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Abstract
Dynamic treatment regimes (DTRs) consist of a sequence of decision rules,
one per stage of intervention, that aim to recommend effective treatments for
individual patients according to patient information history. DTRs can be esti-
mated from models which include interactions between treatment and a (typ-
ically small) number of covariates which are often chosen a priori. However,
with increasingly large and complex data being collected, it can be difficult to
know which prognostic factors might be relevant in the treatment rule. There-
fore, a more data-driven approach to select these covariates might improve the
estimated decision rules and simplify models to make them easier to interpret.
We propose a variable selection method for DTR estimation using penalized
dynamic weighted least squares. Our method has the strong heredity property,
that is, an interaction termcan be included in themodel only if the corresponding
main terms have also been selected. We show our method has both the double
robustness property and the oracle property theoretically; and the newly pro-
posed method compares favorably with other variable selection approaches in
numerical studies. We further illustrate the proposed method on data from the
Sequenced Treatment Alternatives to Relieve Depression study.
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1 INTRODUCTION

Dynamic treatment regimes (DTRs) (Chakraborty and
Moodie, 2013), or adaptive treatment strategies, consist of
a sequence of decision rules that aim to improve individ-
ual patients’ health outcomes by tailoring medical treat-
ment to each patient’s information. Statisticalmethods can
be used to identify optimal DTRs, constructing treatment
rules tailored over time to individual’s information that can
optimize the expected patient outcome.
DTRs can be estimated from models that include inter-

actions between treatment and covariates, which are often

chosen a priori. However, with many covariates and a
complex disease process, for which competing treatment
choices have heterogeneous effects, it is difficult to know
which prognostic factors might be considered relevant in
the treatment rule. A more data-driven approach of select-
ing these covariates might improve the estimated deci-
sion rules and simplify models to improve tractability. We
are motivated by the Sequenced Treatment Alternatives to
Relieve Depression (STAR*D) study (Fava et al., 2003), a
randomized multistage trial that aimed to determine opti-
mal treatments for patientswithmajor depressive disorder.
With many of covariates such as demographic and clinical
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characteristics collected throughout the study, it is chal-
lenging to select covariates useful for tailoring treatment
from among so many based on expert knowledge only.
Thus, variable selection with the objective of optimizing
individualized treatment decisions becomes important.
Much of the DTR literature focuses on estimation; vari-

able selection with the objective of optimizing treatment
decisions has been considered only occasionally. Gunter
et al. (2011) proposed a ranking method for variable selec-
tion in DTRs. Based on this approach, Fan et al. (2016)
developed the sequential advantage selection approach,
which considers variables already in the model when
deciding whether to include a new variable by the addi-
tional improvement provided by this variable. Lu et al.
(2013) adopted adaptive LASSO (Zou, 2006) in the context
of A-learning (Murphy, 2003), Shi et al. (2018) proposed a
method which used the Dantzig selector directly to penal-
ize the estimating equations of A-learning and has the dou-
ble robust property, that is, the estimators are consistent
if either one of two nuisance models is correct. The topic
of variable selection in a general (not DTR) context has
seen many innovations (e.g., Tibshirani, 1996; Fan and Li,
2001). Gunter et al. (2011) noted that most variable selec-
tion approaches focus on predictive performance, and thus
may not perform well in DTRs as these techniques may
underestimate the importance of variables that have small
predictive ability but that play a significant role in deci-
sion making.
In this article, we follow theDTR estimation approach of

dynamic ordinary least squares regression (dWOLS) intro-
duced by Wallace and Moodie (2015), an approach which
requires only some minor precomputation and the imple-
mentation of standard weighted regression. While hav-
ing similarities to both Q-learning (Watkins, 1989) and G-
estimation (Robins, 2004), it provides simplicity and intu-
itiveness similar to the former and benefits from the dou-
ble robustness of the latter although it is suitable only for
linear decision rules. By adding two penalty terms in the
dWOLS model, we perform estimation and variable selec-
tion for DTRs simultaneously. The rest of this article is
organized as follows. In Section 2, we introduce the pro-
posed penalized dWOLS (pdWOLS) approach, followed by
algorithmic details and theoretical properties. Three simu-
lation studies are given in Section 3. Finally, we apply our
method to the STAR*D trial data in Section 4.

2 METHODOLOGY

2.1 Introductory concepts and notation

We make assumptions to proceed with estimation
of DTRs: (1) Stable unit treatment value assumption

(SUTVA) (Rubin, 1980): A patient’s potential outcome is
not affected by other patients’ treatment assignments.
(2) Ignorability: Ignorability or no unmeasured con-
founding (Robins, 1997) specifies that for any possible
treatment regimes, the stage 𝑘 treatment is indepen-
dent of future potential covariates or outcome condi-
tional on current patient history. (3) No interference,
no measurement error, and all the individuals have
complete follow-up.
We adopt the setup of Wallace and Moodie (2015).

For a 𝐾-stages DTR, the following notation is used, with
lowercase being used for observed variables and uppercase
for their random counterparts: 𝑦 denotes patient outcome
(continuous) which is measured at one point in time.
The goal of DTRs is to make treatment decisions that
can optimize (typically, maximize) the outcome. The
𝑘th binary treatment decision is, for example, 𝑎𝑘 = 1 for
treatment, 𝑎𝑘 = 0 for standard care. Patient information
available at time 𝑘 and prior to 𝑘th treatment decision
is denoted x𝑘. The covariate matrix containing patient
history prior to the 𝑘th treatment decision is denoted 𝒉𝑘;
this history can include previous treatments 𝑎1, … , 𝑎𝑘−1.
Finally, 𝒂𝑘 = (𝑎1, 𝑎2, … , 𝑎𝑘) is the vector of the first
𝑘 treatment decisions, and 𝒂

𝑘
= (𝑎𝑘+1, 𝑎𝑘+2, … , 𝑎𝐾)

is the vector of treatment decisions from
stage 𝑘 + 1 onward.
The blip (or contrast) function is defined as the differ-

ence in expected potential outcome between patients who
received treatment 𝑎𝑘 at stage 𝑘 and patients who received
a reference treatment denoted, say 𝑎𝑘 = 0, with the same
history and assuming they receive optimal treatment after
𝑘th stage: 𝛾𝑘(𝒉𝑘, 𝑎𝑘) = 𝔼[𝑌

𝒂𝑘,𝒂
𝑜𝑝𝑡

𝑘+1 − 𝑌𝒂𝑘−1,𝑎𝑘=0,𝒂
𝑜𝑝𝑡

𝑘+1 |𝑯𝑘 =
𝒉𝑘]. The regret function (Murphy, 2003) is the expected
loss resulting from giving treatment 𝑎𝑘 at stage 𝑘

instead of the optimal treatment 𝑎𝑜𝑝𝑡
𝑘
, assuming opti-

mal treatment is received after 𝑘th stage: 𝜇𝑘(𝒉𝑘, 𝑎𝑘) =
𝔼[𝑌𝒂𝑘−1,𝒂

𝑜𝑝𝑡

𝑘 − 𝑌𝒂𝑘,𝒂
𝑜𝑝𝑡

𝑘+1 |𝑯𝑘 = 𝒉𝑘]. The blip and regret
functions correspond directly: 𝜇𝑘(𝒉𝑘, 𝑎𝑘) = 𝛾𝑘(𝒉𝑘, 𝑎

