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Abstract

Motivation: Sparse regularized regression methods are now widely used in genome-wide association studies
(GWAS) to address the multiple testing burden that limits discovery of potentially important predictors. Linear
mixed models (LMMs) have become an attractive alternative to principal components (PCs) adjustment to account
for population structure and relatedness in high-dimensional penalized models. However, their use in binary trait
GWAS rely on the invalid assumption that the residual variance does not depend on the estimated regression coeffi-
cients. Moreover, LMMs use a single spectral decomposition of the covariance matrix of the responses, which is no
longer possible in generalized linear mixed models (GLMMs).

Results: We introduce a new method called pglmm, a penalized GLMM that allows to simultaneously select genetic
markers and estimate their effects, accounting for between-individual correlations and binary nature of the trait. We
develop a computationally efficient algorithm based on penalized quasi-likelihood estimation that allows to scale
regularized mixed models on high-dimensional binary trait GWAS. We show through simulations that when the
dimensionality of the relatedness matrix is high, penalized LMM and logistic regression with PC adjustment fail to
select important predictors, and have inferior prediction accuracy compared to pglmm. Further, we demonstrate
through the analysis of two polygenic binary traits in a subset of 6731 related individuals from the UK Biobank data
with 320K SNPs that our method can achieve higher predictive performance, while also selecting fewer predictors
than a sparse regularized logistic lasso with PC adjustment.

Availability and implementation: Our Julia package PenalizedGLMM.jl is publicly available on github: https://
github.com/julstpierre/PenalizedGLMM.

Contact: julien.st-pierre@mail.mcgill.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have led to the identifica-
tion of hundreds of common genetic variants, or single nucleotide
polymorphisms (SNPs), associated with complex traits (Visscher
et al., 2017) and are typically conducted by testing association on
each SNP independently. However, these studies are plagued with
the multiple testing burden that limits discovery of potentially im-
portant predictors. Moreover, GWAS have brought to light the
problem of missing heritability, that is, identified variants only ex-
plain a low fraction of the total observed variability for traits under
study (Manolio et al., 2009). Multivariable regression methods, on
the other hand, simultaneously fit many SNPs in a single model and

have been proposed to increase the power for identifying weaker
associations compared to univariable methods (Li et al., 2011).
Moreover, sparse regularized multivariable regression models,
which can perform variable selection, are exempt from the multiple
testing burden.

Principal component analysis (PCA) can control for the con-
founding effect due to population structure by including the top
eigenvectors of a genetic similarity matrix (GSM) as fixed effects in
the regression model (Price et al., 2006). Alternatively, using mixed
models (MMs), one can model population structure and/or closer re-
latedness by including a polygenic random effect with variance–co-
variance structure proportional to the GSM (Yu et al., 2006).
Hence, while both PCA and MMs share the same underlying model,
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MMs are more robust in the sense that they do not require distin-
guishing between the different types of confounders (Price et al.,
2010). Moreover, MMs alleviate the need to evaluate the optimal
number of principal components (PCs) to retain in the model as
fixed effects.

Several authors have proposed to combine penalized quasi-
likelihood (PQL) estimation with sparsity inducing regularization to
perform selection of fixed and/or random effects in generalized lin-
ear mixed model (GLMM) (Groll and Tutz, 2014; Hui et al., 2017).
However, none of these methods are currently scalable for modern
large-scale genome-wide data, nor can they directly incorporate re-
latedness structure through the use of a kinship matrix. Indeed, the
computational efficiency of recent multivariable methods for high-
dimensional MMs rely on performing a spectral decomposition of
the covariance matrix to rotate the phenotype and design matrix
such that the transformed data become uncorrelated (Bhatnagar
et al., 2020b; Rakitsch et al., 2013). These methods are typically
restricted to linear models since in GLMMs, it is no longer possible
to perform a single spectral decomposition to rotate the phenotype
and design matrix, as the covariance matrix depends on the sample
weights which in turn depend on the estimated regression coeffi-
cients that are being iteratively updated. This limits the application
of high-dimensional MMs to analysis of binary traits in genetic asso-
ciation studies.

In this article, we introduce a new method called pglmm that
allows to simultaneously select variables and estimate their effects,
accounting for between-individual correlations and binary nature of
the trait. We develop a scalable algorithm based on PQL estimation
which makes it possible to fit penalized GLMMs on high-
dimensional GWAS of binary traits. To speedup computation, we
estimate the variance components and dispersion parameter of the
model under the null hypothesis of no genetic effect. Secondly, we
use an upper-bound for the inverse variance–covariance matrix in
order to perform a single spectral decomposition of the GSM and
greatly reduce memory usage. Finally, we implement an efficient
cyclic coordinate descent algorithm in order to find the optimal esti-
mates for the fixed and random effects parameters. Our method is
implemented in an open source Julia programming language
(Bezanson et al., 2017) package called PenalizedGLMM.jl and
freely available at https://github.com/julstpierre/PenalizedGLMM.

