Introduction to Regression Trees

Sahir Rai Bhatnagar, PhD Candidate (Biostatistics)

Department of Epidemiology, Biostatistics and Occupational Health

February 19, 2018

Introduction

What?

- A prediction model consisting of a series of If-Else statements
- e.g. Vladimir Guerrero: 7 years, 200 hits. Predict his salary for next year?

Background on CART

Recursive partitioning or segmentation methods were first introduced in the 1960s

- They were formalized by Breiman et al. (1984) [1] under the acronym CART: Classification and Regression Tree.
- CART can be applied to both regression and classification problems depending on the response (outcome) variable:
 - 1. qualitative (classification)
 - 2. quantitative (regression)

Regression vs. Classification

Fig.: Classification

Regression vs. Classification

Today's class \rightarrow regression

Terminology

A motivating example

Major League Baseball (MLB) data from the 1986 and 1987 seasons. Available in the ISLR [4] R package:

```
library(ISLR)
data(Hitters)
```

Major League Baseball (MLB) data from the 1986 and 1987 seasons. Available in the ISLR [4] R package:

```
library(ISLR)
data(Hitters)
```

Response variable y_i , i = 1, ..., 263: 1987 annual salary on opening day in thousands of dollars

Major League Baseball (MLB) data from the 1986 and 1987 seasons. Available in the ISLR [4] R package:

```
library(ISLR)
data(Hitters)
```

- Response variable y_i , i = 1, ..., 263: 1987 annual salary on opening day in thousands of dollars
- Predictor variables:
 - 1. X_1 : Number of years in the major leagues

Major League Baseball (MLB) data from the 1986 and 1987 seasons. Available in the ISLR [4] R package:

```
library(ISLR)
data(Hitters)
```

- Response variable y_i , i = 1, ..., 263: 1987 annual salary on opening day in thousands of dollars
- Predictor variables:
 - 1. X_1 : Number of years in the major leagues
 - 2. *X*₂: Number of hits in 1986

Major League Baseball (MLB) data from the 1986 and 1987 seasons. Available in the ISLR [4] R package:

```
library(ISLR)
data(Hitters)
```

- Response variable y_i , i = 1, ..., 263: 1987 annual salary on opening day in thousands of dollars
- Predictor variables:
 - 1. X_1 : Number of years in the major leagues
 - 2. *X*₂: Number of hits in 1986

Objective

Predict the annual (**salary**) at the start of the 1987 season using the predictor variables (**years** and **hits**).

The Data

A sample of what the data looks like:

	Years	Hits	Salary
-Andre Dawson	11	141	500
-Andres Galarraga	2	87	92
-Barry Bonds	1	92	100
-Cal Ripken	6	177	1350
-Gary Carter	13	125	1926
-Joe Carter	4	200	250
-Ken Griffey	14	150	1000
-Mike Schmidt	2	1	2127
-Tony Gwynn	5	211	740

A Visual Representation of the Data

How does CART work?

Roughly speaking, there are two steps [3]:

How does CART work?

Roughly speaking, there are two steps [3]:

- 1. We divide the predictor space that is, the set of possible values for X_1, X_2, \ldots, X_p , into J non-overlapping and exhaustive regions, R_1, R_2, \ldots, R_J .
- 2. For every observation that falls into the region R_j , we make the same prediction, which is simply the mean of the response values for the training observations in R_j .

First Split

Second Split

A Mistake in the Data

	Years	Hits	Salary
-Andre Dawson	11	141	500.00
-Andres Galarraga	2	87	91.50
-Barry Bonds	1	92	100.00
-Cal Ripken	6	177	1350.00
-Gary Carter	13	125	1925.57
-Joe Carter	4	200	250.00
-Ken Griffey	14	150	1000.00
-Mike Schmidt	2	1	2127.33
-Tony Gwynn	5	211	740.00

Mike Schmidt started his career in 1972, and was inducted into the Baseball Hall of Fame in 1995.

Second Split

Salary • 500 • 1000 • 1500 • 2000

Third Split

Salary • 500 • 1000 • 1500 • 2000

Third Split

Salary • 500 • 1000 • 1500 • 2000

Third Split

Salary • 500 • 1000 • 1500 • 2000

And if we continue...