𝑜𝑝𝑡

𝑘
) −

𝛾𝑘(𝒉𝑘, 𝑎𝑘). This can be leveraged to simplify some
expressions in later sections. Finally, we decompose the
expected mean outcome into two components: 𝔼[𝑌𝑎|𝑯 =

𝒉; 𝜷, 𝝍] = 𝑓(𝒉0; 𝜷) +
∑𝐾

𝑘=1
𝛾𝑘(𝒉𝑘, 𝑎𝑘; 𝝍𝑘), where 𝑓(𝒉0; 𝜷)

and 𝛾𝑘(𝒉𝑘, 𝑎𝑘; 𝝍𝑘) are the so-called treatment-free and
blip models, respectively, and 𝒉0 are baseline covariates.
The function 𝑓, being free of any terms relating to the
active treatment (𝑎𝑘 = 1), is irrelevant for making deci-
sions about optimal treatment selection. For instance,
in a simple one-stage setting, we could assume that
both 𝑓 and 𝛾 are linear in form: 𝑓(𝑥; 𝜷) = 𝛽0 + 𝛽1𝑥 and
𝛾(𝑥, 𝑎; 𝝍) = 𝑎(𝜓0 + 𝜓1𝑥), and hence the estimated opti-
mal treatment is 𝑎𝑜𝑝𝑡 = 𝐼(𝜓0 + 𝜓1𝑥 > 0) where 𝐼(⋅) is the
indicator function.
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2.2 Dynamic weighted ordinary least
squares

Dynamicweighted ordinary least squares uses a sequential
regression approach, similar to estimate the blip parameter
𝝍𝑘 in the model for 𝔼[𝑌𝑎|𝑯 = 𝒉; 𝜷, 𝝍], achieving double
robustness through weighting by a function of the propen-
sity score (Rosenbaum and Rubin, 1983). The weights
must satisfy 𝜋(𝒙)𝑤(1, 𝒙) = (1 − 𝜋(𝒙))𝑤(0, 𝒙), where 𝜋(𝒙)
is the propensity score and 𝑤(𝑎, 𝒙) is the weight for a
subject with treatment 𝑎 and covariates 𝒙. Wallace and
Moodie (2015) suggested to use “absolute value” weights
of the form 𝑤(𝑎, x) = |𝑎 − 𝔼[𝐴|𝑿 = 𝒙]|, as these offered
better efficiency than other alternatives considered, while
yielding consistent estimators of blip parameters if either
the treatment or treatment-free model is correctly speci-
fied. Another assumption required by dWOLS is that the
treatment-free model must include the main effects for all
covariates in the blip model (unlike G-estimation, which
can use an intercept-only treatment-free model). Violation
of this assumption, known as the strong heredity prin-
ciple (Chipman, 1996), can lead to biased estimators of
blip parameters.

2.3 Penalized dWOLS

We first introduce our approach in a one-stage setting with
a continuous outcome, letting

Y = 𝛽0𝟏 + 𝜓0𝑨 +
𝑝∑
𝑗=1

X𝑗𝛽𝑗 +
𝑝∑
𝑗=1

𝜓𝑗(𝑨◦X𝑗) + 𝜺, (1)

where 𝟏 is the vector of 1’s,Y ∈ ℝ𝑛 is a continuous response
measured on 𝑛 individuals, X𝑗 ∈ ℝ𝑛 are the 𝑗th covariates,
X𝑖 ∈ ℝ𝑝 are covariates of 𝑖th individual, 𝛽𝑗 ∈ ℝ are the
corresponding parameters for the main effects of covari-
ates, 𝜓𝑗 ∈ ℝ are the blip parameters for 𝑗 = 0, 1, … , 𝑝, 𝑨
is the binary treatment indicator, “◦” is the elementwise
vector multiplication, and 𝜺 is an error term. This model
is a simplification of Bhatnagar et al. (2020), which con-
siders an additive interaction regression model. In this
positedmodel, the treatment-freemodel is 𝜷0 +

∑𝑝

𝑗=1
X𝑗𝛽𝑗

and the blip model is 𝜓0𝑨 +
∑𝑝

𝑗=1
𝜓𝑗(𝑨◦X𝑗). To eliminate

the intercept 𝛽0, throughout this section, we center the
response variable and each input variable in a weighted

way, for example, using Y −
∑𝑛
𝑖=1 𝑤𝑖𝑌𝑖∑𝑛
𝑖=1 𝑤𝑖

instead of Y as

the outcome.
For a continuous response, we use the

weighted squared-error loss: (Y; 𝜽) = 1

2𝑛
‖√W(Y −

𝜓0𝑨 −
∑𝑝

𝑗=1
X𝑗𝛽𝑗 −

∑𝑝

𝑗=1
𝜓𝑗(𝑨◦X𝑗))‖22, where 𝜽 = (𝛽1, … ,

𝛽𝑝, 𝜓0, … , 𝜓𝑝), andW = diag{𝑤1(𝑎, x), 𝑤2(𝑎, x), … ,𝑤𝑛(𝑎, x)}
is a known 𝑛 × 𝑛 diagonal matrix with 𝑤𝑖(𝑎, x) the “abso-
lute value” weight for the 𝑖th individual. Similar to LASSO,
we consider the following objective function that includes
the 𝓁1 penalty for variable selection:

𝑄(𝜽) = (Y; 𝜽) + 𝜆(1 − 𝛼)‖𝜷‖1 + 𝜆𝛼‖𝝍‖1, (2)

where 𝜷 = (𝛽1, … , 𝛽𝑝) and 𝝍 = (𝜓1, … , 𝜓𝑝), 𝜆 > 0 and 𝛼 ∈
(0, 1) are tuning parameters, and the solution is given
by 𝜽 = argmin𝜽 𝑄(𝜽). The parameter 𝛼 controls the rel-
ative penalties for the main effects and the interaction
effects. Other choices of the penalty term include the
𝓁2 penalty, the elastic net (Zou and Hastie, 2005), and
the SCAD penalty. The 𝓁2 penalty yields ridge regres-
sion and hence cannot produce a sparse solution, and
the 𝓁1 penalty cannot handle highly correlated variables
very well (Zou and Hastie, 2005); the elastic net combines
the 𝓁1 and 𝓁2 penalties, and thus can produce sparsity
while offering good performance even when the features
are highly correlated. The SCAD is a nonconvex penalty
that can produce sparse solutions and nearly unbiased
estimators.
An issue with Equation (2) is that since no constraint

is placed on the structure of the model, it is possible
that an estimated interaction term is nonzero while the
corresponding main effects are zero, which violates the
strong heredity assumption. To remedy this, our work
is built on the strong heredity assumption, a constraint
that is often used in practice when estimating interac-
tion effects. Under the strong heredity assumption, an
interaction term can be estimated to be nonzero if its
corresponding main effects are estimated to be nonzero,
whereas a nonzero main effect does not necessarily imply
a nonzero interaction term. In DTR analysis, it is most
common that there are more confounders than there are
potential tailoring variables. Following Choi et al. (2010),
we introduce a new set of parameters 𝝉 = (𝜏1, 𝜏2, … 𝜏𝑝)
and reparameterize the coefficients for the interac-
tion terms 𝜓𝑗 as a function of 𝜏𝑗 and the main effect
parameters 𝛽𝑗 and 𝜓0: 𝜓𝑗 = 𝜓0𝜏𝑗𝛽𝑗 . In this way, strong
heredity can be met, and we consider the following model:
∗(Y; 𝜽) = 1