The rest of this article is structured as follows. In Section 2, we
present our model, describe the cyclic coordinate descent algorithm
that is used to estimate the parameters and detail how predictions
are obtained in GLMs with PC adjustment versus our proposed
mixed model. In Section 3, we show through simulations that both
LMM and logistic model with PC adjustment fail to correctly select
important predictors and estimate their effects when the dimension-
ality of the kinship matrix is high. Further, we demonstrate through
the analysis of two polygenic binary traits in a subset of 6731 related
individuals from the UK Biobank data that our method achieves
higher predictive performance, while also selecting consistently
fewer predictors than a logistic lasso with PC adjustment. We finish
with a discussion of our results, some limitations and future direc-
tions in Section 4.

2 Materials and methods

2.1 Model
We consider the following GLMM

gðliÞ ¼ gi ¼ X iaþGicþ bi; (1)

for i ¼ 1; ::;n, where li ¼ EðyijX i;Gi; biÞ; X i is a 1�m row vector of
covariates for subject i, a is a m� 1 column vector of fixed covariate
effects including the intercept, Gi is a 1� p row vector of genotypes
for subject i taking values f0, 1, 2g as the number of copies of the
minor allele, and c is a p� 1 column vector of fixed additive genotype

effects. We assume that b ¼ ðb1; . . . ;bnÞ> � N ð0;
PS

s¼1 ssV sÞ is an

n� 1 column vector of random effects, s ¼ ðs1; . . . ; sSÞ> are variance
component parameters, V1 is a known kinship matrix or GSM

typically estimated from high-quality common genotype markers
(MAF� 0:01) (Yang et al., 2011) and V2; . . . ;VS are any known n�n
positive semi-definite matrices to account for shared environmental
effects or complex sampling designs. The phenotypes yi are assumed to
be conditionally independent and identically distributed given
ðX i;Gi; bÞ and follow any exponential family distribution with canon-

ical link function gð�Þ, mean EðyijbÞ ¼ li and variance VarðyijbÞ ¼
/a�1

i �ðliÞ; where / is a dispersion parameter, ai are known weights
and �ð�Þ is the variance function. In order to estimate the parameters of
interest and perform variable selection, we need to use an approxima-
tion method to obtain a closed analytical form for the marginal likeli-
hood of model (1). Following the derivation of Chen et al. (2016), we
propose to fit (1) using a PQL method, from where the log integrated
quasi-likelihood function is equal to

qlða; c;/; sÞ ¼ �1

2
log

XS

s¼1

ssV sW þ In

�����
�����þ
Xn

i¼1

qliða; cj~bÞ

�1

2
~b
> XS

s¼1

ssV s

 !�1

~b;

(2)

where W ¼ diag ai

/�ðliÞ½g0 ðliÞ2 �

n o
is a diagonal matrix containing

weights for each observation, qliða; cjbÞ ¼
Ð li

yi

aiðyi�lÞ
/�ðlÞ dl is the quasi-

likelihood for the ith individual given the random effects b, and ~b is
the solution which maximizes (2).

In typical genome-wide studies, the number of predictors is
much greater than the number of observations (p>n), and the par-
ameter vector c becomes underdetermined when modeling SNPs
jointly. Thus, we propose to add a lasso regularization term
(Tibshirani, 1996) to the negative quasi-likelihood function in (2) to
seek a sparse subset of c that gives an adequate fit to the data.
Because qlða; c;/; sÞ is a non-convex loss function, we propose a
two-step estimation method to reduce the computational complex-
ity. First, we obtain the variance component estimates /̂ and ŝ under
the null hypothesis of no genetic effect (c ¼ 0) using the AI-REML
algorithm (Gilmour et al., 1995) detailed in Supplementary
Appendix SA. Second, assuming that the weights in W vary slowly
with the conditional mean, we drop the first term in (2) (Breslow
and Clayton, 1993) and define the following objective function
which we seek to minimize with respect to ða; c; ~bÞ:

ðâ; ĉ; b̂Þ ¼ argmin
a;c;~b

Qkða; c; ~bÞ;

Qkða; c; ~bÞ ¼ �
Xn

i¼1

qliða; cj~bÞ þ
1

2
~b
> XS

s¼1

ŝsV s

 !�1

~b þ k
X

j

vjjcjj

:¼ �‘PQLða; c; /̂; ŝj~bÞ þ k
X

j

vjjcjj;

