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High Dimensional (HD) Data Analysis

Classical
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McGill Summer School in Health Data Analytics. https://sahirbhatnagar.com/assets/pdf/mcgillHDA_2021.pdf
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New challenges arise from how such data is used

Introduction
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Overarching reaserch focus: including prior information

3 € arg min{ DataFitting [X, y, 8] + A Prior [3]}
BeR?
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Overarching reaserch focus: including prior information

3 € arg min{ DataFitting [X, y, 8] + A Prior [3]}
BeR?
Examples:
ﬁr{réiﬂg’ lly — X815 + MBllo (Best subset selection)
5%@ vy — XBlI3 + Ml (Lasso regression)

. _x 2 2 Rid .
ﬁrrélelly Bllz + MlBllz  (Ridge regession)
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Effect of the Euclidean projection onto the ¢;-ball

af?]

#1-ball o]

ey < pe

Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.
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Representation in three dimensions of the ¢;- and ¢5-balls

(a) £2-ball in 3D (b) £1-ball in 3D

Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.
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High-dimensional
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Famll Nurse-Family Partnership is an evi b d, ity health
urse_ y program with over 40 years of evidence showing significant
P ners p improvements in the health and lives of first-time moms and their

children living in poverty.
Helping First-Time Parents Succeed e

Human Brain Development
Synapse formation dependent on early experiences

Nurse-Family Partnership intervention lasts 30 months = Sensory Pathways
(vision, hearing)

Language

-—
Higher Cognitive
Function

AGE S -8 7 -6 5 -4 -3 -2 # 12 3 4 5 6 7 8 9 10 1 12345 10
V (MONTHS) * (YEARS)

Source: Nelson, C.A., In Neurons to Neighborhoods (2000).



ALL CAUSE MORTALITY OVER 20 YEAR FOLLOW-UP

Mothers who did not receive nurse home visits

were nearly 3 times more likely to die from

x all causes of death than nurse visited mothers
(3.7% versus 1.3%)'

Mothers that did not receive nurse home visits

were 8 times more likely to die from external
causes — including unintentional injuries,
suicide, drug overdose and homicide — than

nurse visited mothers (1.7% versus 0.2%)'

PREVENTABLE CHILD MORTALITY OVER 20 YEAR FOLLOW-UP

«  Among Nurse-Family Partnership participants, there were
lower rates of preventable child mortality from birth

‘ until age 20"

«  1.6% of the children not receiving nurse home visits died
from preventable causes — including sudden infant death
syndrome, unintentional injuries and homicide — while none
of the nurse visited children died from these causes.’

Additional Maternal and Child Health Outcomes
Maternal Health Outcomes

35% fewer cases of pregnancy-induced hypertension®

18% fewer preterm births®

79% reduction in preterm delivery among women who smoke cigarettes

31% reduction in very closely spaced (<6 months) subsequent pregnancies®

Child Health Outcomes
48% reduction in child abuse and neglect®

39% fewer health care encounters for injuries or ingestions in the first 2 years of
life among children born to mothers with low psychological resources

67 % less behavioral and intellectual problems in children at age 6%

56% fewer emergency room visits for accidents and poisonings through age 2



Interactions between Intervention and Genetics

Fifth Edition (SB5)

1Q Range ("deviation 1Q") 1Q Classification

145-160 Very gifted or highly advanced
130-144 Gifted or very advanced
120-129 Superior

110-119 High average ~
30-109 Average

80-89 Low average

70-79 Borderline impaired or delayed

55-69 Midly impaired or delayed

40-54 Moderately impaired or delayed

Phenotype Large Data NFP Intervention

Environment }
IQ Score Genetic Markers
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Non-linear Interactions

Q- ° Controls
e NFP Intervention

35
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Genetic Susceptibility
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Strong Heredity Interactions: Current State of the Art

Type Model Software

Linear CAP (Zhao et al. 2009, Ann. Stat) X
SHIM (Choi et al. 2009, JASA) X
hiernet (Bien et al. 2013, Ann. Stat) hierNet(x, y)
GRESH (She and Jiang 2014, JASA) X
FAMILY (Haris et al. 2014, JCGS) FAMILY(x, z, y)
glinternet (Lim and Hastie 2015, JCGS) glinternet(x, y)
RAMP (Hao et al. 2016, JASA) RAMP (x, y)
LassoBacktracking (Shah 2018, JMLR) LassoBT(x, y)

Non-

. VANISH (Radchenko and James 2010, JASA) X
linear —

sail (Bhatnagar et al. 2020+, in revision CSDA)

sail(x, e, y, basis)

sail: Strong Additive Interaction Learning
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Our Extension to Nonlinear Effects