2𝑛
‖√W(Y − 𝜓0𝑨 −

∑𝑝

𝑗=1
X𝑗𝛽𝑗 −

∑𝑝

𝑗=1
𝜓0𝜏𝑗𝛽𝑗
⏟⏟⏟
𝜓𝑗

(𝑨◦X𝑗))‖22, where now 𝜽 = (𝛽1, … , 𝛽𝑝, 𝜓0, 𝜏1, … , 𝜏𝑝). This
reparameterizedmodel is nonlinear as it involves products
of parameters, and the objective function is expressed as

𝑄(𝜽) = ∗(Y; 𝜽) + 𝜆(1 − 𝛼)‖𝜷‖1 + 𝜆𝛼‖𝝉‖1. (3)
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2.4 Algorithm details

In this section, we describe a blockwise coordinate descent
algorithm (Friedman et al., 2007) for fitting the weighted
least-squares version of the model in Equation (3). “Block-
wise” means we breakdown the optimization problem
into subproblems, that is, we fix the interaction terms
𝝉 and solve for the main effects 𝜓0 and 𝜷 and vice
versa. Following Hastie et al. (2010), we fix the value
for the tuning parameter 𝛼 and minimize the objec-
tive function over a decreasing sequence of 𝜆 values
(𝜆𝑚𝑎𝑥 > … > 𝜆𝑚𝑖𝑛).
Denote the 𝑛-dimensional residual column vector 𝑹 =

Y − Ŷ, where Ŷ is the current fitted value of 𝔼(Y) under
the posited model. The subgradient equations are given
by

𝜕𝑄

𝜕𝜓0
= −

1

𝑛
(𝑨 +

𝑝∑
𝑗=1

𝜏𝑗𝛽𝑗𝑨◦X𝑗)⊤W𝑹 = 0, (4)

𝜕𝑄

𝜕𝛽𝑗
= −

1

𝑛

(
X𝑗 + 𝜏𝑗𝜓0𝑨◦X𝑗

)⊤
W𝑹 + 𝜆(1 − 𝛼)𝑠1 = 𝟎, (5)

𝜕𝑄

𝜕𝜏𝑗
= −

1

𝑛

(
𝜓0𝛽𝑗𝑨◦X𝑗

)⊤
W𝑹 + 𝜆𝛼𝑠2 = 0, (6)

where 𝑠1 and 𝑠2 are subgradients of the 𝓁1-norm, that is,
𝑠1 ∈ sign(𝛽𝑗) if 𝛽𝑗 ≠ 0, 𝑠1 ∈ [−1, 1] if 𝛽𝑗 = 0; 𝑠2 ∈ sign(𝜏𝑗)
if 𝜏𝑗 ≠ 0, 𝑠2 ∈ [−1, 1] if 𝜏𝑗 = 0.
Define the partial residuals, without the 𝑗th predictor for

𝑗 = 1,… , 𝑝, as

𝑹(−𝑗) = Y −
∑
𝓁≠𝑗

X𝓁𝛽𝓁 − 𝜓0𝑨 −
∑
𝓁≠𝑗

𝜏𝓁𝜓0𝛽𝓁(𝑨◦X𝓁), (7)

the partial residual without A as 𝑹(−𝐴) = Y −
∑𝑝

𝑗=1
X𝑗𝛽𝑗

and the partial residual without the 𝑗th interaction for
𝑗 = 1,… , 𝑝, as

𝑹(−𝑗𝐴) = Y −
𝑝∑
𝑗=1

X𝑗𝛽𝑗 − 𝜓0𝑨 −
∑
𝓁≠𝑗

𝜏𝓁𝜓0𝛽𝓁(𝑨◦X𝓁). (8)

From the subgradient equations (4)–(6), we see that

𝜓0 =

(
𝑨 +

∑𝑝

𝑗=1
𝜏𝑗𝛽𝑗

(
𝑨◦X𝑗

))⊤
W𝑹(−𝐴)

(
𝑨 +

∑𝑝

𝑗=1
𝜏𝑗𝛽𝑗

(
𝑨◦X𝑗

))⊤
W
(
𝑨 +

∑𝑝

𝑗=1
𝜏𝑗𝛽𝑗

(
𝑨◦X𝑗

)) ,
(9)

𝛽𝑗 =
𝑆
((
X𝑗 + 𝜏𝑗𝜓0

(
𝑨◦X𝑗

))⊤
W𝑹−𝑗, 𝑛 ⋅ 𝜆(1 − 𝛼)

)
(
X𝑗 + 𝜏𝑗𝜓0

(
𝑨◦X𝑗

))⊤
W
(
X𝑗 + 𝜏𝑗𝜓0

(
𝑨◦X𝑗

)) , (10)

𝜏̂𝑗 =
𝑆
((
𝜓0𝛽𝑗

(
𝑨◦X𝑗

))⊤
W𝑹(−𝑗𝐴), 𝑛 ⋅ 𝜆𝛼

)
(
𝜓0𝛽𝑗

(
𝑨◦X𝑗

))⊤
W
(
𝜓0𝛽𝑗

(
𝑨◦X𝑗

)) , (11)

where 𝑆(𝑥, 𝑢) is the soft-thresholding operator defined as
𝑆(𝑥, 𝑢) = sign(𝑥)(|𝑥| − 𝑢)+(𝑥+ is the maximum value of 𝑥
and 0).
The strong heredity assumption means that finding the

𝜆 which shrinks all coefficients to 0, is reduced to find-
ing the smallest 𝜆 such that all main effect coefficients are
shrunk to 0. From the subgradient equation (5), we see
that 𝛽𝑗 = 0 is a solution if | 1

𝑛
(X𝑗 + 𝜏𝑗𝜓0(𝑨◦X𝑗))⊤𝑹(−𝑗)| ≤

𝜆(1 − 𝛼). From the subgradient equation (6), we see
that 𝜏𝑗 = 0 is a solution if | 1

𝑛
(𝜓0(𝑨◦X𝑗)𝛽𝑗)⊤𝑹(−𝑗𝐴)| ≤ 𝜆𝛼.

Thus, the strong heredity assumption implies that the
parameter vector (𝛽1, … , 𝛽𝑝, 𝜓1, … , 𝜓𝑝) will be entirely
equal to 𝟎 if (𝛽1, … , 𝛽𝑝) = 𝟎. Therefore, the smallest
value of 𝜆 for which the entire parameter vector reduces
to 𝜆𝑚𝑎𝑥 =

1

𝑛(1−𝛼)
max𝑗{|(X𝑗)⊤𝑹(−𝑗)|}. The computational

algorithm to fit all the parameters in a sequence of
loops is further detailed in the Supplementary Material
(Algorithm 1).