(3)

where k is a non-negative regularization parameter, and vj is a pen-
alty factor for the jth predictor. This two-step approach is known as
the P3D (population parameters previously determined) method
(Zhang et al., 2010), which is a common approach in mixed-model
association tests, and it has been shown to outperform both PCA
and genomic control in correcting for sample structure (Kang et al.,
2010). Moreover, Reisetter and Breheny (2021) showed through
simulation studies that in the case of penalized LMMs, estimating
the variance components once performed similarly in terms of esti-
mating the SNP coefficients than by including the variance compo-
nents in the iterative procedure, while showing much greater
computational efficiency and numerical stability. By default, we
standardize the genotype counts and assign vj ¼ 1 for all genetic pre-
dictors in (3), which is equivalent to using unscaled genotypes with

v�1
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MAFjð1�MAFjÞ

p
where the MAFs are estimated from the

data. Alternatively, it is possible to use an adaptive lasso penalty

with weights vj ¼ jb̂ jj�j, where j is a common power parameter and

b̂j is the coefficient estimate obtained by univariable marginal re-

gression (Waldmann et al., 2019).
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In Supplementary Appendix SB, we detail our proposed cyclic
coordinate gradient descent algorithm to solve (3) and obtain regu-
larized PQL estimates for b ¼ ða>; c>Þ> and ~b. Briefly, our algo-

rithm is equivalent to iteratively solving the two penalized weighted
least squares (WLS)

argmin
~b

ð~Y � ~Xb� ~bÞ>Wð~Y � ~Xb� ~bÞ þ ~b
> XS

s¼1

ŝsV s

 !�1

~b;

and

argmin
b

ð~Y � ~XbÞ>R�1ð~Y � ~XbÞ þ k
X

j

vjjbjj; (4)

where R ¼W�1 þ
PS

s¼1 ŝsV s is the covariance matrix of the work-

ing response vector ~Y , and ~X ¼ ½X ; G�. We use the spectral decom-

position of R to rotate ~Y ; ~X and ~b in (4) such that the transformed

data is uncorrelated. Given the current estimate for b; ~b can be

shown to be equal to a generalized ridge-like WLS estimator with
~Xb as an offset. Hence, by profiling out ~b from the objective func-

tion and replacing it by its closed-form estimate, we estimate b by
cycling through its coordinates and minimizing the objective func-
tion with respect to one coordinate at a time. In this work, we focus

on penalized GLMMs for high-dimensional (p>n) GWAS data of
binary traits, for which we can use a lower bound on R so that a sin-

gle spectral decomposition is performed (Böhning and Lindsay,
1988). Although the methods apply to GLMMs for any exponential
family, e.g. counts following a Poisson distribution, we need to per-

form a spectral decomposition of R each time we update the weight
matrix W. Hence, for other distributions, further work is needed to

address these computational limitations for application to high-
dimensional GWAS data. All calculations and algorithmic steps are
detailed in Supplementary Appendix SB.

2.2 Prediction
It is often of interest in genetic association studies to make predic-

tions on a new set of individuals, e.g. the genetic risk of developing a
disease for a binary response or the expected outcome in the case of

a continuous response. In what follows, we compare how predic-
tions are obtained using pglmm versus a GLM with PC adjustment.

2.2.1 pglmm
Suppose a single variance component is needed such that b �
Nð0; s1V1Þ where V1 is the GSM between n subjects that are used

to fit the GLMM (1). We iteratively fit on a training set of size n the
working linear mixed model

~Y ¼ ~Xbþ bþ �;

where � ¼ g0ðlÞðy� lÞ � Nð0;W�1Þ. Let ~Y s be the latent working
vector in a testing set of ns individuals with predictor set ~X s. Similar
to Bhatnagar et al. (2020b), we assume that the marginal joint distri-

bution of ~Y s and ~Y is multivariate Normal:

~Y s
~Y

" #
� N

~X sb
~Xb

" #
;

R11 R12

R21 R22

� � !
;

where R12 ¼ s1V12 and V12 is the ns � n GSM between the testing
and training individuals. It follows from standard normal theory
that

~Y sj~Y ;/; s1; b; ~X ; ~X s �

Nð ~X sbþ R12R�1
22 ð~Y � ~XbÞ;R11 � R12R�1

22 R21Þ:

The predictions are based on the conditional expectation
E½~Y sj~Y ;/; s1;b; ~X ; ~X s�, that is

l̂s ¼ g�1ðE½~Y sj~Y ; /̂; ŝ1; b̂; ~X ; ~X s�Þ

¼ g�1ð ~X sb̂þ ŝ1V12ðW�1 þ ŝ1V1Þ�1ð~Y � ~X b̂ÞÞ

¼ g�1ð ~X sb̂þ V12U 1
ŝ1

D�1 þ U>WU
� ��1

U>Wð~Y � ~X b̂ÞÞ;

(5)

where gð�Þ is the link function and U is the n�n matrix of PCs
obtained from the spectral decomposition of the GSM for training
subjects.