Consider the basis expansion

Z bie (X)) Bye

[11(X11)  Y12(Xa2) - Y11(Xas)]
. . . A
. : . : /812
fX) = 1/J11( Xn) 12(Xe) - Yu(Xs) X Bis
: : : P14
/815 5x1
_1/111(xm) 'l/)12(.XN2) 1/111(.)(1\15)_ Nx5 "

¥,

Strong Additive Interaction Learning
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B-Spline Expansion

X <- truncnorm::rtruncnorm(1000, a = 0, b = 1)
B <- splines::bs(x, df = 5, degree=3, intercept = FALSE)

df=5, degree=3, inner.knots at ¢(33.33%, 66.66%) percentile

- | |

o _| | |
IS

| |

bs(x)
0.4

0.0

sail: Strong Additive Interaction Learning 17/43 .



sail: Additive Interactions

o 0j = (51'1, PN 7Bjmj) S ij
® 7= (T, Tjm) € R™
® U, — n x m; matrix of evaluations of the 1;

® In our implementation, we use cubic bsplines with 5 degrees of
freedom

Model

» »
Y=00-1+) U0+ BeXe+ > (Xeo ¥+

=1 =1
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sail: Strong Heredity

Reparametrization!

T = Be0;

Model

p P
Y= ﬂo 1+ Z \Il,-Bj + ,BEXE + Z’YjﬁE(XE e} \Il,-)Bj + €

=1 j=1

Objective Function

P i
argmin  £(©) + A(1 - «) <WE|ﬂEI +y w,-||0,-||2> +Aa) welyl

©:=(Bg,0,7) j=1 j=1

1Choi et al. JASA (2010)

sail: Strong Additive Interaction Learning 19743 .



sail: Weak Heredity

Reparametrization

7= %(Be - 1m; + )

Model

p »
Y=80-1+> b+ BXe+ »_ 7i(Xs0 ¥))(Be- 1n + ) + ¢

=1 j=1

Objective Function

)4 )4
argmin  £(©) + A(1 — ) (WE|5E| +>° Wj||9j||2> +Aa > welvyl

BE,0,Y j=1 =1

sail: Strong Additive Interaction Learning
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Block Relaxation (De Leeuw, 1994)

Algorithm 1: Block Relaxation Algorithm

Set the iteration counter k <— 0 and fix a € (0, 1);
for each ) do
repeat

'Y(k—H) + argmin Q) (’7»6;(9107 9("))
il

o+l argmin Q) (e,ﬁék)ﬁ’(kﬂ))
0

B argmin - 0y (807, B, y(1))
Be

k< k+1
until convergence criterion is satisfied;

end

22/43.



Implementation

Objective Function

» P
argmin - L(Y;0) + A(1 — «) (WE|/3E| +>° Wj||‘9j||2) + Ay Wiyl

BE.6,v j=1 j=1

Uhttps://cran.r-project.org/package=sail
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Implementation

Objective Function

BE.6,v

» P
argmin - L(Y;0) + A(1 — «) (WE|5E| +>° w,||9,-||2) + Ay Wiyl

=1 =1

Lasso problem

»
wie ||

argmin L(Y;0) + + A
¥

Uhttps://cran.r-project.org/package=sail

Algorithm
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Implementation

Objective Function

» P
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Implementation

Objective Function

BE.6,v j=1 j=1

» P
argmin - L(Y;0) + A(1 — «) (WE|5E| +>° w,||9,-||2) + Ay Wiyl

Group Lasso problem

»
argmin  L(Y;©) + \(1 — «) (WE|5E| + Z Wj||9j||2) +

BE,0 =1

Uhttps://cran.r-project.org/package=sail

Algorithm

24/43 .



sail R package
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sail R package: Solution Path results

f.basis <- function(x) splines::bs(x, degree = 5)
fit <- sail(x, y, e, basis = f.basis)

plot(fit)
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sail R package: Cross-validation results

sail::plot(cvfit)
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Sparsity

vvvvvv

Theorem 1

R P P

S = e L(©®)+A(1-a) (MsIﬂEI +> wj||9j||2> + Ay wiely
E,0,Y j=1 j=1

Ay ={j:6;#0,8 # 0}

Agz{kt’yk;ﬁO}, A=A, UA,
Under certain regularity conditions and the existence of a local minimizer
®, that is y/n-consistent
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Sparsity

Theorem 1

R p P

©, = argmin L(O)+ A(1—a) <wElﬁg| +) wj||9j2> + ) wielyl
ﬁEvoa'\f j=1 j=1

Ay ={j:6;#0,8 # 0}

Agz{kt’yk#O}, A=A, UA,
Under certain regularity conditions and the existence of a local minimizer
®, that is y/n-consistent

P((:)Ac:O) 1

Theorem 1 shows that when the tuning parameters for the nonzero
coefficients converge to 0 faster than n~!/2 sail can consistently remove
the noise terms with probability tending to 1.