2.5 Multiple intervals estimation

Knowing how to estimate the blip parameters in a one-
stage setting, we now describe how the pdWOLS approach
works in a𝐾-stages setting. Starting from the last stage, the
estimation procedure is applied to the 𝐾th stage observed
outcome y𝐾 , treatment 𝒂𝐾 , and covariates x𝐾 . The esti-
mated blip parameters are obtained by maximizing the
objective function in Equation (3) and the estimated rules
𝑎
𝑜𝑝𝑡
𝐾 = 𝐼(𝜓0𝐾 + x𝐾𝝍𝑲 > 0), where 𝐼 is the indicator func-
tion. The (𝐾 − 1)th stage outcome is based on “optimal
responses,” that is, the estimation procedure is applied
to the pseudo-outcome ỹ𝑘−1 = y𝐾 + 𝜇𝐾(x𝐾, 𝑎𝐾; 𝝍𝑲), treat-
ment 𝒂𝐾−1, and covariates x𝐾−1, where 𝜇𝐾(x𝐾, 𝑎𝐾; 𝝍𝑲) =
𝛾𝐾(x𝐾, 𝑎

𝑜𝑝𝑡
𝐾 ; 𝝍𝑲) − 𝛾𝐾(x𝐾, 𝑎𝐾; 𝝍𝑲) is the regret function at

stage 𝐾. The pseudo-outcome, ỹ𝐾−1, is optimal since the
regret is added to the observed outcome y𝐾 . The same
procedure continues, recursively working backward, until
stage 1 estimation, such that the blip parameters across
all the stages are obtained and all treatment decisions can
be made.
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2.6 Asymptotic properties of the
pdWOLS estimator

We now show that when the number of predictors, 𝑝,
is fixed and the sample size 𝑛 approaches infinity, the
pdWOLS estimator has both the double robustness and
oracle properties (Fan and Li, 2001) under several assump-
tions. Following the adaptive LASSO (Zou, 2006), we add
adaptive weights (or penalty factors) to the objective func-
tion (3) to obtain

∗(Y; 𝜽) + 𝜆(1 − 𝛼)
𝑝∑
𝑗=1

𝑤𝑚𝑎𝑖𝑛
𝑗

|𝛽𝑗| + 𝜆𝛼
𝑝∑
𝑗=1

𝑤𝑖𝑛𝑡
𝑗

|𝜏𝑗|, (12)

where 𝑤𝑚𝑎𝑖𝑛
𝑗

and 𝑤𝑖𝑛𝑡
𝑗

are adaptive weights of main effect
and interaction terms, respectively, in this way, the coef-
ficients are not forced to be equally penalized in the 𝓁1
penalty. For instance, we can choose 𝑤𝑚𝑎𝑖𝑛

𝑗
= |𝛽𝑤𝑙𝑠

𝑗
|−1

and 𝑤𝑖𝑛𝑡
𝑗
= |𝛽𝑤𝑙𝑠𝑗

𝜓𝑤𝑙𝑠
0

𝜓𝑤𝑙𝑠
𝑗

| for penalty factors, where 𝛽𝑤𝑙𝑠
𝑗

and

𝜓𝑤𝑙𝑠
𝑗

are unpenalized weighted least square estimates of
the pdWOLS model. As 𝑛 goes to infinity, the weights
corresponding to unimportant variables go to infinity,
which puts a large penalty on those variables, and the
weights corresponding to important variables converge to
a finite constant. Thus, small coefficients are removed,
and large coefficients are unbiasedly estimated. With-
out loss of generality, we can rewrite Equation (12) as
∗(Y; 𝜽) +

∑𝑝

𝑗=1
𝜆
𝛽

𝑗
|𝛽𝑗| +∑𝑝

𝑗=1
𝜆𝜏
𝑗
|𝜏𝑗|, where 𝜆

𝛽

𝑗
= 𝜆(1 −

𝛼)𝑤𝑚𝑎𝑖𝑛
𝑗

and 𝜆𝜏
𝑗
= 𝜆𝛼𝑤𝑖𝑛𝑡

𝑗
.

We assume that the true model follows the strong
heredity assumption described above and regularity con-
ditions detailed in the Supplemental Material hold. Note
that the regularity conditions of pdWOLS are for quasi-
likelihood since the loss function contains data-dependent
weights and the treatment-free model may be misspeci-
fied. We describe the asymptotic properties of pdWOLS
in the following theorems; proofs are given in the Sup-
plemental Material. Assume that the observations V𝑖 , 𝑖 =
1, … , 𝑛 are independent and identically distributed with
probability density 𝑔(V) with respect to a measure 𝜈.
Denote the negative quasi-log-likelihood as 𝐿∗𝑛(V; 𝜽) =
−
∑𝑛

𝑖=1
logℎ(V𝑖 , 𝜽) (i.e., the dWOLS loss function), where

ℎ is the posited family of densities. Let 𝜽∗ be the underlying
true parameters, and 𝜽∗ the minimizer of the Kullback–
Leibler divergence between ℎ and 𝑔 (i.e., 𝜽∗ is the clos-
est point to 𝜽∗ in the posited family of densities). Define
𝐵1 as the indices of nonzero components for main effects
and 𝐵2 as the indices of nonzero components for inter-
action terms such that 𝐵1 = {𝑗 ∶ 𝛽∗𝑗 ≠ 0}, 𝐵2 = {𝑗 + 𝑝 +
1 ∶ 𝜏∗𝑗 ≠ 0}, 𝐵 = 𝐵1 ∪ 𝐵2, where we define 𝝉∗ in a way

such that 𝜏∗𝑗 =
𝜓∗𝑗

𝜓∗0𝛽∗𝑗
if 𝛽∗𝑗 ≠ 0 and 0 otherwise, since

we assume the strong heredity property holds. Let 𝑛𝑎𝑛
be the maximum value of the tuning parameters (𝜆𝛽, 𝜆𝜏)
such that the corresponding coefficients are nonzero
and 𝑛𝑏𝑛 be the minimum value of the tuning param-
eters such that the corresponding coefficients are zero.
For 𝜆𝜏, we only consider the index 𝑚 such that 𝛽∗𝑚 ≠

0 and 𝜓∗𝑚 = 0 (i.e., 𝑚 ∈ 𝐵1): 𝑎𝑛 =
1

𝑛
max{𝜆𝛽

𝑗
, 𝜆𝜏𝑚 ∶ 𝑗 ∈

𝐵1,𝑚 + 𝑝 + 1 ∈ 𝐵2} 𝑏𝑛 =
1

𝑛
min{𝜆𝛽

𝑗
, 𝜆𝜏𝑚 ∶ 𝑗 ∈ 𝐵

𝑐
1,𝑚 + 𝑝 +

1 ∈ 𝐵𝑐2 such that 𝛽∗𝑚 ≠ 0}.

Theorem 1. Correct Sparsity: Assume that
√
𝑛𝑎𝑛 = 𝑂(1)

and
√
𝑛𝑏𝑛 → ∞, then there exists a local minimizer 𝜽𝑛 of

Equation (12) such that ‖𝜽𝑛 − 𝜽∗‖ = 𝑂𝑝(𝑛−12 + 𝑎𝑛). More-
over, we have 𝑃(𝜽𝐵𝑐 = 0) → 1.