2.2.2 GLM with PC adjustment

Another approach to control for population structure and/or sub-
jects’ relatedness is to use the first r columns of U as unpenalized
fixed effects covariates (Privé et al., 2020). This leads to the follow-
ing GLM

gðlÞ ¼ ~Xbþ Urd;

where U r is the n� r design matrix for the first r PCs and d 2 R
r is

the corresponding vector of fixed effects. Letting ~Y ¼ ~XbþU rdþ
g0ðlÞðy� lÞ be the working response vector, one can show that

d̂ ¼ ðU>r WU rÞ�1U>r Wð~Y � ~X b̂Þ; (6)

where W is the diagonal matrix of GLM weights. Recall that V12 is
the ns � n GSM between the test and training sets subjects such that
the projected PCs on the testing subjects are equal to V12U r. Then,
the estimated mean response l̂s for the testing set is given by

l̂s ¼ g�1ð ~Xs b̂þ V12U rd̂Þ
¼ g�1

�
~Xs b̂þ V12U rðU>r WU rÞ�1U>r Wð~Y � ~X b̂Þ

�
:

(7)

By comparing (5) and (7), we see that both GLM with PC adjust-
ment and pglmm use a projection of the training PCs on the testing
set to predict new responses, but with different coefficients for the
projected PCs. For the former, the estimated coefficients for the first
r projected PCs in (6) are obtained by iteratively solving generalized

least squares (GLS) on the partial working residuals ~Y � ~X b̂. For
pglmm, the estimated coefficients for all projected PCs are also
obtained by iteratively solving GLS on the partial working residuals
~Y � ~X b̂, with an extra ridge penalty for each coefficient that is equal

to ŝ1
�1K�1

i with Ki the ith eigenvalue of V that is associated with the
ith PC.

Hence, pglmm shrinks PCs coefficients proportionally to their
corresponding eigenvalues in a smooth way, while the fixed effect
GLM uses a thresholding approach; the first r predictors with larger
eigenvalues are kept intact, and the others are completely removed.
This implies that the confounding effect from population structure
and/or relatedness on the phenotype is fully captured by the first r
PCs. As we show in simulations, departure from this assumption
may lead to higher false-positive rates and decrease prediction
accuracy.

2.3 Simulation design
We evaluated the performance of our proposed method against that
of a lasso LMM, using the R package ggmix (Bhatnagar et al.,
2020a), and a logistic lasso, using the Julia package GLMNet
which wraps the Fortran code from the original R package
glmnet (Friedman et al., 2010). We compared glmnet when we
included or not the first 10 PCs in the model (glmnetPC). We per-
formed a total of 50 replications for two simulation scenarios, draw-
ing anew genotypes and simulated traits. Values for all simulation
parameters are presented in Table 1.

2.3.1 Simulated genotype from the admixture model

In the first scenario, we studied the performance of all methods for
different population structures by simulating random genotypes
from the BN-PSD admixture model for 10 or 20 subpopulations
with 1D geography or independent subpopulations using the bnpsd
package in R (Ochoa and Storey, 2021). Sample size was set to
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n¼2500. We simulated p¼5000 candidate SNPs and randomly
selected c¼1% to be causal. The kinship matrix V and PCs were
calculated using a set of 50 000 additional simulated SNPs. We
simulated covariates for age and sex using Normal and Binomial dis-
tributions, respectively.

For each replication, subjects were partitioned into training and
test sets using an 80/20 ratio. Variable selection and coefficient esti-
mation were performed on training subjects for all methods. We
compared each method at a fixed number of active predictors, rang-
ing from 5 to either 50 which corresponds to the number of true
causal SNPs. Comparisons were based on three criteria: the ability
to retrieve the causal predictors, measured by the true positive rate

TPR ¼ jf1 � k � p : b̂k 6¼ 0 \ bk 6¼ 0gj
jf1 � k � p : bk 6¼ 0gj ;

the ability to accurately estimate coefficients, measured by the root
mean squared error

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

Xp

k¼1

ðb̂k � bkÞ2
vuut ;

and the ability to predict outcomes in the test sets, measured by the
area under the roc curve (AUC).

2.3.2 Real genotypes from the UK Biobank data

In the second scenario, we compared the performance of all methods
when a high proportion of related individuals are present, using real
genotype data from the UK Biobank. We retained a total of 6731
subjects of White British ancestry having estimated first, second or
third degree relationships with at least one other individual. We
compared methods in a more realistic setting with weaker effect
sizes and more causal variants than the first scenario. We sampled
p ¼ 15 000 candidate SNPs among all chromosomes and randomly
selected c¼1% to be causal. We used PCs as provided with the
dataset. These were computed using a set of unrelated samples and
high-quality markers pruned to minimize LD (Bycroft et al., 2018).
Then, all subjects were projected onto the principal components
using the corresponding loadings. Since the markers that were used
to compute the PCs were potentially sampled as candidate causal
markers in our simulations, we included all candidate SNPs in the
set of markers used for calculating the kinship matrix V. We simu-
lated age using a Normal distribution and used the sex covariate
provided with the data.

For this simulation scenario, we evaluated the performance of all
methods when using cross-validation as a model selection criteria,
rather than fixing the number of active predictors in the model. For

this, the 6731 subjects from the UK Biobank data were randomly
split into training (40%), validation (30%) and test (30%) sets,
ensuring all related individuals were assigned into the same set. For
cross-validation, the full lasso solution path was fitted on the train-
ing set, and the regularization parameter was obtained on the model
which maximized AUC on the validation set. We also evaluated the
performance of our proposed method when using AIC as a model se-
lection criterion. Again, we compared methods performance on the
basis of TPR, AUC on the test sets and RMSE. In addition, we com-
pared each model selection approach on the total number of predic-
tors selected and on the model precision, which is defined as the
proportion of selected predictors that are true positives.

