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High Dimensional (HD) Data Analysis
Classical
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

McGill Summer School in Health Data Analytics. https://sahirbhatnagar.com/assets/pdf/mcgillHDA_2021.pdf
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New challenges arise from how such data is used

A
y x1
0.0 0
2.1 1
2.7 0
5.9 3
7.3 3
0.0 0
2.0 1

B
y x1 x2 x3 x4 x5 x6 x7 x8
0 0 2 0 0 1 0 1 0
2.1 1 0 2 3 2 0 0 3
2.7 0 0 0 2 2 1 1 1
5.9 3 0 1 0 0 0 2 0
7.3 3 4 0 1 1 1 0 0
0.0 0 2 0 0 3 0 0 0
2.0 1 0 2 1 0 0 0 1

Estimated model R2
adj

y = 0.66 + 1.92x1 0.83
y = 0.22 + 1.78x1 + 0x2 + 0x3 + 0x4 + 0x5 + 2.11x6 + 0x7 + 0x8 0.98
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Bet on Sparsity Principle
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Overarching reaserch focus: including prior information

β̂ ∈ argmin
β∈Rp

{ DataFitting [X, y, β] + λ Prior [β]}

Examples:

min
β∈Rp
∥y− Xβ∥22 + λ∥β∥0 (Best subset selection)

min
β∈Rp
∥y− Xβ∥22 + λ∥β∥1 (Lasso regression)

min
β∈Rp
∥y− Xβ∥22 + λ∥β∥22 (Ridge regession)
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High-dimensional
data:

• Genomics
• Radiomics
• Neuroimaging

Imaging
Analysis
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(2021)
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Bayesian
model

Stat (2021+)

Sparse
tensor
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energy CT
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Hazards

Polygenic
hazard
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moment
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Treatment
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CSDA
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gradient for
nonconvex
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Gestational diabetes, DNA methylation and obesity

Environment
Gestational
Diabetes

Large Data
Child’s epigenome

(p ≈ 450k)

Phenotype
Obesity measures

∼ ×
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Differential Correlation between environments

Fig.: Gestational diabetes Fig.: Controls
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eclust: our proposed 2 step method

Original Data

E = 0

1a) Gene Similarity

E = 1

1b) Cluster
Representation

n × 1 n × 1

2) Penalized
Regression

Yn×1∼ + ×E

Bhatnagar et al. An analytic approach for interpretable predictive models in
high dimensional data, in the presence of interactions with exposures. Genetic
Epidemiology (2018). https://cran.r-project.org/package=eclust
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Nurse-Family Partnership is an evidence-based, community health 
program with over 40 years of evidence showing significant 

improvements in the health and lives of first-time moms and their 
children living in poverty.  



Interactions between Intervention and Genetics

Environment
NFP InterventionLarge Data

Genetic Markers
Phenotype
IQ Score

∼ ×
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Y =
p

∑
j=1

Xjβj +
p

∑
j=1

XjXEτj + ε

=

X

n × p

β

p × 1 n × p p × 1

X

n × 1

XE ∘ τ+ +

n × 1

ε

Main effects Interaction effects Error
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Let ZjE = XEXj



Y =
p

∑
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p

∑
j=1

ZjEτj + ε

=

X
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Our Extension to Nonlinear Effects
Consider the basis expansion

fj(Xj) =

mj∑
ℓ=1

ψjℓ(Xj)βjℓ

f(X1) =



ψ11(X11) ψ12(X12) · · · ψ11(X15)
...

... · · ·
...

...
... · · ·

...
ψ11(Xi1) ψ12(Xi2) · · · ψ11(Xi5)

...
... · · ·

...
...

... · · ·
...

ψ11(XN1) ψ12(XN2) · · · ψ11(XN5)


N×5︸ ︷︷ ︸

Ψ1

×


β11
β12
β13
β14
β15


5×1︸ ︷︷ ︸

θ1

Interaction selection 14 / 44 .



