 1)
Alth-o N Pr(Y = 0|z, t)
l_z Pr(Y =1z, f) _ h(x,t) x B(,1)
P R Pr(Y =0z, t) — b[B(x,t)/B]
*g . s h(z,t) * Bx,t) _ h(x,t) = B
:‘E .......'... b[B(I,t)/B] b
£ o FrrTes e e e h(z,t) = "0 =
- b\ b=#8l
E oo ...‘.l-.s...... ) ln(h(x,t)):ﬂ(x,t)-f-ln (E) B=#Mlcj>$nents

Bhatnagar et al. In revision at R Journal (2021+).
https://cran.r-project.org/package=casebase

Survival Analysis
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Overview of our method

Statu:

P| Case-base

sampling

Offset
3

Survival Analysis

Feed-forward

/| Neural Network |

Probability
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Results

A Simple Simulation

4 055
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Complex Simulation
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B-Spline Expansion

X <- truncnorm::rtruncnorm(1000, a = 0, b = 1)
B <- splines::bs(x, df = 5, degree=3, intercept = FALSE)

df=5, degree=3, inner.knots at ¢(33.33%, 66.66%) percentile

bs(x)
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sail A Note on the Second Tuning Parameter results

Mean-Squared Error

Mean-Squared Error
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Why the L1 norm ?

® For a fixed real number g > 0 consider the criterion

n

) 2 )
ﬁ:arggnin Z (yi—ﬁo —in]ﬂ]) +)\Z|Bj|q
=1 =1

i=1

® Why do we use the £; norm? Why not use the g = 2 (Ridge) or any ¢,

norm?
g=4 g=05 ¢=01

DO+

® g =1 is the smallest value that yields a sparse solution and yields a
convex problem — scalable to high-dimensional data

® For g < 1 the constrained region is nonconvex
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Linear Effects Simulation - Comparison
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Simulation Scenarios

1. Truth obeys strong hierarchy (right in our wheel house):

Y= fi(X)+ B Xe+ Xe x (fi(Xs) + f(Xa)) + &

=1
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Simulation Scenarios

Simulations

g LN

Truth obeys strong hierarchy (right in our wheel house):

Y= £(X)+Be Xe+ Xe x ((Xs) + fa(Xa)) + ¢

=1

Truth obeys weak hierarchy
Truth only has interactions

Truth is linear

Truth only has main effects
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Simulation Scenarios

1. Truth obeys strong hierarchy (right in our wheel house):

Y= £(X)+Be Xe+ Xe x ((Xs) + fa(Xa)) + ¢

=1

. Truth obeys weak hierarchy
. Truth only has interactions
. Truth is linear

. Truth only has main effects

gl o W

® Nyrain = Ntuning = 200, Niest = 800; pP= 1000, ﬂE = 1, SNR =2
® X; ~ truncnorm(0,1),j=1,...,1000, E ~ truncnorm(-1,1)

® sail needs to estimate 1000 x 5 x 2 = 10k parameters

Simulation:
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Scenario 1: Main Effects for 500 Simulations

f(xq) =5x;

2
X1
_ 4sin(2mx)
09 =3 g
£

Simulations

f(x)

f(xa)

-4 -2 0 2 4 6 8

f(xo) = 4.5(2%, - 1)?

f(x4) = 6(0.1sin(24) + 0.2c0S(2x4) + 0.3siN(Xs) 2+
0.4c0s(2x4)%+ 0.5sin(2xs)%)
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Scenario 1: Estimated Interaction Effects for E - f{X3)

Truth Estimated: 25th Percentile

A\
é (
M \0@\

Estimated: 50th Percentile Estimated: 75th Percentile

S

M A/

Simulations
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Scenario 1: Estimated Interaction Effects for E - f{X})

Truth Estimated: 25th Percentile
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Right in Our Wheel House Simulation Results
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Strong Heredity

1a) Strong Heredity
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Main Effects Only

3) Main Effects Only
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Sparsity

vvvvvv

Theorem 1

R P P

S = e L(©®)+A(1-a) (MsIﬂEI +> wj||9j||2> + Ay wiely
E,0,Y j=1 j=1

Ay ={j:6;#0,8 # 0}

Agz{kt’yk;ﬁO}, A=A, UA,
Under certain regularity conditions and the existence of a local minimizer
®, that is y/n-consistent
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Sparsity