Theorem 2. Asymptotic Normality: Assume that√
𝑛𝑎𝑛 → 0 and

√
𝑛𝑏𝑛 → ∞, then

√
𝑛(𝜽𝐵 − 𝜽∗𝐵) →𝑑

𝑁(0, 𝑱−1(𝜽∗𝐵)𝑰(𝜽∗𝐵)𝑱
−1(𝜽∗𝐵)), where 𝑱(𝜽) =

−𝐸𝜽[
𝜕2𝑙𝑜𝑔 ℎ(V;𝜽)
𝜕𝜽𝜕𝜽𝑇

] and 𝑰(𝜽) = 𝐸𝜽[(
𝜕𝑙𝑜𝑔 ℎ(V;𝜽)

𝜕𝜽
)(
𝜕𝑙𝑜𝑔 ℎ(V;𝜽)

𝜕𝜽
)𝑇].

Remark 1. Oracle properties of 𝜽𝑛 are established such
that the estimator converges to some population parame-
ter instead of the underlying true parameter 𝜽∗. Also, the
asymptotic covariance matrix no longer equals the inverse
of the Fisher’s information matrix. If the treatment-free
model is correctly specified, then 𝜽𝑛 will converge to 𝜽∗.
To mimic the oracle, we further assume that all the obser-
vational weights are 1 (e.g., as in a randomized study).

Corollary 1. Double Robustness: Assume that the blip
function is correctly specified and SUTVA and ignorability
described in Section 2.1 hold, then the resulting blip parame-
ter estimators of pdWOLS are doubly robust; the estimators
are consistent (i.e., 𝝍∗ = 𝝍∗) if either the treatment model or
the treatment-free model is correct. Note that correct spec-
ification of the blip model permits overspecification—that
is, the true blip model may be contained within the analyst-
specified model. From Theorems 1 and 2, pdWOLS has the
same performance as dWOLS, and hence it has the double
robustness property.

Remark 2. There are no consistency guarantees for the
first-stage estimator if an important confounder is missing
in the second-stage model, as this violates an assumption
at the second stage such that the estimator of second-stage
parameters (subsequently plugged into the first-stage esti-
mating function) may be biased. However, if estimation at
the second stage is consistent (no unmeasured confound-
ing, at least one of the nuisance models correct, etc.), then
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double robustness at the first stage can be assured under
key assumptions.

3 SIMULATION STUDIES

In this section, we first illustrate the double robustness
of pdWOLS and compare its performance to competing
approaches through a number of simulations; then we
implement the proposed method in a high-dimensional
setting where 𝑝 > 𝑛. Finally, we present simulation results
for a two-stage setting. The tuning parameter 𝛼 was set to
0.5 for all simulations, and 𝜆 was selected using fourfold
cross-validation to reduce the computational burden.
In addition to assuming that there are no unmeasured

confounders, we assume that the number of confounders
is relatively small, so that the propensity score model can
be fitted using logistic regression with the entire vector X.
The propensity score is used to ensure balance between
treatment groups. If model misspecification is a concern,
one can use data-adaptive techniques, however, care must
be taken in using data-adaptive approaches to estimating
the propensity score to avoid the risk of selecting instru-
ments, that is, variables that only predict treatment (Short-
reed and Ertefaie, 2017). To consider a general framework,
main effects are penalized in Equation (3). However, in a
low-dimensional setting, we may want to retain all avail-
able covariates in the outcome model to ensure no weak
confounders are erroneously omitted. In such cases, we
can choose to not penalize themain effects, setting the cor-
responding penalty factors in Equation (12) to zero.

3.1 Competing methods

We compare the variable selection results, error rate (in
terms of the estimated rules as compared to the true opti-
mal treatment), and out-of-sample value (i.e., expected
outcome) under the estimated rules of pdWOLS with
Q-learning combined with LASSO (Blatt et al., 2004)
and penalized A-Learning (PAL) (Shi et al., 2018). Q-
learning is a sequential regression approach to DTR esti-
mation; relying only on outcome models; it is not doubly
robust. PAL first estimates the treatment-free and propen-
sity score models, then uses the Dantzig selector (Can-
des and Tao, 2007) to penalize the estimating equations
of A-learning: 𝝍 = arg min𝝍 ‖𝝍‖1 subject to ‖X𝑇diag(𝑨 −
𝝅)(Y − 𝑓(x; 𝜷) − 𝛾(x, 𝑎; 𝝍))‖∞ ≤ 𝑛𝜆𝑝𝑎𝑙, where 𝜆𝑝𝑎𝑙 is the
tuning parameter and 𝝅 is the estimated propensity score.
LASSO was implemented using the R package glm-

net (Hastie et al., 2010) with 𝜆𝐿𝐴𝑆𝑆𝑂 selected via fourfold
cross-validation. PAL was implemented using the R pack-
age ITRSelect (Shi et al., 2018) with the tuning parameter

𝜆𝑝𝑎𝑙 selected via the Bayesian information criteria (BIC)
(Schwarz, 1978). The main effect of treatment 𝐴 is not
penalized in any of the three methods. We also present
unpenalized estimates of the blip parameters from a two-
step approach: that is, after variable selection, the blip
parameters are recalculated by solving the unpenalized
weighted least squares via Q-learning, dWOLS, and A-
learning with the selected variables, which we term refit-
ted procedure.

3.2 Experiments examining double
robustness property

We begin with a simple one-stage example with the follow-
ing data generation procedure:
Step 1: Generate 10 covariates (X1 − X10) where X are

multivariate normal with zero mean, unit variance, and
correlation Corr(𝑋𝑗, 𝑋𝑘) = 0.25|𝑗−𝑘| for 𝑗, 𝑘 = 1, 2, … , 10.
Step 2: Generate treatment according to the model:

𝑃(𝐴 = 1|𝑋1, 𝑋2) = exp(1 + 𝑥1 + 𝑥2)
1 + exp(1 + 𝑥1 + 𝑥2)

.

Step 3: Set the blip function, and hence the optimal treat-
ment strategy, to depend only on 𝑋1: 𝛾(𝑥, 𝑎; 𝝍) = 𝑎(𝜓0 +
𝜓1𝑥1) for 𝜓0 = 1, 𝜓1 = −1.5.
Step 4: Set the treatment-free model to 𝑓(x; 𝜷) = 0.5 −

0.6𝑒𝑥1 − 2𝑥1 − 2𝑥2.
Step 5: Generate the outcome 𝑌 ∼ 𝑁(𝑓(x; 𝜷) +

𝛾(x, 𝑎; 𝝍), 1).
We apply estimation and variable selection approaches

with a variety of sample sizes (100, 500, and 2000) in
four scenarios, where neither, one, or both of the treat-
ment and treatment-free models is correctly specified.
Specifically, the scenarios are: Scenario 1 (neither treatment
nor treatment-free is correct): Regress Y on (𝟏,X, 𝑨, 𝑨X),
and set all observational weights to 1 (similar to assum-
ing a null propensity score model). As this scenario fails
to meet the assumptions of correct model specification,
consistency is not assured for any approach. Scenario
2 (treatment correct, treatment-free incorrect): Regress Y
on (𝟏,X, 𝑨, 𝑨X), but fit a correctly specified propensity
score model whose parameters are estimated via logis-
tic regression. Scenario 3 (treatment incorrect, treatment-
free correct): Regress Y on (𝟏, 𝑒X1 ,X, 𝑨, 𝑨𝑒X1 , 𝑨X), so that
the treatment-free model is correctly specified but—as in
Scenario 1—set all observational weights to 1. Scenario
4 (both treatment and treatment-free are correct): Regress
Y on (𝟏, 𝑒X1 ,X, 𝑨, 𝑨𝑒X1 , 𝑨X), and estimate the parameters
using a correctly specified propensity score.
Since Q-learning does not incorporate any propensity

score adjustments, Scenarios 1 and 2 yield identical
estimates, as do Scenarios 3 and 4. All the three methods
have the same treatment-free models and the same blip
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TABLE 1 Variable selection rate (%) of the blip parameters, error rate (ER, %) and value function over a testing set of size 10,000 under
the estimated decision rules using pdWOLS, Q-learning with LASSO (QL), PAL and their refitted versions (𝑛 = 500, 400 simulations)

