
Sparse Additive Interaction Learning

Sahir Bhatnagar

Department of Epidemiology, Biostatistics and Occupational Health
Department of Diagnostic Radiology

November 16, 2021
https://sahirbhatnagar.com/sail

https://sahirbhatnagar.com

1 / 43 .

https://sahirbhatnagar.com/sail
https://sahirbhatnagar.com


Outline

Introduction

Motivating Example: The Nurse Family Partnership

sail: Strong Additive Interaction Learning

Algorithm

sail R package

Theory

Real Data Application

Discussion
Current and Future Work

Acknowledgements

2 / 43 .



Introduction

Motivating Example: The Nurse Family Partnership

sail: Strong Additive Interaction Learning

Algorithm

sail R package

Theory

Real Data Application

Discussion
Current and Future Work

Acknowledgements

Introduction 3 / 43 .



High Dimensional (HD) Data Analysis
Classical
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McGill Summer School in Health Data Analytics. https://sahirbhatnagar.com/assets/pdf/mcgillHDA_2021.pdf
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New challenges arise from how such data is used

A
y x1
0.0 0
2.1 1
2.7 0
5.9 3
7.3 3
0.0 0
2.0 1

B
y x1 x2 x3 x4 x5 x6 x7 x8
0 0 2 0 0 1 0 1 0
2.1 1 0 2 3 2 0 0 3
2.7 0 0 0 2 2 1 1 1
5.9 3 0 1 0 0 0 2 0
7.3 3 4 0 1 1 1 0 0
0.0 0 2 0 0 3 0 0 0
2.0 1 0 2 1 0 0 0 1

Estimated model R2
adj

y = 0.66 + 1.92x1 0.83
y = 0.22 + 1.78x1 + 0x2 + 0x3 + 0x4 + 0x5 + 2.11x6 + 0x7 + 0x8 0.98
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Overarching reaserch focus: including prior information

β̂ ∈ argmin
β∈Rp

{ DataFitting [X, y, β] + λ Prior [β]}

Examples:

min
β∈Rp
∥y− Xβ∥22 + λ∥β∥0 (Best subset selection)

min
β∈Rp
∥y− Xβ∥22 + λ∥β∥1 (Lasso regression)

min
β∈Rp
∥y− Xβ∥22 + λ∥β∥22 (Ridge regession)
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Effect of the Euclidean projection onto the ℓ1-ball

1Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.
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Effect of the Euclidean projection onto the ℓ2-ball

1Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.
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Representation in three dimensions of the ℓ1- and ℓ2-balls

1Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.
Introduction 9 / 43 .



High-dimensional
data:

• Genomics
• Radiomics
• Neuroimaging

Imaging
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competing

risks

Person-
moment
neural

networks
Stat Med
(2021+)
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R Journal
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Interaction
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Nurse-Family Partnership is an evidence-based, community health 
program with over 40 years of evidence showing significant 

improvements in the health and lives of first-time moms and their 
children living in poverty.  





Interactions between Intervention and Genetics

Environment
NFP InterventionLarge Data

Genetic Markers
Phenotype
IQ Score

∼ ×
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Let ZjE = XEXj
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Non-linear Interactions
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Strong Heredity Interactions: Current State of the Art

Type Model Software

Linear CAP (Zhao et al. 2009, Ann. Stat) 7
SHIM (Choi et al. 2009, JASA) 7
hiernet (Bien et al. 2013, Ann. Stat) hierNet(x, y)
GRESH (She and Jiang 2014, JASA) 7
FAMILY (Haris et al. 2014, JCGS) FAMILY(x, z, y)
glinternet (Lim and Hastie 2015, JCGS) glinternet(x, y)
RAMP (Hao et al. 2016, JASA) RAMP(x, y)
LassoBacktracking (Shah 2018, JMLR) LassoBT(x, y)

Non-
linear

VANISH (Radchenko and James 2010, JASA) 7

sail (Bhatnagar et al. 2020+, in revision CSDA) sail(x, e, y, basis)

sail: Strong Additive Interaction Learning 15 / 43 .



Our Extension to Nonlinear Effects
Consider the basis expansion

fj(Xj) =

mj∑
ℓ=1

ψjℓ(Xj)βjℓ

f(X1) =



ψ11(X11) ψ12(X12) · · · ψ11(X15)
...

... · · ·
...

