
1

Introduction to Regression Trees

Sahir Rai Bhatnagar, PhD Candidate (Biostatistics)

Department of Epidemiology, Biostatistics and Occupational Health

February 19, 2018

2

Introduction

3

What?
A prediction model consisting of a series of If-Else
statements
e.g. Vladimir Guerrero: 7 years, 200 hits. Predict his salary
for next year?

Years < 4.5

Hits < 118226
n=90

465
n=90

949
n=83

yes no

4

Background on CART

Recursive partitioning or segmentation methods were first
introduced in the 1960s

They were formalized by Breiman et al. (1984) [1] under
the acronym CART: Classification and Regression Tree.

CART can be applied to both regression and classification
problems depending on the response (outcome) variable:
1. qualitative (classification)

2. quantitative (regression)

5

Regression vs. Classification

Years < 4.5

Hits < 118226
n=90

465
n=90

949
n=83

yes no

Fig.: Regression

sex = male

age >= 9.5

sibsp >= 2.5

died
0.38

100%

died
0.19
64%

died
0.17
61%

survived
0.53
4%

died
0.05
2%

survived
0.89
2%

survived
0.73
36%

yes no

Fig.: Classification

Today’s class→ regression

5

Regression vs. Classification

Years < 4.5

Hits < 118226
n=90

465
n=90

949
n=83

yes no

Fig.: Regression

sex = male

age >= 9.5

sibsp >= 2.5

died
0.38

100%

died
0.19
64%

died
0.17
61%

survived
0.53
4%

died
0.05
2%

survived
0.89
2%

survived
0.73
36%

yes no

Fig.: Classification

Today’s class→ regression

6

Terminology

Root of
the tree

Node
C

leaves

The parent
of node C

The children
of node C

Tr
ee

 D
ep

th
 =

 N
um

be
r o

f s
pl

its
 =

 2

7

A motivating example

8

Prediction of Major League Baseball Salaries

Major League Baseball (MLB) data from the 1986 and 1987
seasons. Available in the ISLR [4] R package:
library(ISLR)
data(Hitters)

Response variable yi, i = 1, . . . , 263: 1987 annual salary on
opening day in thousands of dollars

Predictor variables:
1. X1: Number of years in the major leagues

2. X2: Number of hits in 1986

Objective
Predict the annual (salary) at the start of the 1987 season
using the predictor variables (years and hits).

8

Prediction of Major League Baseball Salaries

Major League Baseball (MLB) data from the 1986 and 1987
seasons. Available in the ISLR [4] R package:
library(ISLR)
data(Hitters)

Response variable yi, i = 1, . . . , 263: 1987 annual salary on
opening day in thousands of dollars

Predictor variables:
1. X1: Number of years in the major leagues

2. X2: Number of hits in 1986

Objective
Predict the annual (salary) at the start of the 1987 season
using the predictor variables (years and hits).

8

Prediction of Major League Baseball Salaries

Major League Baseball (MLB) data from the 1986 and 1987
seasons. Available in the ISLR [4] R package:
library(ISLR)
data(Hitters)

Response variable yi, i = 1, . . . , 263: 1987 annual salary on
opening day in thousands of dollars

Predictor variables:
1. X1: Number of years in the major leagues

2. X2: Number of hits in 1986

Objective
Predict the annual (salary) at the start of the 1987 season
using the predictor variables (years and hits).

8

Prediction of Major League Baseball Salaries

Major League Baseball (MLB) data from the 1986 and 1987
seasons. Available in the ISLR [4] R package:
library(ISLR)
data(Hitters)

Response variable yi, i = 1, . . . , 263: 1987 annual salary on
opening day in thousands of dollars

Predictor variables:
1. X1: Number of years in the major leagues

2. X2: Number of hits in 1986

Objective
Predict the annual (salary) at the start of the 1987 season
using the predictor variables (years and hits).

8

Prediction of Major League Baseball Salaries

Major League Baseball (MLB) data from the 1986 and 1987
seasons. Available in the ISLR [4] R package:
library(ISLR)
data(Hitters)

Response variable yi, i = 1, . . . , 263: 1987 annual salary on
opening day in thousands of dollars

Predictor variables:
1. X1: Number of years in the major leagues

2. X2: Number of hits in 1986

Objective
Predict the annual (salary) at the start of the 1987 season
using the predictor variables (years and hits).