B-Spline Expansion

x <- truncnorm::rtruncnorm(1000, a = 0, b = 1)
B <- splines::bs(x, df = 5, degree=3, intercept = FALSE)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

df=5, degree=3, inner.knots at c(33.33%, 66.66%) percentile

x

bs
(x

)
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sail: Additive Interactions

• θj = (βj1, . . . , βjmj) ∈ Rmj

• τ j = (τj1, . . . , τjmj) ∈ Rmj

• Ψj → n×mj matrix of evaluations of the ψjℓ

• In our implementation, we use cubic bsplines with 5 degrees of
freedom

Model

Y = β0 · 1+

p∑
j=1

Ψjθj + βEXE +

p∑
j=1

(XE ◦Ψj)τ j + ε

Bhatnagar et al. In revision at Computational Statistics and Data Analysis (2021+)
Interaction selection 16 / 44 .



sail: Strong Heredity

Reparametrization

τ j = γjβEθj

Model

Y = β0 · 1+

p∑
j=1

Ψjθj + βEXE +

p∑
j=1

γjβE(XE ◦Ψj)θj + ε

Objective Function

argmin
Θ:=(βE,θ,γ)

L(Θ) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

1https://cran.r-project.org/package=sail
Interaction selection 17 / 44 .
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Nurse Family Partnership Program

• The Stanford Binet IQ scores at 4 years of age were collected for 189
subjects born to women randomly assigned to control (n = 100) or
nurse-visited intervention groups (n = 89).

• For each subject, we calculated a polygenic risk score (PRS) for
educational attainment at different p-value thresholds using weights
from a previous GWAS.

• In this context, individuals with a higher PRS have a propensity for
higher educational attainment.

• The goal of this analysis was to determine if there was an interaction
between genetic predisposition to educational attainment (X) and
maternal participation in the NFP program (E) on child IQ at 4 years of
age (Y).

Interaction selection 18 / 44
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Application of sail to NFP data

−
2

−
1

0
1

2
3

Polygenic risk score at 0.0001 level of significance

M
ar

gi
na

l R
is

k

−0.001 −0.0005 0 0.0005 0.001

Intervention
Control

Fig.: The selected model, chosen via 10-fold cross-validation, contained three
variables: the main effects for the intervention and the PRS for educational
attainment using genetic variants significant at the 0.0001 level, as well as their
interaction.
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Additional challenges in genetic data – confounding by
population structure

1Tam V. et al. Benefits and limitations of genome-wide association studies. Nat Rev Genet (2019)
Multivariable Penalized Linear mixed effects models 21 / 44 .



Kinship Matrix: Measuring Genetic Similarity

• Let kinship be a list of SNPs used to estimate the kinship matrix
• Let Xkinship be a standardized n× q genotype matrix.
• A kinship matrix (Φ) can be computed as

Φ =
1

q− 1
XkinshipX⊤

kinship (1)

Multivariable Penalized Linear mixed effects models 22 / 44 .



Multivariable Penalized Linear mixed effects models
(LMM)

Y =

p∑
j=1

βj · SNPj + P+ ε (2)

P ∼ N (0, ησ2Φ) ε ∼ N (0, (1− η)σ2I)

• σ2 is the phenotype total variance
• η ∈ [0, 1] is the phenotype heritability
• Y|(β, η, σ2) ∼ N (

∑p
j=1 βj · SNPj, ησ2Φ+ (1− η)σ2I)

• In our applications, n << p

Lasso, ridge, ect. are not directly applicable to LMM

Multivariable Penalized Linear mixed effects models 23 / 44
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Current solution: Two Stage Procedure

͠
Y P

E+

X_kinship

X_kinshipX_kinship T

Multivariable Penalized Linear mixed effects models 24 / 44 .