Theorem 1

R p P

©, = argmin L(O)+ A(1—a) <wElﬁg| +) wj||9j2> + ) wielyl
ﬁEvoa'\f j=1 j=1

Ay ={j:6;#0,8 # 0}

Agz{kt’yk#O}, A=A, UA,
Under certain regularity conditions and the existence of a local minimizer
®, that is y/n-consistent

P((:)Ac:O) 1

Theorem 1 shows that when the tuning parameters for the nonzero
coefficients converge to 0 faster than n~!/2 sail can consistently remove
the noise terms with probability tending to 1.
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Asymptotic normality

vvvvv

Theorem 2

R P p

®, =argmin L(O)+ A(1—«) <WE|,6’E| + Z wj||912> + )\az wie |yl
BEaea'Y j=1 j=1

Under certain regularity conditions, the component © 4 of the local
minimizer ®,, satisfies

Vi (84-04) 2aN (017 (0.)

Theorem 2 shows that the sail estimates for nonzero coefficients in the
true model have the same asymptotic distribution as they would have if the
zero coeflicients were known in advance.
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Asymptotic normality

Theorem 2

R P p

®, =argmin L(O)+ A(1—«) <WE|,6’E| + Z wj||9j2> + )\az wie |yl
BEaea'Y j=1 j=1

Under certain regularity conditions, the component © 4 of the local
minimizer ®,, satisfies

Vi (84-04) 2aN (017 (0.)

Theorem 2 shows that the sail estimates for nonzero coefficients in the
true model have the same asymptotic distribution as they would have if the
zero coefficients were known in advance.

Theorem 1 + 2 —> Oracle property (Fan and Li, 2001)
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Block Relaxation (De Leeuw, 1994)

Algorithm 1: Block Relaxation Algorithm

Set the iteration counter k <— 0 and fix a € (0, 1);
for each ) do
repeat

'Y(k—H) + argmin Q) (’7»6;(9107 9("))
il

o+l argmin Q) (e,ﬁék)ﬁ’(kﬂ))
0

B argmin - 0y (807, B, y(1))
Be

k< k+1
until convergence criterion is satisfied;

end
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sail: Weak Heredity

Reparametrization

7= %(Be - 1m; + )

Model

p »
Y=80-1+> b+ BXe+ »_ 7i(Xs0 ¥))(Be- 1n + ) + ¢

=1 j=1

Objective Function

)4 )4
argmin  £(©) + A(1 — ) (WE|5E| +>° Wj||9j||2> +Aa > welvyl

BE,0,Y j=1 =1

Algorithm
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Implementation

Objective Function

» P
argmin - L(Y;0) + A(1 — «) (WE|/3E| +>° Wj||‘9j||2) + Ay Wiyl

BE.6,v j=1 j=1

Uhttps://cran.r-project.org/package=sail
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Implementation

Objective Function

BE.6,v

» P
argmin - L(Y;0) + A(1 — «) (WE|5E| +>° w,||9,-||2) + Ay Wiyl

=1 =1

Lasso problem

»
wie ||

argmin L(Y;0) + + A
¥

Uhttps://cran.r-project.org/package=sail

Algorithm
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Objective Function

» P
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Implementation

Objective Function

BE.6,v j=1 j=1

» P
argmin - L(Y;0) + A(1 — «) (WE|5E| +>° w,||9,-||2) + Ay Wiyl

Group Lasso problem

»
argmin  L(Y;©) + \(1 — «) (WE|5E| + Z Wj||9j||2) +

BE,0 =1

Uhttps://cran.r-project.org/package=sail

Algorithm
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sail R package: Solution Path results

f.basis <- function(x) splines::bs(x, degree = 5)
fit <- sail(x, y, e, basis = f.basis)

plot(fit)
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sail R package: Cross-validation results

Algorithm

sail::plot(cvfit)

Mean-Squared Error
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Strengths and Limitations

Strengths

® Non-linear environment interactions with strong heredity property in
p>>N

® sail allows for flexible modeling of input variables
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Strengths and Limitations

Strengths

® Non-linear environment interactions with strong heredity property in
p>>N

® sail allows for flexible modeling of input variables

Limitations
® sail can currently only handle E - fiX) or (E) - X
® Does not allow for f{X3, E) or (X1, X2)

® Memory footprint is an issue
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Hierarchical Penalty Structure
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Bach, Jenatton, Mairal and Obozinski (2011). Optimization with Sparsity-Inducing Penalties.
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Bi-level selection

® Bi-level selection:

(X1 Y11(Xi1)  Y12(Xiz)

fX)=|Xa 9Yu ('Xil) letXi2)