...
... · · ·

...
ψ11(Xi1) ψ12(Xi2) · · · ψ11(Xi5)

...
... · · ·

...
...

... · · ·
...

ψ11(XN1) ψ12(XN2) · · · ψ11(XN5)


N×5︸ ︷︷ ︸

Ψ1

×


β11
β12
β13
β14
β15


5×1︸ ︷︷ ︸

θ1

sail: Strong Additive Interaction Learning 16 / 43 .



B-Spline Expansion

x <- truncnorm::rtruncnorm(1000, a = 0, b = 1)
B <- splines::bs(x, df = 5, degree=3, intercept = FALSE)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

df=5, degree=3, inner.knots at c(33.33%, 66.66%) percentile

x

bs
(x

)
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sail: Additive Interactions

• θj = (βj1, . . . , βjmj) ∈ Rmj

• τ j = (τj1, . . . , τjmj) ∈ Rmj

• Ψj → n×mj matrix of evaluations of the ψjℓ

• In our implementation, we use cubic bsplines with 5 degrees of
freedom

Model

Y = β0 · 1+

p∑
j=1

Ψjθj + βEXE +

p∑
j=1

(XE ◦Ψj)τ j + ε

sail: Strong Additive Interaction Learning 18 / 43 .



sail: Strong Heredity

Reparametrization1

τ j = γjβEθj

Model

Y = β0 · 1+

p∑
j=1

Ψjθj + βEXE +

p∑
j=1

γjβE(XE ◦Ψj)θj + ε

Objective Function

argmin
Θ:=(βE,θ,γ)

L(Θ) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

1Choi et al. JASA (2010)
sail: Strong Additive Interaction Learning 19 / 43 .



sail: Weak Heredity

Reparametrization

τ j = γj(βE · 1mj + θj)

Model

Y = β0 · 1+

p∑
j=1

Ψjθj + βEXE +

p∑
j=1

γj(XE ◦Ψj)(βE · 1mj + θj) + ε

Objective Function

argmin
βE,θ,γ

L(Θ) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

sail: Strong Additive Interaction Learning 20 / 43 .
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Block Relaxation (De Leeuw, 1994)

Algorithm 1: Block Relaxation Algorithm

Set the iteration counter k← 0 and fix α ∈ (0, 1);
for each λ do

repeat

γ(k+1) ← argmin
γ

Qλ

(
γ, β

(k)
E ,θ(k)

)
θ(k+1) ← argmin

θ

Qλ

(
θ, β

(k)
E ,γ(k+1)

)
β
(k+1)
E ← argmin

βE
Qλ

(
θ(k+1), βE,γ

(k+1)
)

k← k+ 1
until convergence criterion is satisfied;

end

Algorithm 22 / 43 .



Implementation

Objective Function

argmin
βE,θ,γ

L(Y;Θ) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

Lasso problem

argmin
γ

L(Y;Θ) + λ(1− α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

1https://cran.r-project.org/package=sail
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sail R package: Solution Path results
f.basis <- function(x) splines::bs(x, degree = 5)
fit <- sail(x, y, e, basis = f.basis)
plot(fit)
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sail R package: Cross-validation results
sail::plot(cvfit)
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Sparsity

Theorem 1

Θ̂n = argmin
βE,θ,γ

L(Θ) + λ(1−α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

A1 = {j : θj ̸= 0, βj ̸= 0}
A2 = {k : γk ̸= 0} , A = A1 ∪ A2

Under certain regularity conditions and the existence of a local minimizer
Θ̂n that is

√
n-consistent

P
(
Θ̂Ac = 0

)
→ 1

Theorem 1 shows that when the tuning parameters for the nonzero
coefficients converge to 0 faster than n−1/2 sail can consistently remove
the noise terms with probability tending to 1.
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Asymptotic normality

Theorem 2

Θ̂n = argmin
βE,θ,γ

L(Θ) + λ(1−α)

(
wE|βE|+

p∑
j=1

wj∥θj∥2

)
+ λα

p∑
j=1

wjE|γj|

Under certain regularity conditions, the component Θ̂A of the local
minimizer Θ̂n satisfies

√
n
(
Θ̂A −ΘA

)
→d N

(
0, I−1 (ΘA)

)
Theorem 2 shows that the sail estimates for nonzero coefficients in the
true model have the same asymptotic distribution as they would have if the
zero coefficients were known in advance.