Scenario 2 Scenario 3 Scenario 4
pdWOLS QL PAL pdWOLS QL PAL pdWOLS QL PAL

𝐴𝑒𝑋1 - - - 72 14 72 42 14 0
𝐴𝑋1

a 100 100 99 100 100 33 100 100 100
𝐴𝑋2 53 51 2 73 44 3 52 44 1
𝐴𝑋3 2 26 2 6 23 0 2 23 1
𝐴𝑋4 4 28 2 5 24 1 3 24 1
𝐴𝑋5 4 29 4 4 26 2 2 26 2
𝐴𝑋6 2 26 2 4 21 1 1 21 1
𝐴𝑋7 3 25 2 5 22 1 2 22 0
𝐴𝑋8 3 27 3 6 23 1 2 23 0
𝐴𝑋9 2 27 3 6 24 1 2 24 1
𝐴𝑋10 2 28 2 5 22 1 1 22 1
ER 3.9 9.8 22.9 5.5 3.4 12.0 4.2 3.4 23.4
ER (Refitted) 4.5 8.5 4.9 3.4 3.6 8.7 3.6 3.6 3.8
Value 0.6 0.6 0.5 0.6 0.7 0.6 0.6 0.7 0.5
Value (Refitted) 0.6 0.6 0.6 0.6 0.7 0.6 0.7 0.7 0.6

Note: The main effect of treatment is not penalized (and hence is always selected). Note that 𝐴𝑒𝑋1 was not included in the blip model for Scenario 2.
aTerm with a nonzero coefficient in the data-generating model.

functions to be estimated in the four scenarios. Across all
scenarios where at least one nuisance model was correctly
specified, refitted estimators performed better than their
penalized counterparts in terms of bias (see Figure S1).
When at least one of the treatment or treatment-free
models was correctly specified, the blip parameter esti-
mators were consistent for refitted pdWOLS. When the
treatment-free model was correct (Scenarios 3 and 4), the
refitted Q-learning (LASSO) estimators were consistent,
as expected. Surprisingly, PAL failed when the treatment
model was incorrect (Scenario 3). This result was not
anticipated since PAL is a double robust method, although
previous simulations have not considered its performance
in terms of parameter estimates (Shi et al., 2018).
The variable selection results for optimal treatment

decisions are presented in Table 1. In Scenarios 2–4, the
important tailoring variable was correctly selected by both
pdWOLS and Q-learning (LASSO). PAL failed in Scenario
3. However, the false positive rates of pdWOLS and Q-
learning (LASSO) were higher than that of PAL in all
scenarios: for example, in Scenario 3, both LASSO and
pdWOLS falsely selected the variable𝐴𝑒𝑋172% of the time.
Table 1 also summarizes the error rates (i.e.,

1

𝑛

∑𝑛

𝑖=1
𝐼(𝑎

𝑜𝑝𝑡

𝑖
≠ 𝑎𝑖)) of the estimated optimal treat-

ment regimes for treatment decision making and value
functions. The average value function and the error rates
were computed over a testing set of size 10,000 (i.e., a data
set generated according to the process described above in
all respects except that treatment was allocated according

to the estimated rule). Both the error rate and the value
of pdWOLS and Q-learning with LASSO were very close;
pdWOLS outperformed other methods in Scenario 2,
while Q-learning with LASSO had the best performance
in Scenarios 3 and 4. The performance of the refitted
versions of pdWOLS and Q-learning were similar; the
performance of PAL was uniformly worse than the other
methods performed without refitting, however refitting
PAL substantially improved its performance.

3.3 Simulations evaluating
performance in a high-dimensional setting

Here, we present the performance of the new procedure
in a high-dimensional setting with 𝑝 = 400 and 𝑛 = 200.
The data generation procedure is the same as in Sec-
tion 3.2, except that we now set 𝑃(𝐴 = 1) to 0.5 for every-
one such that no confounding is present. The blip function
is 𝛾(x, 𝑎; 𝝍) = 𝑎(1 − 1.5𝑥1) where 𝜓0 = 1, 𝜓1 = −1.5 and
the treatment-free model is 𝑓(x; 𝜷) = 0.5 − 0.6𝑒𝑥1 − 2𝑥1 −
2𝑥2. We regressY on (𝟏,X, 𝑨, 𝑨X)where the treatment-free
model is misspecified.
Figure 1 summarizes the blip parameter estimates in the

high-dimensional setting. Like before, for all the meth-
ods, refitted estimators improved the performance of their
penalized counterparts. For 𝜓0, Q-learning with LASSO
and its refitted estimator had the smallest bias; as for 𝜓1,
pdWOLS and its refitted version had the smallest bias.
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F IGURE 1 Estimates of blip parameters using pdWOLS, Q-learning (LASSO), PAL and their refitted versions with sample size 200 (400
simulations) in a high-dimensional (𝑝 = 400) setting. The true value is represented by the dotted line

TABLE 2 False negative (FN, %) rate and false positive (FP, %)
rate of variable selection results of the blip parameters, error rate
(ER, %) and value using pdWOLS, Q-learning with LASSO (QL),
PAL and their refitted versions with sample size 200 (400
simulations) in a high-dimensional (𝑝 = 400) setting

FN FP ER Value
pdWOLS 0.3 0.2 12.8 0.7
QL (LASSO) 0.0 1.4 11.3 0.7
PAL 2.6 0.4 24.6 0.6
RpdWOLS 0.3 0.2 9.9 0.7
RQL (LASSO) 0.0 1.4 16.8 0.6
RPAL 2.6 0.4 25.1 0.5

Note: The main effect of treatment is not penalized (and hence is always
selected).

Table 2 shows false negative rates (the proportion of
times a method wrongly removed a truly important vari-
able), false positive rates (the proportion of times amethod
wrongly included a nonimportant variable), error rates,
and the value under the estimated rules of the three meth-
ods. The average value function and the error rates were
computed over a testing set of size 10,000. Q-learning with
LASSO achieved a zero false negative rate; pdWOLS and
refitted pdWOLS had the lowest false positive rate, error
rate, and the highest value, which indicates favorable per-
formance of the newly proposed method. However, unlike
before, even the refitted PAL estimator had a smaller bias
than the PAL estimator; refitted PAL did not improve the
performance of PAL with respect to value and error rate,
which shows that smaller bias in estimation of blip param-

eters does not necessarily translate into a better perfor-
mance of the estimated regime.