[ Xn 11 (Xn1)  Y12(Xae)

¥11(X15)]

P11 ('Xi5)
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Block Relaxation (De Leeuw, 1994)

To solve for the optimization problem we use a block relaxation technique

Algorithm 2: Block Relaxation Algorithm

Set k +— 0, initial values for the parameter vector 0 and €
for M € {\naxy - - - s Apin} do
repeat

Forj:1>"'1p7 ﬁ'(k+1)<_argman>\ (/8(_1777 2<k)>

B;

n(k+1) « arg min Oy <ﬁ(k+1),n’02 (k))
n

g2 (D arg min Qs (IB(k+1),n(k+1)’O_2>

o2

k< k+1
until convergence criterion is satisfied: [[@**Y — @V ||, < ¢
end
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Coordinate Gradient Descent Method

We take advantage of smoothness of ¢(©)

® We approximate Q) (@) by a strictly convex quadratic function (using
gradient)

We use CGD to calculate a descent direction

® To achieve the descent property for the objective function, we employ
further line search

ITseng P& Yun S. Math. Program., Ser. B, (2009)
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Coordinate Gradient Descent Method

sgmix apper

We take advantage of smoothness of ¢(©)

® We approximate Q) (@) by a strictly convex quadratic function (using
gradient)

We use CGD to calculate a descent direction

® To achieve the descent property for the objective function, we employ
further line search

Theorem [Convergence] ':

1f{®® k=0,1,2,...} is a sequence of iterates generated by the iteration
map of Algorithm 1, then each cluster point (i.e. limit point) of

{©W k=0,1,2,...} is a stationary point of Q5 (©)

I Tseng P& Yun S. Math. Program., Ser. B, (2009)
dix
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objective function
75 80 85 90 95 100 105
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Choice of the tuning parameter

We use the BIC:

BIC, = —20(B,52,7) + c- df,

dfy, is the number of non-zero elements in 3, plus two !

Several authors 2 have used this criterion for variable selection in
mixed models with ¢ = logn

e Other authors 2 have proposed ¢ = log(log(n)) * log(n)

sgmix appendix

1Zou et al. The Annals of Statistics, (2007)
2Bondell et al. Biometrics (2010)
3Wang et al. JRSS(Ser. B), (2009)
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Effect of the Euclidean projection onto the ¢;-ball

af?]

#1-ball o]

ey < pe

Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.

ggmix appendix
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Effect of the Euclidean projection onto the ¢,-ball

al?]

gball all]

ez < p

Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.

78/44 .



Representation in three dimensions of the ¢;- and ¢5-balls

(a) £2-ball in 3D (b) £1-ball in 3D

Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.
ggmix appendix 79/44 .
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Dynamic Treatment Regimes (DTRs)

X —»>»> A > Y
Pre-treatment Treatment
covariates P eceiveq — P Outcome

—>» Drug A or > 'Healthiness
hoe Drug B? metric'
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Dynamic Treatment Regimes (DTRs)

X > A > Y
A

Pre-treatment Treatment
. —>» . —>» tcom
covariates received Outcome

Drug A or ! i
Age » g > Healthiness

Drug B? metric'
E[Y[X, 4;4,0] = X0 + oA+ PAX
~—~ —_——
Impact of patient history Impact of treatment

in the absence of treatment on outcome
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Extension of sail to DTRs

@y Cornell University

arXiv.org > stat > arxiv:2101.07359

Statistics > Methodology

(Submitted on 18 Jan 2021]

Variable Selection in Regression-based Estimation of Dynamic Treatment Regimes
Zeyu Bian, Erica EM Moodie, Susan M Shortreed, Sahir Bhatnagar

Dynamic treatment regimes (DTRs) consist of a sequence of decision rules, one per stage of intervention, that finds effective treatments for individual pat
between treatment and a small number of covariates which are often chosen a priori. However, with increasingly large and complex data being collected,
driven approach of selecting these covariates might improve the estimated decision rules and simplify models to make them easier to interpret. We propa
method has the strong heredity property, that is, an interaction term can be included in the model only if the corresponding main terms have also been se
property, and the newly proposed methods compare favorably with other variable selection approaches

Subjects: Methodology (stat.ME): Computation (stat. CO)
Cite as:  arXiv:2101.07359 [stat.ME]
(or aniv:2101.07359v1 [stat.ME] for this version)

UIn press at Biometrics. https://arxiv.org/abs/2101.07359
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