Current solution: Two Stage Procedure

͠
Y P

E1+Step 1:

Step 2: Residuals 
from Step 1 ͠ + E2+

Multivariable Penalized Linear mixed effects models 25 / 44 .



Our proposal: ggmix
• We propose, ggmix, a one stage procedure which simultaneously

controls for structured populations and performs variable selection in
Linear Mixed Models (LMMs)

RESEARCH ARTICLE

Simultaneous SNP selection and adjustment

for population structure in high dimensional

prediction models

Sahir R. BhatnagarID
1,2*, Yi Yang3, Tianyuan LuID

4,5, Erwin SchurrID
6, JC Loredo-Osti7,

Marie ForestID
8, Karim OualkachaID

9, Celia M. T. GreenwoodID
1,4,5,10,11

1 Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec,

Canada, 2 Department of Diagnostic Radiology, McGill University, Montréal, Québec, Canada, 3 Department

of Mathematics and Statistics, McGill University, Montréal, Québec, Canada, 4 Quantitative Life Sciences,

McGill University, Montréal, Québec, Canada, 5 Lady Davis Institute, Jewish General Hospital, Montréal,

Québec, Canada, 6 Department of Medicine, McGill University, Montréal, Québec, Canada, 7 Department of

Mathematics and Statistics, Memorial University, St. John’s, Newfoundland and Labrador, Canada, 8 École

de Technologie Supérieure, Montréal, Québec, Canada, 9 Département de Mathématiques, Université du
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University, Montréal, Québec, Canada, 11 Department of Human Genetics, McGill University, Montréal,
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Abstract

Complex traits are known to be influenced by a combination of environmental factors and

rare and common genetic variants. However, detection of such multivariate associations

can be compromised by low statistical power and confounding by population structure. Lin-

ear mixed effects models (LMM) can account for correlations due to relatedness but have

not been applicable in high-dimensional (HD) settings where the number of fixed effect pre-

dictors greatly exceeds the number of samples. False positives or false negatives can result

from two-stage approaches, where the residuals estimated from a null model adjusted for

the subjects’ relationship structure are subsequently used as the response in a standard

penalized regression model. To overcome these challenges, we develop a general penal-

ized LMM with a single random effect called ggmix for simultaneous SNP selection and

adjustment for population structure in high dimensional prediction models. We develop a

blockwise coordinate descent algorithm with automatic tuning parameter selection which is

highly scalable, computationally efficient and has theoretical guarantees of convergence.

Through simulations and three real data examples, we show that ggmix leads to more par-

simonious models compared to the two-stage approach or principal component adjustment

with better prediction accuracy. Our method performs well even in the presence of highly

correlated markers, and when the causal SNPs are included in the kinship matrix. ggmix

can be used to construct polygenic risk scores and select instrumental variables in Mende-

lian randomization studies. Our algorithms are available in an R package available on

CRAN (https://cran.r-project.org/package=ggmix).
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Data and Model

• Phenotype: Y = (y1, . . . , yn) ∈ Rn

• SNPs: X = (X1; . . . ,Xn)
T ∈ Rn×p, where p≫ n

• Twice the Kinship matrix or Realized Relationship matrix: Φ ∈ Rn×n

• Regression Coefficients: β = (β1, . . . , βp)
T ∈ Rp

• Polygenic random effect: P = (P1, . . . , Pn) ∈ Rn

• Error: ε = (ε1, . . . , εn) ∈ Rn

• We consider the following LMM with a single random effect:

Y = Xβ + P+ ε

P ∼ N (0, ησ2Φ) ε ∼ N (0, (1− η)σ2I)

• σ2 is the phenotype total variance
• η ∈ [0, 1] is the phenotype heritability (narrow sens)
• Y|(β, η, σ2) ∼ N (Xβ, ησ2Φ+ (1− η)σ2I)

Multivariable Penalized Linear mixed effects models 27 / 44 .