29/43.



Asymptotic normality

vvvvv

Theorem 2

R P p

®, =argmin L(O)+ A(1—«) <WE|,6’E| + Z wj||912> + )\az wie |yl
BEaea'Y j=1 j=1

Under certain regularity conditions, the component © 4 of the local
minimizer ®,, satisfies

Vi (84-04) 2aN (017 (0.)

Theorem 2 shows that the sail estimates for nonzero coefficients in the
true model have the same asymptotic distribution as they would have if the
zero coeflicients were known in advance.

30/43



Asymptotic normality

Theorem 2

R P p

®, =argmin L(O)+ A(1—«) <WE|,6’E| + Z wj||9j2> + )\az wie |yl
BEaea'Y j=1 j=1

Under certain regularity conditions, the component © 4 of the local
minimizer ®,, satisfies

Vi (84-04) 2aN (017 (0.)

Theorem 2 shows that the sail estimates for nonzero coefficients in the
true model have the same asymptotic distribution as they would have if the
zero coefficients were known in advance.

Theorem 1 + 2 —> Oracle property (Fan and Li, 2001)

30/43 .



Real Data Application

Real Data Application
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Nurse Family Partnership Program

® The Stanford Binet IQ scores at 4 years of age were collected for 189
subjects born to women randomly assigned to control (n = 100) or
nurse-visited intervention groups (n = 89).

Real Data Application 32/43
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Nurse Family Partnership Program

Real Data

The Stanford Binet IQ scores at 4 years of age were collected for 189
subjects born to women randomly assigned to control (n = 100) or
nurse-visited intervention groups (n = 89).

For each subject, we calculated a polygenic risk score (PRS) for
educational attainment at different p-value thresholds using weights
from a previous GWAS.

In this context, individuals with a higher PRS have a propensity for
higher educational attainment.
The goal of this analysis was to determine if there was an interaction

between genetic predisposition to educational attainment (X) and
maternal participation in the NFP program (E) on child IQ at 4 years of

age (V).

\pplication

32/43.



Application of sail to NFP data

Marginal Risk

— Intervention
Control

T T
-0.001 —0.0005 0 0.0005 0.001

Polygenic risk score at 0.0001 level of significance

Fig.: The selected model, chosen via 10-fold cross-validation, contained three
variables: the main effects for the intervention and the PRS for educational
attainment using genetic variants significant at the 0.0001 level, as well as their
interaction.

Real Data Application

33/43.
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Strengths and Limitations

Strengths

® Non-linear environment interactions with strong heredity property in
p>>N

® sail allows for flexible modeling of input variables
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Strengths and Limitations

Strengths

® Non-linear environment interactions with strong heredity property in
p>>N

® sail allows for flexible modeling of input variables

Limitations
® sail can currently only handle E - fiX) or (E) - X
® Does not allow for f{X3, E) or (X1, X2)

® Memory footprint is an issue

35/43 .



Dynamic Treatment Regimes (DTRs)

X —»>»> A > Y
Pre-treatment Treatment
covariates P eceiveq — P Outcome

—>» Drug A or > 'Healthiness
hoe Drug B? metric'
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Dynamic Treatment Regimes (DTRs)

X > A > Y
A

Pre-treatment Treatment
. —>» . —>» tcom
covariates received Outcome

Drug A or ! i
Age » g > Healthiness

Drug B? metric'
E[Y[X, 4;4,0] = X0 + oA+ PAX
~—~ —_——
Impact of patient history Impact of treatment

in the absence of treatment on outcome

Discussion

36/43 .



Extension of sail to DTRs

@y Cornell University

arXiv.org > stat > arxiv:2101.07359

Statistics > Methodology

(Submitted on 18 Jan 2021]

Variable Selection in Regression-based Estimation of Dynamic Treatment Regimes
Zeyu Bian, Erica EM Moodie, Susan M Shortreed, Sahir Bhatnagar

Dynamic treatment regimes (DTRs) consist of a sequence of decision rules, one per stage of intervention, that finds effective treatments for individual pat
between treatment and a small number of covariates which are often chosen a priori. However, with increasingly large and complex data being collected,
driven approach of selecting these covariates might improve the estimated decision rules and simplify models to make them easier to interpret. We propa
method has the strong heredity property, that is, an interaction term can be included in the model only if the corresponding main terms have also been se
property, and the newly proposed methods compare favorably with other variable selection approaches

Subjects: Methodology (stat.ME): Computation (stat. CO)
Cite as:  arXiv:2101.07359 [stat.ME]
(or aniv:2101.07359v1 [stat.ME] for this version)

UIn revision at Biometrics. https://arxiv.org/abs/2101.07359

37/43.
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Hierarchical Penalty Structure
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Bach, Jenatton, Mairal and Obozinski (2011). Optimization with Sparsity-Inducing Penalties.