Stop if the number of observations is less than 20

The Details

The Details

The CART algorithm requires 3 components:

- 1. Defining a criterion to select the best partition among all predictors.
- 2. A rule to decide when a node is terminal, i.e., it becomes a leaf.
- 3. Pruning the tree to avoid over-fitting.

1. Selecting the Best Partition

The objective is the find the regions R_1, \ldots, R_J that minimize the squared error loss:

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2 \tag{1}$$

• \hat{y}_{R_j} : the mean response for the training observations within the *j*th box

1. Selecting the Best Partition

The objective is the find the regions R_1, \ldots, R_j that minimize the squared error loss:

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2 \tag{1}$$

- \hat{y}_{R_j} : the mean response for the training observations within the *j*th box
- Finding the solution to (1) is computationally infeasible (NP-hard). Why?

Exhaustive Search for J = 4

■ *Top-Down*: It begins at the top of the tree at which point all observations belong to a single region.

- *Top-Down*: It begins at the top of the tree at which point all observations belong to a single region.
- Binary Splits: Each split at the value s for the *j*th predictor creates exactly two children; R₁ and R₂ which leads to the greatest possible reduction in the *residual sum of squares*:

$$R_1(j,s) = \left\{ X | X_j < s \right\} \qquad \text{and} \qquad R_2(j,s) = \left\{ X | X_j \ge s \right\}$$

- *Top-Down*: It begins at the top of the tree at which point all observations belong to a single region.
- Binary Splits: Each split at the value s for the *j*th predictor creates exactly two children; R₁ and R₂ which leads to the greatest possible reduction in the *residual sum of squares*:

$$R_1(j,s) = \left\{ X | X_j < s \right\} \qquad \text{and} \qquad R_2(j,s) = \left\{ X | X_j \ge s \right\}$$

The goal is to find the values j and s that minimize the equation:

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$
(2)

- *Top-Down*: It begins at the top of the tree at which point all observations belong to a single region.
- Binary Splits: Each split at the value s for the *j*th predictor creates exactly two children; R₁ and R₂ which leads to the greatest possible reduction in the *residual sum of squares*:

$$R_1(j,s) = \left\{ X | X_j < s \right\} \qquad \text{and} \qquad R_2(j,s) = \left\{ X | X_j \ge s \right\}$$

The goal is to find the values j and s that minimize the equation:

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$
(2)

Greedy: at each step of the tree-building process, the best split is made at that particular step, rather than looking ahead and picking a split that will lead to a better tree in some future step

The Best Split Using a "Greedy" Approach

2. Stopping Rule

- minsplit: To avoid creating splits that will lead to very small leaves, the minimum number of observations that must exist in a node in order for a split to be attempted (minsplit = 20 is the default in rpart).
- minbucket: the minimum number of observations in any terminal leaf node (minbucket = minsplit/3 is the default in rpart)

3. Pruning the Tree

- The process described above may produce good predictions on the training set, but is likely to overfit the data, leading to poor test set performance.
- This is because the resulting tree, T_{max} with |T_{max}| leaves, might be too complex.
- A smaller tree with fewer splits (that is, fewer regions *R*₁,...,*R*_J) might lead to lower **prediction variance** and better interpretation at the cost of a little **bias**. What is this phenomenon called?

3. Pruning the Tree

- We first grow the biggest tree possible T_{max} and then prune it back in order to obtain a subtree
- We consider adding a **penalty** to our loss function in order to penalize excessively large trees.
- For each value of α , there exists a subtree $T \subset T_{max}$ that minimizes:

$$\sum_{m=1}^{|T|} \sum_{i:x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$
(3)

- |T| indicates the number of terminal nodes of the tree *T*, R_m is the rectangle corresponding to the *m*th leaf, and \hat{y}_{R_m} is the predicted response associated with R_m .
- a is chosen using v-fold cross-validation (v → xval=10 in rpart by default).