2.3.3 Simulation model

Let S be the set of candidate causal SNPs, with jSj ¼ p� c, then the
causal SNPs fixed effects bj were generated from a Gaussian distri-
bution Nð0; h2

gr
2=jSjÞ, where h2

g is the fraction of variance on the
logit scale that is due to total additive genetic fixed effects. That is,
we assumed the candidate causal markers explained a fraction of the
total polygenic heritability, and the rest was explained by a random
polygenic effect b � Nð0; h2

br
2VÞ. For the first scenario, we simu-

lated a signal-to-noise ratio (SNR) equal to 1 for the fixed genetic
effects (h2

g ¼ 50%) under strong random polygenic effects
(h2

b ¼ 40%). For the second scenario, we simulated fixed effects
using h2

g ¼ 17%, which corresponds to the estimated SNP heritabil-
ity for asthma on the liability scale (see https://nealelab.github.io/
UKBB_ldsc/h2_summary_20002_1111.html), again under strong
random polygenic effects (h2

b ¼ 40%). We then simulated a binary
phenotype using a logistic link function

logitðpÞ ¼ logitðp0Þ � logð1:3Þ � Sexþ logð1:05ÞAge=10

þ
X
j2S

bj � ~Gj þ b; (8)

where the parameter p0 was chosen to specify the prevalence under

the null, and ~Gj is the jth column of the standardized genotype ma-

trix ~gij ¼ ðgij � 2piÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið1� piÞ

p
and pi is the MAF. By using the

spectral decomposition of the kinship matrix V, we can show that

b ¼ Ud, where d � Nð0;h2
br

2DÞ, U is the n�n matrix of PCs, and

D is a diagonal matrix of corresponding eigenvalues. Thus, the un-
measured confounding effect d is correlated with the population
structure through the design matrix of PCs U.

2.4 Real data application
We used the same set of 6731 related subjects from the UK Biobank
dataset presented in Section 2.3.2 to construct a polygenic risk score
(PRS) on two highly heritable binary traits, asthma (self-reported,
UK Biobank code: 20002_1111) and high cholesterol (self-reported,
UK Biobank code: 20002_1473). We present demographics and
number of cases for both analyses in Table 2. After filtering for
SNPs with missing rate smaller than 0.01, MAF above 0.05 and a P-
value for the Hardy–Weinberg exact test above 10�6, a total of
320K genotype SNPs were remaining.

To better understand the contribution of the PRS for predicting
asthma and high cholesterol, we fitted for each trait a null model
with only age, sex, genotyping platform and the first 10 PCs as fixed
effects. Since for highly polygenic traits, it is generally considered
that there are a large number of predictors with small to moderate
effects (O’Connor et al., 2019), we also fitted a standard genomic
best linear unbiased prediction (gBLUP) model (Ødegård et al.,
2018). The gBLUP model corresponds to the null model of pglmm,
i.e. a model where we include age, sex and genotyping platform as
fixed effects, and one random effect with variance–covariance pro-
portional to the GSM. For both gBLUP and pglmm, we did not in-
clude any PC since kinship is accounted for by the random effect.
Finally, we also fitted a logistic lasso in which the top 10 PCs were
included as unpenalized covariates in addition to age, sex and geno-
typing platform (glmnetPC). To evaluate the predictive perform-
ance of the compared methods in independent subjects, we

Table 1. Values for all simulation parameters

Parameter Definition Scenario 1 Scenario 2

BN-PSD model Real genotype

M Number of replications 50 50

h2
g Fraction of variance due

to fixed genetic effects

0.5 0.17

h2
b Fraction of variance due

to random genetic

effects

0.4 0.4

p0 Prevalence under the null 0.1 0.1

n Sample size 2500 6731

p Number of SNPs 5000 15 000

c Fraction of causal SNPs 1% 1%

Note: In the first scenario, we simulated binary phenotypes and random

genotypes from the BN-PSD admixture model using the bnpsd package in R.

In the second scenario, we simulated binary phenotypes using a total of 6731

subjects of White British ancestry from the UK Biobank data having estimated

first, second or third degree relationships with at least one other individual.
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randomly split the subjects in training (80%) and test (20%) sets for
a total of 40 times. For each of the 40 replications, the full lasso so-
lution path was fitted on the training set only. For pglmm, the regu-
larization parameter (k) was selected to minimize the AIC on the
training data. For glmnetPC, the regularization parameter was
obtained by minimizing the deviance using 10-fold cross-validation
on the training data. We compared mean prediction accuracy on the
test sets as well as the median number of predictors included in all
models.