38/43.
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Bi-level selection

® Bi-level selection:

(X1 Y11(Xi1)  Y12(Xiz)

fX)=|Xa 9Yu ('Xil) letXi2)

[ Xn 11 (Xn1)  Y12(Xae)

¥11(X15)]

P11 ('Xi5)

P11 (Xns) ]

Nx5

A 21

/Blinear
ﬂll
/812
513
514

Bis | g1

—_——
01
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B-Spline Expansion

X <- truncnorm::rtruncnorm(1000, a = 0, b = 1)
B <- splines::bs(x, df = 5, degree=3, intercept = FALSE)

df=5, degree=3, inner.knots at ¢(33.33%, 66.66%) percentile

bs(x)
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sail A Note on the Second Tuning Parameter results

Mean-Squared Error

Mean-Squared Error

32 28 25 23 20 19 17 11 9 8 6 5 4 2 2 1 1

40 39 37 29 26 22 17 13 10 9 7 7 52 2 1 1

0
8
g
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log(Lambda)
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Why the L1 norm ?

® For a fixed real number g > 0 consider the criterion

n

) 2 )
ﬁ:arggnin Z (yi—ﬁo —in]ﬂ]) +)\Z|Bj|q
=1 =1

i=1

® Why do we use the £; norm? Why not use the g = 2 (Ridge) or any ¢,

norm?
g=4 g=05 ¢=01

DO+

® g =1 is the smallest value that yields a sparse solution and yields a
convex problem — scalable to high-dimensional data

® For g < 1 the constrained region is nonconvex

47/43 .



Linear Effects Simulation - Comparison

3 .
L]
0.9 .
o
I L]
= =
: 5
:12: 0.6 52
= °
o
a o |
s S
S 0.3 g
£
£ .
=
1
0.0 s
L]
0.000 0.025 0.050 0.075 0.100 .
False Positive Rate

) . lasso sail GLinternet lassoBT
Method © lasso ¢ sail ® GLinternet @ lassoBT
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Simulation Scenarios

1. Truth obeys strong hierarchy (right in our wheel house):

Y= fi(X)+ B Xe+ Xe x (fi(Xs) + f(Xa)) + &

=1
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Simulation Scenarios
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Simulation Scenarios
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Simulation Scenarios
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Truth obeys strong hierarchy (right in our wheel house):

Y= £(X)+Be Xe+ Xe x ((Xs) + fa(Xa)) + ¢
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Truth obeys weak hierarchy
Truth only has interactions
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Simulation Scenarios

1. Truth obeys strong hierarchy (right in our wheel house):

Y= £(X)+Be Xe+ Xe x ((Xs) + fa(Xa)) + ¢

=1

. Truth obeys weak hierarchy
. Truth only has interactions
. Truth is linear

. Truth only has main effects

gl o W

® Nyrain = Ntuning = 200, Niest = 800; pP= 1000, ﬂE = 1, SNR =2
® X; ~ truncnorm(0,1),j=1,...,1000, E ~ truncnorm(-1,1)

® sail needs to estimate 1000 x 5 x 2 = 10k parameters

Simulation:
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Scenario 1: Main Effects for 500 Simulations

f(xq) =5x;

2
X1
_ 4sin(2mx)
09 =3 g
£

Simulations

f(x)

f(xa)

-4 -2 0 2 4 6 8

f(xo) = 4.5(2%, - 1)?

f(x4) = 6(0.1sin(24) + 0.2c0S(2x4) + 0.3siN(Xs) 2+
0.4c0s(2x4)%+ 0.5sin(2xs)%)
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Scenario 1: Estimated Interaction Effects for E - f{X3)

Truth Estimated: 25th Percentile
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Scenario 1: Estimated Interaction Effects for E - f{X})

Truth Estimated: 25th Percentile
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Right in Our Wheel House Simulation Results
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Strong Heredity

1a) Strong Heredity
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Main Effects Only

3) Main Effects Only

L ] L ]
25 | : | | . .
L ] L ]
[ ] | ] | | i
D s Y s ) s [ s
| T | .
L ] L] L L]
’ % ! +
10 \ N \
550 S A SR L C R\ RS S P ey
W e e e e T o AR

a@e&

Simulations 56/43 .



	Introduction
	Motivating Example: The Nurse Family Partnership
	: Strong Additive Interaction Learning
	Algorithm
	sail R package
	Theory
	Real Data Application
	Discussion
	Current and Future Work

	Acknowledgements
	Appendix
	Simulations