9

The Data

A sample of what the data looks like:

Years Hits Salary
-Andre Dawson 11 141 500

-Andres Galarraga 2 87 92
-Barry Bonds 1 92 100
-Cal Ripken 6 177 1350
-Gary Carter 13 125 1926
-Joe Carter 4 200 250
-Ken Griffey 14 150 1000

-Mike Schmidt 2 1 2127
-Tony Gwynn 5 211 740

10

A Visual Representation of the Data

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0

50

100

150

200

0 5 10 15 20 25
Years

H
its

Salary ● ● ● ●500 1000 1500 2000

11

How does CART work?

Roughly speaking, there are two steps [3]:

1. We divide the predictor space - that is, the set of possible
values for X1, X2, . . . , Xp, into J non-overlapping and
exhaustive regions, R1,R2, . . . ,RJ.

2. For every observation that falls into the region Rj, we
make the same prediction, which is simply the mean of
the response values for the training observations in Rj.

11

How does CART work?

Roughly speaking, there are two steps [3]:

1. We divide the predictor space - that is, the set of possible
values for X1, X2, . . . , Xp, into J non-overlapping and
exhaustive regions, R1,R2, . . . ,RJ.

2. For every observation that falls into the region Rj, we
make the same prediction, which is simply the mean of
the response values for the training observations in Rj.

12

First Split

R2

 mean=697

R1

 mean=226

0

100

200

0 5 10 15 20 25
Years

H
its

Salary 500 1000 1500 2000

13

Second Split

R1

 mean=204

R2

 mean=454

0

50

100

150

200

250

0 5 10 15 20 25
Years

H
its

Salary 500 1000 1500 2000

14

A Mistake in the Data

Years Hits Salary
-Andre Dawson 11 141 500.00

-Andres Galarraga 2 87 91.50
-Barry Bonds 1 92 100.00
-Cal Ripken 6 177 1350.00
-Gary Carter 13 125 1925.57
-Joe Carter 4 200 250.00
-Ken Griffey 14 150 1000.00

-Mike Schmidt 2 1 2127.33
-Tony Gwynn 5 211 740.00

Mike Schmidt started his career in 1972, and was inducted
into the Baseball Hall of Fame in 1995.

15

Second Split

R1

 mean=204
R4

 mean=949

R3

 mean=465

R2

 mean=454

0

50

100

150

200

250

0 5 10 15 20 25
Years

H
its

Salary 500 1000 1500 2000

16

Third Split

R1

 mean=142

R3

 mean=454

R2

 329

0

50

100

150

200

250

0 5 10 15 20 25
Years

H
its

Salary 500 1000 1500 2000

17

Third Split

R1

 mean=142

R5

 mean=518

R3

 mean=454

R2

 329

R4

 335

0

50

100

150

200

250

0 5 10 15 20 25
Years

H
its

Salary 500 1000 1500 2000

18

Third Split

R1

 mean=142
R7

 mean=1328

R5

 mean=518

R3

 mean=454

R2

 329

R4

 335

R6

 mean=914

0

50

100

150

200

250

0 5 10 15 20 25
Years

H
its

Salary 500 1000 1500 2000

19

And if we continue...

0

50

100

150

200

250

0 5 10 15 20 25
Years

H
its

Salary 500 1000 1500 2000

20

Stop if the number of observations is less than 20
Years < 4.5

Hits >= 42

Years < 3.5

Hits < 114

Years < 2.5

Hits < 82

Hits < 122

Hits < 118

Years < 6.5

Hits < 76

Hits < 90

Hits < 50

Years >= 13

Years < 8.5

Hits < 185

Years < 5.5

Hits < 142

Years < 12

Years >= 9.5

Hits >= 152

Hits < 16076
n=11

111
n=12

132
n=13

206
n=19

252
n=18

483
n=9

454
n=8

282
n=12

380
n=14

348
n=12

459
n=13

480
n=7

549
n=13

658
n=19

622
n=8

719
n=7

847
n=13

948
n=10

688
n=8

1075
n=17

1170
n=13

1328
n=7

yes no

21

The Details

22

The Details

The CART algorithm requires 3 components:

1. Defining a criterion to select the best partition among all
predictors.

2. A rule to decide when a node is terminal, i.e., it becomes a
leaf.

3. Pruning the tree to avoid over-fitting.

23

1. Selecting the Best Partition

The objective is the find the regions R1, . . . ,RJ that minimize
the squared error loss:

J∑
j=1

∑
i∈Rj

(yi − ŷRj)
2 (1)

ŷRj : the mean response for the training observations
within the jth box

Finding the solution to (1) is computationally infeasible
(NP-hard). Why?

23

1. Selecting the Best Partition

The objective is the find the regions R1, . . . ,RJ that minimize
the squared error loss:

J∑
j=1

∑
i∈Rj

(yi − ŷRj)
2 (1)

ŷRj : the mean response for the training observations
within the jth box

Finding the solution to (1) is computationally infeasible
(NP-hard). Why?

24

Exhaustive Search for J = 4

25

1. A Top-Down “Greedy” Approach
Top-Down: It begins at the top of the tree at which point
all observations belong to a single region.

Binary Splits: Each split at the value s for the jth predictor
creates exactly two children; R1 and R2 which leads to the
greatest possible reduction in the residual sum of squares:

R1(j, s) =
{
X|Xj < s

}
and R2(j, s) =

{
X|Xj ≥ s

}
The goal is to find the values j and s that minimize the
equation: ∑

i:xi∈R1(j,s)
(yi − ŷR1)2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)2 (2)

Greedy: at each step of the tree-building process, the best
split is made at that particular step, rather than looking
ahead and picking a split that will lead to a better tree in
some future step

25

1. A Top-Down “Greedy” Approach
Top-Down: It begins at the top of the tree at which point
all observations belong to a single region.
Binary Splits: Each split at the value s for the jth predictor
creates exactly two children; R1 and R2 which leads to the
greatest possible reduction in the residual sum of squares:

R1(j, s) =
{
X|Xj < s

}
and R2(j, s) =

{
X|Xj ≥ s

}

The goal is to find the values j and s that minimize the
equation: ∑

i:xi∈R1(j,s)
(yi − ŷR1)2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)2 (2)

Greedy: at each step of the tree-building process, the best
split is made at that particular step, rather than looking
ahead and picking a split that will lead to a better tree in
some future step

25

1. A Top-Down “Greedy” Approach
Top-Down: It begins at the top of the tree at which point
all observations belong to a single region.
Binary Splits: Each split at the value s for the jth predictor
creates exactly two children; R1 and R2 which leads to the
greatest possible reduction in the residual sum of squares:

R1(j, s) =
{
X|Xj < s

}
and R2(j, s) =

{
X|Xj ≥ s

}
The goal is to find the values j and s that minimize the
equation: ∑

i:xi∈R1(j,s)
(yi − ŷR1)2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)2 (2)

Greedy: at each step of the tree-building process, the best
split is made at that particular step, rather than looking
ahead and picking a split that will lead to a better tree in
some future step

25

1. A Top-Down “Greedy” Approach
Top-Down: It begins at the top of the tree at which point
all observations belong to a single region.
Binary Splits: Each split at the value s for the jth predictor
creates exactly two children; R1 and R2 which leads to the
greatest possible reduction in the residual sum of squares:

R1(j, s) =
{
X|Xj < s

}
and R2(j, s) =

{
X|Xj ≥ s

}
The goal is to find the values j and s that minimize the
equation: ∑

i:xi∈R1(j,s)
(yi − ŷR1)2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)2 (2)

Greedy: at each step of the tree-building process, the best
split is made at that particular step, rather than looking
ahead and picking a split that will lead to a better tree in
some future step

26

The Best Split Using a “Greedy” Approach

27

2. Stopping Rule

minsplit: To avoid creating splits that will lead to very
small leaves, the minimum number of observations that
must exist in a node in order for a split to be attempted
(minsplit = 20 is the default in rpart).

minbucket: the minimum number of observations in any
terminal leaf node (minbucket = minsplit/3 is the
default in rpart)

28

3. Pruning the Tree

The process described above may produce good
predictions on the training set, but is likely to overfit the
data, leading to poor test set performance.