3.4 Simulations evaluating
performance in multistage setting

In this subsection, we demonstrate the performance of
the proposed pdWOLS approach when treatment deci-
sions are made at multiple stages. We consider two dif-
ferent data generation procedures in order to follow pre-
vious literature. Setting 1, in which the true treatment-free
model does not have an analytical closed form (misspeci-
fied treatment-free model) is presented here. Setting 2, in
which the treatment-free models can be computed analyt-
ically, is available in the Supplemental Material.
We follow the data generation procedure inWallace and

Moodie (2015) with a sample size of 1000:
Step 1: Generate 10 covariates at stage 1: 𝑋𝑗1 ∼ 𝑁(0, 1)

for 𝑗 = 1, 2, … 10.
Step 2: Generate treatment at stage 𝑘 according to

𝑃(𝐴𝑘 = 1|𝑋1𝑘, 𝑋2𝑘) = exp(𝑥1𝑘−𝑥2𝑘)
1+exp(𝑥1𝑘−𝑥2𝑘)

for 𝑘 = 1, 2.
Step 3: Generate covariates at stage 2, such that

𝑋12 ∼ 𝑁(0.5𝐴1 + 0.8𝑋11, 1) and𝑋𝑗2 ∼ 𝑁(0.8𝑋𝑗1, 1) for 𝑗 =
2, 3, … 10.
Step 4: Set the blip functions to be 𝛾1(𝑥1, 𝑎1; 𝝍1) =

𝑎1(0.8 − 2𝑥11) and 𝛾2(𝑥2, 𝑎2; 𝝍2) = 𝑎2(1 − 1.5𝑥12), so that
𝜓01 = 0.8, 𝜓11 = −2, 𝜓02 = 1 and 𝜓12 = −1.5.
Step 5: Generate the outcome under optimal treat-

ment according to 𝑦𝑜𝑝𝑡 = 0.5 + 2𝑥11 + 2𝑥12. The observed
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F IGURE 2 Estimates of blip parameters using pdWOLS, Q-learning with LASSO (QL), PAL and their refitted versions with sample size
1000 (400 simulations) in two-stage Setting 1. The true value is represented by the dotted line

outcome is generated such that 𝑌 ∼ 𝑁(𝑦𝑜𝑝𝑡 − 𝜇1 − 𝜇2, 1),
where 𝜇1 and 𝜇2 are regret function at stages 1 and 2,
defined through the blip functions in step 4.
Recall that a backward recursive approach can beused to

make the treatment decision. Starting from the last stage,
the estimation procedure is applied to the observed out-
come y. The estimated blip parameters and the estimated
rules, 𝑎𝑜𝑝𝑡2 , are obtained. Estimation then proceeds to stage
1, where again the estimation procedure is applied to a
pseudo-outcome which represents the expected effect of
the observed stage 2 treatment with the optimal stage 2
treatment. In pdWOLS, the pseudo-outcome is 𝑦1 = 𝑦 +
𝛾2(x2, 𝑎

𝑜𝑝𝑡
2 ; 𝝍2) − 𝛾2(x2, 𝑎2; 𝝍2), whereas for Q-learning

with LASSO, the pseudo-outcome is 𝑦𝑄1 = 𝑓(x2; 𝜷2) +
𝛾2(x2, 𝑎

𝑜𝑝𝑡
2 ; 𝝍2).

In this setting, the treatment-free model in the second
stage of estimation aims to represent 𝑦𝑜𝑝𝑡 − 𝜇1 − 𝑎

𝑜𝑝𝑡
2 (1 −

1.5𝑥12) which depends on 𝑎𝑜𝑝𝑡2 , which in turn is a func-
tion of second-stage parameters 𝝍2 and covariate 𝑥2. The
treatment-free model in this setting cannot be computed
analytically. We nevertheless assumed that the treatment-
free models were linear in the covariates measured at their
respective stages, and thus in these simulations, it is always
the case that the treatment-free models were misspeci-
fied. For those methods relying on a propensity score, the
treatment models were fit using correctly specified logistic
regression models at each stage using all covariates mea-
sured at that stage.
Figure 2 summarizes the estimates of blip parameters

using the three methods in the two-stage Setting 1. As
expected, pdWOLS and PAL work when at least one of the
treatment or treatment-free models is correctly specified

(in this case, the treatment model is correctly specified),
and Q-learning with LASSO failed, since the treatment-
free model at both stages are misspecified. For pdWOLS
and PAL, refitted estimators were nearly unbiased, and
they performed better than their penalized counterparts.
At stage 1, the bias of PAL estimators decreased to almost
zero after refitting. Thus, PAL exhibits excellent perfor-
mance in variable selection but requires the additional step
of refitting for accurate estimation. Unlike PAL, pdWOLS
can have small bias even without the refitting procedure.
Table 3 presents the variable selection results for opti-

mal treatment decisions. The important tailoring variables
were selected by all methods at both stages. At stage 2,
the false positive rate of pdWOLS was much smaller than
other two methods. For instance, the selection frequency
of 𝐴𝑋2 − 𝐴𝑋10 were all less than 5%. Note that at stage
1, because the pseudo-outcomes were different for refit-
ted version and their penalized counterparts, the variables
selected by the procedures may differ between penalized
and unpenalized implementations.
Table 4 summarizes the error rates of the estimated opti-

mal treatment decisions and value functions, computed
over a testing set of size 10,000. As before, refitted meth-
ods had lower error rate and higher value functions than
their penalized counterparts. Penalized dynamic ordinary
least squares outperformed other methods at both stages
with respect to the error rate and value function; refitting
greatly improved the performance of PAL.
In addition, we compared the choice of tuning param-

eter 𝛼, in order to assess sensitivity of the results to this
choice; we considered values of 0.2, 0.5 (as in the analyses
above), and 0.8. The results are presented in the Supple-
mental Material (Figure S4, Tables S3 and S4). To briefly
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TABLE 3 Variable selection rate (%) of the blip parameters using pdWOLS, Q-learning with LASSO (QL), PAL and their refitted versions
with sample size 1000 (400 simulations) in two-stage Setting 1

Stage 1 Stage 2
pdWOLS QL PAL RpdWOLS RQL RPAL pdWOLS QL PAL

𝐴𝑋1
a 100 100 100 100 100 100 100 100 100

𝐴𝑋2 49 32 1 45 33 2 22 44 33
𝐴𝑋3 4 28 2 2 34 2 2 41 38
𝐴𝑋4 3 30 0 2 34 2 3 45 37
𝐴𝑋5 3 25 1 2 29 2 2 40 40
𝐴𝑋6 4 25 1 2 29 1 3 40 40
𝐴𝑋7 4 27 0 2 33 2 3 40 38
𝐴𝑋8 4 28 0 2 30 1 2 42 38
𝐴𝑋9 4 26 1 2 32 4 2 41 36
𝐴𝑋10 3 29 2 2 32 2 2 44 38

Note: The main effect of treatment is not penalized (and hence is always selected).
aTerm with a nonzero coefficient in the data-generating model.