Theorem 1 + 2 –> Oracle property (Fan and Li, 2001)
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Nurse Family Partnership Program

• The Stanford Binet IQ scores at 4 years of age were collected for 189
subjects born to women randomly assigned to control (n = 100) or
nurse-visited intervention groups (n = 89).

• For each subject, we calculated a polygenic risk score (PRS) for
educational attainment at different p-value thresholds using weights
from a previous GWAS.

• In this context, individuals with a higher PRS have a propensity for
higher educational attainment.

• The goal of this analysis was to determine if there was an interaction
between genetic predisposition to educational attainment (X) and
maternal participation in the NFP program (E) on child IQ at 4 years of
age (Y).

Real Data Application 32 / 43
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Application of sail to NFP data
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Fig.: The selected model, chosen via 10-fold cross-validation, contained three
variables: the main effects for the intervention and the PRS for educational
attainment using genetic variants significant at the 0.0001 level, as well as their
interaction.
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Strengths and Limitations

Strengths
• Non-linear environment interactions with strong heredity property in

p >> N
• sail allows for flexible modeling of input variables

Limitations
• sail can currently only handle E · f(X) or f(E) · X
• Does not allow for f(X1, E) or f(X1,X2)

• Memory footprint is an issue
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Dynamic Treatment Regimes (DTRs)
Notation

X A Y

Pre-treatment
covariates

Treatment
received

Outcome

Age 'Healthiness
metric'

Drug A or
Drug B?

Goal: find treatment Aopt maximizing E [Y |x ].

E[Y | X,A;ψ,β] = Xβ︸︷︷︸
Impact of patient history

in the absence of treatment

+ ψ0A+ψAX︸ ︷︷ ︸
Impact of treatment

on outcome

Discussion 36 / 43
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Extension of sail to DTRs

1In revision at Biometrics. https://arxiv.org/abs/2101.07359
Discussion 37 / 43 .
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Hierarchical Penalty Structure

1Bach, Jenatton, Mairal and Obozinski (2011). Optimization with Sparsity-Inducing Penalties.
Discussion 38 / 43 .



Bi-level selection

• Bi-level selection:

f(X1) =



X11 ψ11(X11) ψ12(X12) · · · ψ11(X15)
...

... · · ·
...

...
... · · ·

...
Xi1 ψ11(Xi1) ψ12(Xi2) · · · ψ11(Xi5)

...
... · · ·

...
...

... · · ·
...

XN1 ψ11(XN1) ψ12(XN2) · · · ψ11(XN5)


N×5︸ ︷︷ ︸

Ψ1

×


βlinear

β11
β12
β13
β14
β15


6×1︸ ︷︷ ︸

θ1
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B-Spline Expansion

x <- truncnorm::rtruncnorm(1000, a = 0, b = 1)
B <- splines::bs(x, df = 5, degree=3, intercept = FALSE)
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sail A Note on the Second Tuning Parameter results
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Why the L1 norm ?

• For a fixed real number q ≥ 0 consider the criterion

β̃ = argmin
β


n∑

i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

|βj|q


• Why do we use the ℓ1 norm? Why not use the q = 2 (Ridge) or any ℓq
norm?

• q = 1 is the smallest value that yields a sparse solution and yields a
convex problem→ scalable to high-dimensional data

• For q < 1 the constrained region is nonconvex
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Linear Effects Simulation - Comparison
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Backup Slides

Simulations
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Simulation Scenarios

1. Truth obeys strong hierarchy (right in our wheel house):

Y =
4∑

j=1

fj(Xj) + βE · XE + XE × (f3(X3) + f4(X4)) + ε

2. Truth obeys weak hierarchy
3. Truth only has interactions
4. Truth is linear
5. Truth only has main effects

• ntrain = ntuning = 200, ntest = 800, p = 1000, βE = 1, SNR = 2

• Xj ∼ truncnorm(0,1), j = 1, . . . , 1000, E ∼ truncnorm(-1,1)
• sail needs to estimate 1000× 5× 2 = 10k parameters
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Scenario 1: Main Effects for 500 Simulations
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Scenario 1: Estimated Interaction Effects for E · f(X3)
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Scenario 1: Estimated Interaction Effects for E · f(X4)
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Right in Our Wheel House Simulation Results
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Strong Heredity

Simulations 55 / 43 .



Main Effects Only
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