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Complete sample

Over-fitting

Fitting and Pruning with **rpart**

```
cart_fit <- rpart::rpart(Salary ~ Years + Hits, data = Hitters)
min_ind <- which.min(cart_fit$cptable[, "xerror"])
min_cp <- cart_fit$cptable[min_ind, "CP"]
prune_fit <- rpart::prune(cart_fit, cp = min_cp)
rpart.plot::rpart.plot(prune_fit)</pre>
```


Comparison with a Linear Model

Comparison: Linear Model vs. CART

Characteristic ^a	Linear Model	CART
Linearity Assumption	1	X
Distributional Assumptions	1	×
Robust to multicollinearity	×	1
Handles complex interactions	X	1
Allows for missing data	X	1
Confidence Intervals, <i>p</i> -values	\checkmark	×
^a √: ves, X : no		

Linear Model

lm(Salary ~ Years * Hits, data = Hitters)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	159.55	95.65	1.67	0.10
Years	-16.08	11.38	-1.41	0.16
Hits	0.60	0.87	0.69	0.49
Years:Hits	0.54	0.11	5.08	0.00

Table: R2 = 0.41

Regression Surface

Fig.: CART

RMSE Performance: 10 times 10-fold CV

R^2 Performance: 10 times 10-fold CV

CART models are easy to interpret

- You don't need to pre-define relationships between variables
- Automatically handles higher-order interactions

Limitations

• CART models generally produce unstable predictions (next class \rightarrow random forests)

Exercise

Build a tree by hand = no software!

Build a tree using the dataset provided below

Use the parameters minsplit = 6 and minbucket = 2

	Years	Hits	Salary
-Rey Quinones	1	68	70
-Barry Bonds	1	92	100
-Pete Incaviglia	1	135	172
-Dan Gladden	4	97	210
-Juan Samuel	4	157	640
-Joe Carter	4	200	250
-Tim Wallach	7	112	750
-Rafael Ramirez	7	119	875
-Harold Baines	7	169	950

References I

- [1] Leo Breiman et al. Classification and regression trees. CRC press, 1984.
- [2] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. *The elements of statistical learning*. Vol. 1. Springer series in statistics New York, 2001.
- [3] Gareth James et al. An introduction to statistical learning. Vol. 112. Springer, 2013.
- [4] Gareth James et al. "Package 'ISLR". In: (2017).
- [5] Olivier Lopez, Xavier Milhaud, and Pierre-Emmanuel Thérond. "Arbres de régression et de classification (CART)". In: l'actuariel 15 (2015), pp. 42–44.

Session Info

```
R version 3.4.1 (2017-06-30)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.3 LTS
Matrix products: default
BLAS: /usr/lib/openblas-base/libblas.so.3
LAPACK: /usr/lib/libopenblasp-r0.2.18.so
attached base packages:
[1] methods stats
                        graphics grDevices utils
                                                      datasets base
other attached packages:
[1] dplyr 0.7.2
                         purrr 0.2.3
                                             readr 1.1.1
 [4] tidyr 0.7.1
                                            tidvverse 1.1.1
                        tibble 1.4.2
 [7] caret_6.0-77
                        lattice_0.20-35
                                            plotmo_3.3.4
[10] TeachingDemos 2.10
                        plotrix 3.6-6
                                            visreg 2.4-1
[13] sjmisc 2.6.1
                         sjPlot 2.3.3
                                            cowplot 0.8.0.9000
[16] ggplot2_2.2.1.9000
                        xtable 1.8-2
                                             rpart.plot 2.1.2
[19] rpart 4.1-11
                         data.table 1.10.4-3 ISLR 1.2
[22] knitr 1.19
loaded via a namespace (and not attached):
 [1] TH.data 1.0-8
                       minga 1.2.4
                                           colorspace 1.3-2
 [4] class 7.3-14
                       modeltools 0.2-21
                                           silabelled 1.0.1
 [7] glmmTMB_0.1.1
                                           DT 0.2
                       DRR_0.0.2
[10] prodlim 1.6.1
                       mvtnorm 1.0-6
                                           lubridate 1.6.0
[13] xml2 1.1.1
                       coin 1.2-1
                                           RSkittleBrewer 1.1
[16] codetools_0.2-15
                        splines_3.4.1
                                           mnormt 1.5-5
[19] robustbase 0.92-7
                        effects 3.1-2
                                           RcppRoll 0.2.2
[22] jsonlite 1.5
                        nloptr 1.0.4
                                           broom 0.4.2
[25] ddalpha 1.2.1
                                           shinv 1.0.5
                        kernlab 0.9-25
[28] compiler 3.4.1
                        httr 1.3.1
                                           sjstats 0.11.0
[31] assertthat 0.2.0
                       Matrix 1.2-11
                                           lazyeval 0.2.1
[34] htmltools 0.3.6
                        tools 3.4.1
                                           bindrcpp_0.2
[37] coda 0.19-1
                        gtable 0.2.0
                                           glue 1.1.1
```