3 Results

3.1 Simulation results for the first scenario
Results for selection of important predictors, as measured by the
mean TPR in 50 replications, are presented in Figure 1. For both 1D
linear admixture and independent subpopulations, glmnet without
PC adjustment failed to retrieve causal markers compared to all
other methods. This is expected under population stratification;
SNPs that differ in frequency between subpopulations are identified
as important predictors because prevalence is not constant across
each group. When the first 10 PCs were added as unpenalized cova-
riates, glmnetPC’s ability to select causal predictors was lesser to
that of pglmm and ggmix for the 20 independent subpopulations.
Since in the independent subpopulations simulated data, each sub-
population indicator function is strongly associated with only a few
PCs, as shown in Supplementary Appendix SE, omitting to include
all important PCs in the model leads to incorrectly capturing the
confounding structure. On the other hand, because there is more
overlap between subpopulations in the admixture data compared to
the independent subpopulations (Reisetter and Breheny, 2021), each
subpopulation indicator function is moderately correlated with
many PCs. Thus, including only the first 10 PCs in the model is
enough to correct for confounding even when K¼20 (bottom-left
panel of Fig. 1). Alternatively, including a random effect with vari-
ance–covariance structure proportional to the GSM correctly adjusts
for population structure in all scenarios while alleviating the burden
of choosing the right number of fixed predictors to include in the
model. Even though ggmix assumes a standard LMM for the binary
trait, it was able to identify causal markers at the same rate as
pglmm.

Results for estimation of SNP effects as measured by the mean
RMSE in 50 replications are presented in Figure 2. Results are con-
sistent with TPR results in that glmnet without PC adjustment per-
formed poorly in all scenarios, while pglmm outperformed all other
methods for the 20 independent subpopulations and performed
comparably with glmnetPC for all other settings. As expected,
ggmix had higher RMSE compared to pglmm and glmnetPC.
Thus, even though ggmix was able to identify causal markers at the
same rate as other methods that accounted for the binary nature of
the response, resulting estimates for the SNP effects were not
accurate.

For both 1D linear admixture and independent subpopulations,
ggmix and glmnet had poor predictive performance for K¼10
and K¼20, as reported in Figure 3. Also, the predictive perform-
ance of glmnetPC was greatly reduced when K¼20 for both ad-
mixture and independent populations, even if in the case of the

admixture data, the RMSE for estimation of SNP effects was com-
parable for glmnetPC and pglmm. This suggests that the observed
discrepancy in predictive accuracy might be caused by how each
method handle the confounding effects. Using only 10 PCs as fixed
effects when K¼20 may result in overfitted coefficients for
glmnetPC, which may in turn potentially decrease prediction ac-
curacy and increase variance of predictions in independent subjects.
By using a ridge-like estimator for the random effects, pglmm is less
likely to overfit the confounding effects compared to glmnetPC.

3.2 Simulation results for the second scenario
In the second simulation scenario, we evaluated the performance of
our method when using AIC or cross-validation as a model selection
strategy, i.e. for selecting the optimal value of the regularization par-
ameter, rather than fixing the number of active predictors in the
model. For all other methods, we used cross-validation to perform
model selection and compared the ability of all methods to adjust
for potential confounding stemming from subjects’ relatedness. We
present median and interquartile values for AUC, model size,
RMSE, TPR and precision in Table 3. In addition to the penalized
methods, we reported prediction accuracy for the standard gBLUP
model where only non-genetic covariates and a polygenic random
effect were included.

Contrarily to the previous simulations under the admixture and
independent populations models, glmnetPC had lower prediction
accuracy compared to glmnet. This highlights the fact that using a
fixed number of PCs to control for sample relatedness is not robust
compared to using a random effect. In comparison to the first simu-
lation scenario, where the TPR was between 30% and 40% when
the number of active predictors in the model was equal to the num-
ber of causal markers, the maximum value for the TPR for all meth-
ods was equal to 17% in the second simulation scenario. This is
because although in both scenarios the proportion of causal markers
was the same (c ¼ 1%), we simulated more causal predictors with
weaker effects size in the second scenario. Indeed, the number of
causal markers and simulated heritability in the second scenario
were equal to c 	 p ¼ 150 and h2

g ¼ 17%, respectively, compared to
c 	 p ¼ 50 and h2

g ¼ 50% in the first scenario.
In term of prediction accuracy and estimation of predictor coeffi-

cients, pglmm performed comparably using either cross-validation
or AIC, while achieving better performance than all other methods.
Moreover, our method led to sparser models with higher precision
than all other methods, especially when using AIC as a model selec-
tion criteria. Thus, using a logistic lasso model with 10 PCs to con-
trol for relatedness led to models with more false positives and
worse prediction accuracy than all other methods, including the lo-
gistic lasso with no PC adjustment. These results highlight once
again the robustness of using a random effect rather than PCs to ac-
count for relatedness between subjects. In summary, by explicitly
modeling the correlation between subjects and binary nature of the
trait, our method led to sparser models with higher precision and
prediction accuracy than all other methods.