TABLE 4 Error Rate (ER, %) and value function using
pdWOLS, Q-learning with LASSO (QL), PAL and their refitted
versions with sample size 1000 (400 simulations) in two-stage
Setting 1

TER
ER
(Stage 1)

ER
(Stage 2) Value

pdWOLS 9.2 2.2 7.2 0.4
QL (LASSO) 52.8 50.4 4.6 −0.6
PAL 22.4 14.5 9.8 0.4
RpdWOLS 6.5 2.0 4.6 0.5
RQL (LASSO) 58.0 54.8 6.1 −0.7
RPAL 11.3 2.1 9.5 0.4

Note: The total error rate (TER, %) in the estimated optimal treatment across
both stages as well as the stagewise error rates are shown.

summarize, among all the 𝛼’s, the bias and the variance
of the estimators, the error rate and the estimated value
were virtually identical. However, for variable selection, as
𝛼 increased, the false positive rate decreased notably (See
Table S3), as a larger 𝛼 will put more penalty on the inter-
action terms.

4 APPLICATION TO STAR*D STUDY

In this section, we apply pdWOLS to STAR*D data
([dataset] National Institute of Mental Health (NIMH),
2001) from the NIMH Data Archive, a multistage ran-
domized trial that aimed to determine effective treatments
for patients with major depressive disorder, where sever-
ity was measured using the Quick Inventory of Depres-
sive Symptomatology (QIDS) score (Rush et al., 2003). The
study was divided into four levels (one of which had two
sublevels); patients had different treatments at each level
andwould exit the study upon achieving remission. See the
Supplemental Materials for details.

We follow Wallace et al. (2019) and Chakraborty et al.
(2013) to perform two-stage analysis based on the use of
a selective serotonin reuptake inhibitor (SSRI), with nega-
tive QIDS score as the outcome. Three tailoring variables
were considered: (1) theQIDS scoremeasured at the begin-
ning of each level (denoted by 𝑞𝑘 at stage 𝑘); (2) change
in QIDS score divided by the time in the previous level
(QIDS slope, denoted by 𝑠𝑘 at stage 𝑘); and (3) patient pref-
erence measured prior to receiving treatment, which is a
binary variable (denoted by 𝑝𝑘 at stage 𝑘). We also gen-
erated 𝑑 iid noise variables at each stage: noise variables
at stage 1 were generated using 𝑋𝑗1 ∼ 𝑁(0, 1) and at stage
2,𝑋𝑗2 ∼ 𝑁(log|𝑋𝑗1|, 1) for 𝑗 = 1, 2, … , 𝑑. We consider three
scenarios for the analysis where 𝑑 = 5, 10, 20, respectively.
Logistic regression was used to estimate the treatment

model adjusting for patient preference only, following the
trial design, and weights 𝑤 = |𝐴 − 𝐸(𝐴|𝑋)| were used in
the analysis. As in Wallace et al. (2019), the treatment-
free models were linear in (𝑞1, 𝑠1, 𝑝1) at stage 1 and
(𝑎1, 𝑞2, 𝑠2, 𝑝2) at stage 2. Linear blip models with covari-
ates (𝑞1, 𝑠1, 𝑝1) at stage 1 and (𝑎1, 𝑞2, 𝑠2, 𝑝2) at stage 2 were
considered. Note in Wallace et al. (2019), 𝑎1 and 𝑝2 were
not included in the blipmodels to avoid themulticollinear-
ity; this is not necessary in pdWOLS, and hence our model
specifications differ.
As in our simulations, the main effect of treatment

was not penalized. In all three scenarios and both stages,
pdWOLS returned the intercept-only blip model, suggest-
ing that the optimal treatments are treat with SSRI (𝐴1 =
1) and treat with a non-SSRI (𝐴2 = 0) at stages 1 and 2,
respectively, for all patients. PAL, in contrast, was sensi-
tive to the number of noise variables: when 𝑑 = 5, PAL
selected 𝑎𝑗, 𝑞𝑗, 𝑠𝑗, 𝑝𝑗 for both stages 𝑗 = 1, 2. When 𝑑 = 10,
PAL selected 𝑎2 at stage 2 and 𝑎1, 𝑞1, 𝑠1, 𝑝1 at stage 1, and
when 𝑑 = 20, PAL selected 𝑎2 at stage 2 and 𝑎1, 𝑝1 at stage
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1. Chakraborty et al. (2013) and Wallace et al. (2019) found
that no stage 2 blip covariates were statistically significant
(consistent with pdWOLS), while at stage 1, they found
only treatment preference was significant.
The false positive rates of PAL at stages 2 and

1 were 100%, 40%(𝑑 = 5), 10%, 50%(𝑑 = 10), and
10%, 45%(𝑑 = 20), respectively; for pdWOLS, the rate
was 0% for all 𝑑.

5 DISCUSSION

In this article, we extended dWOLS to a penalized estima-
tion framework for variable selection and estimating the
optimal treatment regimes simultaneously. The proposed
method inherits the double robustness property from
dWOLS. Our simulations indicated that pdWOLS com-
pares favorably with other variable selection approaches in
the context of DTRs.
Our method automatically enforces strong heredity

through a simple reparameterization, which guarantees an
assumption required by dWOLS. The idea of reparameter-
ization is simple, however, one limitation is that the objec-
tive function is nonconvex. Hence, it may be of interest, in
futurework, to investigate approaches that use convex con-
straints to achieve strong heredity. See, for example, Bien
et al. (2013); Zhao et al. (2009), and Haris et al. (2016).
The standard errors for the estimated blip parameters

can be obtained directly; a sandwich formula for comput-
ing the covariance of the estimates of the nonzero compo-
nents can be derived (Fan and Li, 2001). How to derive the
standard errors for the estimated blip parameters under
the use of refitted pdWOLS requires further investiga-
tion. Postselection inference (Lee et al., 2016) should also
be addressed.
The proposed method is, fundamentally, based on pre-

diction, selecting any variables that can improve predictive
ability. As such, in finite samples, pdWOLS may underes-
timate the importance of variables that have small predic-
tive ability but that play a significant role in DTRs. Besides,
the application of predictive methods directly to causal
models may result in inflated variances and self-inflicted
bias (Hernán and Robins, 2020). The importance of the
distinction between DTRs (causal inference) and predic-
tion must be kept in mind. Variable selection in causal
inference is a tough problem: on the one hand, we want
to adjust for enough covariates in the analysis to achieve
ignorability; on the other hand, adjustment for some other
irrelevant variables could induce bias and losses of statis-
tical efficiency (Rotnitzky et al., 2010). Hence, a thought-
ful selection of confounders is needed, using expert knowl-
edge to guide variable selection is encouraged. Other dis-
cussions about confounder selection can be found in Short-

reed and Ertefaie (2017), Robins and Greenland (1986), and
Schneeweiss et al. (2009). For pdWOLS, if we are wor-
ried about confounding and our focus is on building sim-
ple rules, we may want to do minimal selection on main
effects but lots of selection on interaction effects, which
can be implemented by setting small adaptive weights 𝑤𝑗
for the main effects or setting 𝛼 to a large value. How to
choose the tuning parameter 𝜆 and 𝛼 in a DTR frame-
work is an open and intriguing problem worthy of further
investigation.
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of pdWOLS implemented in the R programming language
are available with this paper at the Biometrics website on
Wiley Online Library.
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