Likelihood

• The negative log-likelihood is given by

−ℓ(Θ) ∝ n
2
log(σ2) +

1

2
log (det(V)) + 1

2σ2
(Y− Xβ)T V−1 (Y− Xβ)

where
V = ηΦ+ (1− η)I

• Assume the spectral decomposition of Φ

Φ = UDU⊤

• U is an n× n orthogonal matrix and D is an n× n diagonal matrix
• One can write

V = U(ηD+ (1− η)I)U⊤ = UWU⊤

with W = diag (wi)
n
i=1, wi = ηDii + (1− η)

Multivariable Penalized Linear mixed effects models 28 / 44
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Likelihood

• The negative log-likelihood is given by
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Likelihood

• Projection of Y (and columns of X) into Span(U) leads to a simplified
correlation structure for the transformed data: Ỹ = U⊤Y

• Ỹ|(β, η, σ2) ∼ N (X̃β, σ2W), with X̃ = U⊤X
• The negative log-likelihood can then be expressed as

−ℓ(Θ) ∝ n
2
log(σ2) +

1

2

n∑
i=1

log (wi) +
1

2σ2

(
Ỹ− X̃β

)T W−1 (Ỹ− X̃β
)

• For fixed σ2 and η, solving for β is a weighted least squares problem
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Penalized Maximum Likelihood Estimator

• Define the objective function:

Qλ(Θ) = −ℓ(Θ) + λ
∑
j

pj(βj)

• pj(·) is a penalty term on β1, . . . , βp
• An estimate of the model parameters Θ̂λ is obtained by

Θ̂λ = argmin
Θ

Qλ(Θ)
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Real data applications

1. UK Biobank
▶ 10,000 LD-pruned SNPs (Essentially un-correlated variables) to predict

standing height in 18k related individuals
▶ Standing height is highly polygenic (many variables associated with

response)

2. GAW20 Simulated dataset
▶ 50,000 SNPs (all on chromosome 1) to predict high-density lipoproteins

in 679 related individuals
▶ Not much correlation between causal SNP and others
▶ Very sparse signals (only 1 causal variant)

3. Mouse Crosses
▶ Find loci associated with mouse sensitivity to mycobacterial infection
▶ 189 samples, and 625 microsatellite markers
▶ Highly correlated variables
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Results: UK Biobank
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Neural network survival analysis

• DeepSurv – Cox neural networks.
▶ Cox regression extended using neural networks.
▶ Only uses proportional hazards (PH).

• DeepHit – First Hitting Time neural networks.
▶ Inverse Gaussian distribution used as baseline hazard.
▶ Does not let model determine baseline hazard.

• DeepSurvivalMachines (DSM) – Mixture model used for baseline
hazard.
▶ User specifies a set of distributions to be used as the baseline hazard.
▶ Does not permit time-varying interactions.

• Person-moment neural networks (PMNN)
▶ Provides a flexible baseline hazard.
▶ Permits time-varying interactions of covariates.
▶ Applicable to high-dimensional datasets
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Case-base sampling
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Case-base sampling
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Case-base sampling
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Case-base sampling and logistic regression

Bhatnagar et al. In revision at R Journal (2021+).
https://cran.r-project.org/package=casebase
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Overview of our method
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Results
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B-Spline Expansion

x <- truncnorm::rtruncnorm(1000, a = 0, b = 1)
B <- splines::bs(x, df = 5, degree=3, intercept = FALSE)
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sail A Note on the Second Tuning Parameter results
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Why the L1 norm ?

• For a fixed real number q ≥ 0 consider the criterion

β̃ = argmin
β


n∑

i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

|βj|q


• Why do we use the ℓ1 norm? Why not use the q = 2 (Ridge) or any ℓq
norm?