3.3 PRS for the UK Biobank real data application
Results for asthma and high cholesterol PRSs are summarized in
Table 4. For asthma, pglmm performed better than all other methods
when comparing AUC on the test sets. In addition, the median number
of predictors selected by pglmm was 2.5 times smaller than for
glmnetPC, and the variability in predictors selected was more import-
ant for glmnetPC, as reported by an IQR value equal to 113.25, com-
pared to 43.25 for pglmm. This is consistent with our simulation
results showing that pglmm leads to sparser models with higher pre-
dictive power than logistic lasso. For high cholesterol, the median num-
ber of predictors selected by both penalized models was equal or close
to 0, which suggests that SNP effects may be too small to detect.
Indeed, both methods based on sparse regression do not perform as
well as either the gBLUP or null model with non-genetic covariates and
10 PCs. For both asthma and high cholesterol, fitting the null model
for pglmm took a median time of approximately 1.7 min, while fitting
the full lasso path for 100 values of the tuning parameter k took a

Table 2. Demographics for the real data application

Asthma High cholesterol

Cases Controls Cases Controls

N (%) 819 (12.2) 5912 (87.8) 883 (13.1) 5848 (86.7)

Age Median (IQR) 58 (16) 59 (15) 64 (7) 57 (16)

Male (%) 306 (37.4) 2571 (43.5) 467 (52.9) 2410 (41.2)

Note: We retained a total of 6731 subjects of White British ancestry from

the UK Biobank data having estimated first, second or third degree relation-

ships with at least one other individual.
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median time of 51 and 55 min, respectively. Analyses were performed
using 2 cores of an AMD Rome 7532 (2.40 GHz), each with 64GB of
RAM. As implemented in the glmnet package and other high-
dimensional sparse regression methods, we use sequential strong rules
for solving the lasso problem such that most of the predictors are dis-
carded from the optimization problem at each iteration (Tibshirani
et al., 2011). This allows our sparse regularized mixed regression
method to remain computationally efficient when the number of genet-
ic variants is very large.

3.4 Computational efficiency
In this additional simulation scenario, we compared the computa-
tional efficiency of all methods. We considered a grid of values for
the sample size n and number of predictors p, and we simulated a
total of 10 replications of the 1D linear admixture model with 20
populations, for each of the nine combinations of (n, p). For each
replication, we randomly selected 1% of the predictors to be causal.
Simulations were performed on a single core of an AMD Rome
7532 (2.40 GHz) with 64 GB of RAM. Results for the computation-
al efficiency of all methods for different sample sizes and number of
predictors are reported in Table 5. The median computational time
of pglmm ranged between 5.3 min (n¼2500, p ¼ 10 000) and
48.6 min (n¼7500, p ¼ 30 000), while ggmix running time varied
between 13.7 and 93.3 min, respectively. Thus, pglmm was consid-
erably faster than ggmix because contrarily to the latter, we esti-
mate the variance components only once under the null model,
which dramatically decreases the computational complexity of the
regularized minimization problem. The maximum running time for
glmnetPC was equal to 2 min, for the simulations with n¼7500
and p ¼ 30 000. The large difference in computation time between
pglmm and glmnetPC is explained by the dimension of the param-
eter space that each method is estimating. Indeed, to account for

population structure, glmnetPC only needs to fit the first 10 PCs,
while under the mixed model approach, pglmm needs to estimate
the random effects vector of dimension equal to the sample size. As
we show in Supplementary Appendix SB, by profiling out the ran-
dom effects vector from the regularized minimization problem in
our proposed algorithm, we need to rotate the response vector using
the eigenvectors of the variance–covariance matrix after each WLS
iteration such that the transformed data is uncorrelated. This
requires performing multiple matrix-vector multiplications, with
complexity Oðn2Þ, while glmnetPC only needs performing vector
multiplications with complexity O(n).

4 Discussion

We have introduced a new method called pglmm based on regular-
ized PQL estimation, for selecting important predictors and estimat-
ing their effects in high-dimensional GWAS data, accounting for
population structure, close relatedness and binary nature of the trait.
By simulating random genotypes from the BN-PSD admixture
model for 10 or 20 subpopulations with 1D geography or independ-
ent subpopulations, we showed that pglmm was markedly better
than a logistic lasso with PC adjustment when the number of subpo-
pulations was greater than the number of PCs included. We also
showed that a lasso LMM was unable to estimate predictor effects
with accuracy for binary responses, which greatly decreased its pre-
dictive performance. Performance assessment was based on TPR of
selected predictors, RMSE of estimated effects and AUC of predic-
tions. These results strongly advocate for using methods that expli-
citly account for the binary nature of the trait while effectively
controlling for population structure and relatedness in genetic
studies.

Table 4. PRS results for asthma and high cholesterol using a total

of 6731 subjects of White British ancestry from the UK Biobank

data having estimated first, second or third degree relationships

with at least one other individual

Model AUCtest Model size

Asthma Mean (SD) Median (IQR)

Covariates þ 10PCs 0.5227 (0.021) –

gBLUP 0.5447 (0.017) –

glmnetPC 0.5258 (0.020) 42 (113.25)

pglmm 0.5484 (0.017) 16.5 (43.25)

High cholesterol

Covariates þ 10PCs 0.7126 (0.020) –

gBLUP 0.7142 (0.020) –

glmnetPC 0.7106 (0.020) 0 (7.25)

pglmm 0.7118 (0.020) 0.5 (16)

Note: To find the optimal regularization parameter for both penalized

methods, we split the subjects in training (80%) and test (20%) sets for a total

of 40 times.