• q = 1 is the smallest value that yields a sparse solution and yields a
convex problem→ scalable to high-dimensional data

• For q < 1 the constrained region is nonconvex
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Linear Effects Simulation - Comparison
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Simulation Scenarios

1. Truth obeys strong hierarchy (right in our wheel house):

Y =
4∑

j=1

fj(Xj) + βE · XE + XE × (f3(X3) + f4(X4)) + ε

2. Truth obeys weak hierarchy
3. Truth only has interactions
4. Truth is linear
5. Truth only has main effects

• ntrain = ntuning = 200, ntest = 800, p = 1000, βE = 1, SNR = 2

• Xj ∼ truncnorm(0,1), j = 1, . . . , 1000, E ∼ truncnorm(-1,1)
• sail needs to estimate 1000× 5× 2 = 10k parameters
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Scenario 1: Main Effects for 500 Simulations
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Scenario 1: Estimated Interaction Effects for E · f(X3)
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Right in Our Wheel House Simulation Results

348

94

30
18

3 1 1 1
0

100

200

300

400

F
re

qu
en

cy

●
●
●
●
●
●
●

●
●
●
●
●

●

●
●
●
●
●
●

●
●
●
●
●

●

●
●
●
●
●

●
●
●
●

●

●
●
●

●

●
●
●

●

   X4:E
   X3:E
      E
     X4
     X3
     X2
     X1

   

0100200300400500
Selection Frequency

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

20

40

60

80

N
um

be
r 

A
ct

iv
e

Simulations 55 / 44 .



Strong Heredity
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Main Effects Only
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Sparsity

Theorem 1

Θ̂n = argmin
βE,θ,γ

L(Θ) + λ(1−α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

A1 = {j : θj ̸= 0, βj ̸= 0}
A2 = {k : γk ̸= 0} , A = A1 ∪ A2

Under certain regularity conditions and the existence of a local minimizer
Θ̂n that is

√
n-consistent

P
(
Θ̂Ac = 0

)
→ 1

Theorem 1 shows that when the tuning parameters for the nonzero
coefficients converge to 0 faster than n−1/2 sail can consistently remove
the noise terms with probability tending to 1.
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Asymptotic normality

Theorem 2

Θ̂n = argmin
βE,θ,γ

L(Θ) + λ(1−α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

Under certain regularity conditions, the component Θ̂A of the local
minimizer Θ̂n satisfies

√
n
(
Θ̂A −ΘA

)
→d N

(
0, I−1 (ΘA)

)
Theorem 2 shows that the sail estimates for nonzero coefficients in the
true model have the same asymptotic distribution as they would have if the
zero coefficients were known in advance.

Theorem 1 + 2 –> Oracle property (Fan and Li, 2001)
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Block Relaxation (De Leeuw, 1994)

Algorithm 1: Block Relaxation Algorithm

Set the iteration counter k← 0 and fix α ∈ (0, 1);
for each λ do

repeat

γ(k+1) ← argmin
γ

Qλ

(
γ, β

(k)
E ,θ(k)

)
θ(k+1) ← argmin

θ

Qλ

(
θ, β

(k)
E ,γ(k+1)

)
β
(k+1)
E ← argmin

βE
Qλ

(
θ(k+1), βE,γ

(k+1)
)

k← k+ 1
until convergence criterion is satisfied;

end
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sail: Weak Heredity

Reparametrization

τ j = γj(βE · 1mj + θj)

Model

Y = β0 · 1+

p∑
j=1

Ψjθj + βEXE +

p∑
j=1

γj(XE ◦Ψj)(βE · 1mj + θj) + ε

Objective Function

argmin
βE,θ,γ

L(Θ) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|
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Implementation

Objective Function

argmin
βE,θ,γ

L(Y;Θ) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

Lasso problem

argmin
γ

L(Y;Θ) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

1https://cran.r-project.org/package=sail
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sail R package: Solution Path results
f.basis <- function(x) splines::bs(x, degree = 5)
fit <- sail(x, y, e, basis = f.basis)
plot(fit)
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sail R package: Cross-validation results
sail::plot(cvfit)
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Strengths and Limitations

Strengths
• Non-linear environment interactions with strong heredity property in

p >> N
• sail allows for flexible modeling of input variables

Limitations
• sail can currently only handle E · f(X) or f(E) · X
• Does not allow for f(X1, E) or f(X1,X2)

• Memory footprint is an issue
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Hierarchical Penalty Structure

1Bach, Jenatton, Mairal and Obozinski (2011). Optimization with Sparsity-Inducing Penalties.
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Bi-level selection

• Bi-level selection:

f(X1) =



X11 ψ11(X11) ψ12(X12) · · · ψ11(X15)
...

... · · ·
...

...
... · · ·

...
Xi1 ψ11(Xi1) ψ12(Xi2) · · · ψ11(Xi5)

...
... · · ·

...
...

... · · ·
...

XN1 ψ11(XN1) ψ12(XN2) · · · ψ11(XN5)


N×5︸ ︷︷ ︸

Ψ1

×


βlinear

β11
β12
β13
β14
β15


6×1︸ ︷︷ ︸

θ1
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Block Relaxation (De Leeuw, 1994)

To solve for the optimization problem we use a block relaxation technique

Algorithm 2: Block Relaxation Algorithm

Set k← 0, initial values for the parameter vector Θ(0) and ϵ;
for λ ∈ {λmax, . . . , λmin} do

repeat

For j = 1, . . . , p, β(k+1)
j ← argmin

βj

Qλ

(
β
(k)
−j , η

(k), σ2 (k)
)

η(k+1) ← argmin
η

Qλ

(
β(k+1), η, σ2 (k)

)
σ2 (k+1) ← argmin

σ2

Qλ

(
β(k+1), η(k+1), σ2

)
k← k+ 1

until convergence criterion is satisfied: ||Θ(k+1) −Θ(k)||2 < ϵ;
end
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Coordinate Gradient Descent Method

• We take advantage of smoothness of ℓ(Θ)

• We approximate Qλ(Θ) by a strictly convex quadratic function (using
gradient)

• We use CGD to calculate a descent direction
• To achieve the descent property for the objective function, we employ

further line search

Theorem [Convergence] 1:
If {Θ(k), k = 0, 1, 2, . . .} is a sequence of iterates generated by the iteration
map of Algorithm 1, then each cluster point (i.e. limit point) of
{Θ(k), k = 0, 1, 2, . . .} is a stationary point of Qλ(Θ)

1Tseng P& Yun S. Math. Program., Ser. B, (2009)
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Choice of the tuning parameter

• We use the BIC:

BICλ = −2ℓ(β̂, σ̂2, η̂) + c · d̂fλ

• d̂fλ is the number of non-zero elements in β̂λ plus two 1

• Several authors 2 have used this criterion for variable selection in
mixed models with c = log n

• Other authors 3 have proposed c = log(log(n)) ∗ log(n)

1Zou et al. The Annals of Statistics, (2007)
2Bondell et al. Biometrics (2010)
3Wang et al. JRSS(Ser. B), (2009)
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Effect of the Euclidean projection onto the ℓ1-ball

1Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.
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Effect of the Euclidean projection onto the ℓ2-ball

1Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.
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Representation in three dimensions of the ℓ1- and ℓ2-balls

1Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.
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Dynamic Treatment Regimes (DTRs)
Notation

X A Y

Pre-treatment
covariates

Treatment
received

Outcome

Age 'Healthiness
metric'

Drug A or
Drug B?

Goal: find treatment Aopt maximizing E [Y |x ].

E[Y | X,A;ψ,β] = Xβ︸︷︷︸
Impact of patient history

in the absence of treatment

+ ψ0A+ψAX︸ ︷︷ ︸
Impact of treatment

on outcome
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Extension of sail to DTRs

1In press at Biometrics. https://arxiv.org/abs/2101.07359
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