Table 5. Median computation time in minutes of pglmm, glmnetPC

and ggmix for fitting a sequence of 100 regression models for dif-

ferent sample sizes and number of predictors

n p pglmm glmnetPC ggmix

Null model Full model Full model Full model

2500 10 000 0.6 5.3 0.2 13.7

20 000 – 11.0 0.4 26.6

30 000 – 13.8 0.6 34.0

5000 10 000 2.1 11.9 0.6 25.0

20 000 – 24.4 1.0 42.0

30 000 – 34.9 1.2 55.8

7500 10 000 4.8 24.0 1.3 51.3

20 000 – 33.5 1.7 78.2

30 000 – 48.6 2.0 93.3

Note: For pglmm, we also present the median computation time for fitting

the null model. Simulations were performed on a single core of an AMD

Rome 7532 (2.40 GHz) with 64 GB of RAM. We simulated a total of 10 rep-

lications of the 1D linear admixture model with 20 populations.

Table 3. Results of the model selection simulations for the second scenario

ggmix glmnet glmnetPC pglmm (AIC) pglmm (CV) gBLUP

Model size 341 (1598) 226 (1050) 378 (1021) 50.5 (54.2) 102 (487) 0 (0)

AUC 0.558 (0.023) 0.561 (0.030) 0.552 (0.022) 0.569 (0.021) 0.568 (0.028) 0.549 (0.020)

RMSE 0.0334 (0.0038) 0.0328 (0.0117) 0.0336 (0.0127) 0.0318 (0.0036) 0.0324 (0.0051) –

TPR 0.167 (0.248) 0.133 (0.192) 0.17 (0.165) 0.06 (0.0517) 0.08 (0.155) –

Precision 0.0576 (0.141) 0.0854 (0.117) 0.0584 (0.0653) 0.203 (0.156) 0.107 (0.200) –

Note: For each replication, the best model for pglmm was chosen using either AIC, or CV. For all other methods, the best model was chosen using CV. For all

metrics, we report median and interquartile range. Since the gBLUP model makes prediction using only non-genetic covariates and a polygenic random effect, we

only report median AUC values.
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In the second simulation scenario, we used real genotype data from
a subset of related individuals from the UK Biobank data to simulate
binary responses, and showed that pglmm effectively led to sparser
models with higher precision and prediction accuracy than a lasso
LMM and a logistic lasso model with or without PC adjustment. We
also demonstrated that using AIC as a model selection strategy led to
similar prediction performance than cross-validation, with even sparser
models. Using the same dataset, we illustrated the potential advantages
of pglmm over a logistic lasso with PC adjustment in a real data appli-
cation for constructing a PRS on two highly heritable binary traits.
Although these analyses have limited power compared to using all UK
Biobank subjects of White British ancestry, it is often the case that
researchers may be limited to relatively smaller datasets. For these
cases, it is of primary importance to avoid discarding samples based on
relatedness and properly account for the possible correlation between
observations. Thus, we used this reduced sample from the UK Biobank
to demonstrate the potential advantages of using penalized multivari-
able GLMMs in smaller datasets where subjects’ relatedness might be
an important confounder.

A limitation of pglmm compared to a logistic lasso with PC ad-
justment is the computational cost of performing multiple matrix
calculations that comes from incorporating a GSM to account for
population structure and relatedness between individuals. These
computations are clearly too prohibitive for application to large
cohorts such as the full UK Biobank with a total of 500K samples.
Solutions to explore in order to increase computation speed and de-
crease memory usage would be the use of conjugate gradient meth-
ods with a diagonal preconditioner matrix, as proposed by Zhou
et al. (2018), and to use a sparse GSM to adjust for the sample re-
latedness (Jiang et al., 2019).

In this study, we focused solely on the lasso as a regularization
penalty for the genetic markers effects. However, it is known that
estimated effects by lasso will have large biases because the resulting
shrinkage is constant irrespective of the magnitude of the effects.
Alternative regularizations like the Smoothly Clipped Absolute
Deviation (SCAD) (Fan and Li, 2001) and Minimax Concave
Penalty (MCP) (Zhang, 2010) could be explored, although we note
that both SCAD and MCP require tuning an additional parameter
which controls the relaxation rate of the regularization. Another al-
ternative includes implementation of the relaxed lasso, which has
shown to produce sparser models with equal or lower prediction
loss than the regular lasso estimator for high-dimensional data
(Meinshausen, 2007). Finally, it would also be of interest to explore
if tuning the generalized ridge regularization on the random effects,
or replacing it by a lasso regularization to perform selection of indi-
vidual random effects, could result in better predictive performance.
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