This is because the resulting tree, Tmax with |Tmax| leaves,
might be too complex.

A smaller tree with fewer splits (that is, fewer regions
R1, . . . ,RJ) might lead to lower prediction variance and
better interpretation at the cost of a little bias. What is
this phenomenon called?

29

3. Pruning the Tree
We first grow the biggest tree possible Tmax and then prune it
back in order to obtain a subtree

We consider adding a penalty to our loss function in order to
penalize excessively large trees.

For each value of α, there exists a subtree T ⊂ Tmax that
minimizes:

|T|∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)2 + α|T| (3)

|T| indicates the number of terminal nodes of the tree T, Rm is
the rectangle corresponding to the mth leaf, and ŷRm is the
predicted response associated with Rm.

α is chosen using v-fold cross-validation (v→ xval=10 in
rpart by default).

30

Background on Cross-Validation

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Complete sample

31

Background on Cross-Validation

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Training set Test set

Complete sample

32

Background on Cross-Validation

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Training set Test set

Complete sample

33

Background on Cross-Validation

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Training set Test set

Complete sample

i years yi yi
(pred)

U 5 373

V 3 277

W 15 1456

X 4 455

Y 1 235

Z 9 987

34

Background on Cross-Validation

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Training set Test set

Complete sample

i years yi yi
(pred)

U 5 373 697

V 3 277 226

W 15 1456 697

X 4 455 226

Y 1 235 226

Z 9 987 697

35

Background on Cross-Validation

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Training set Test set

Complete sample

i years yi yi
(pred)

U 5 373 697

V 3 277 226

W 15 1456 697

X 4 455 226

Y 1 235 226

Z 9 987 697

36

Background on Cross-Validation
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Complete sample

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

O P Q R S T

E F G H

A B C D E F G H I J K L M N O P Q R S T U V W X Y ZA B C D

1

2

3

4

5

Training

Test

37

Over-fitting

●

●

●
● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.
4

0.
6

0.
8

1.
0

1.
2

Number of Splits

 M
ea

n
S

qu
ar

ed
 E

rr
or

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

Complete Data Set
10−Fold CV

38

Fitting and Pruning with rpart
cart_fit <- rpart::rpart(Salary ~ Years + Hits, data = Hitters)
min_ind <- which.min(cart_fit$cptable[, "xerror"])
min_cp <- cart_fit$cptable[min_ind, "CP"]
prune_fit <- rpart::prune(cart_fit, cp = min_cp)
rpart.plot::rpart.plot(prune_fit)

Years < 4.5

Hits < 118226
n=90

465
n=90

949
n=83

yes no

39

Comparison with a Linear Model

40

Comparison: Linear Model vs. CART

Characteristica Linear Model CART
Linearity Assumption 3 7

Distributional Assumptions 3 7

Robust to multicollinearity 7 3

Handles complex interactions 7 3

Allows for missing data 7 3

Confidence Intervals, p-values 3 7

a 3: yes, 7: no

41

Linear Model

lm(Salary ~ Years * Hits, data = Hitters)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 159.55 95.65 1.67 0.10

Years -16.08 11.38 -1.41 0.16
Hits 0.60 0.87 0.69 0.49

Years:Hits 0.54 0.11 5.08 0.00

Table: R2 = 0.41

42

Regression Surface

Years
Hits

S
alary

Fig.: Linear Model

 Y

ears

H
its

S
alary

Salary type=vector rpart::rpart(Salary~Years+Hits, data=...

Fig.: CART

43

RMSE Performance: 10 times 10-fold CV

Confidence Level: 0.95
RMSE

CART

linear model

CART no pruning

320 330 340 350 360 370 380

●

●

●

44

R2 Performance: 10 times 10-fold CV

Confidence Level: 0.95
Rsquared

CART no pruning

linear model

CART

0.36 0.38 0.40 0.42 0.44 0.46 0.48

●

●

●

45

Advantages

CART models are easy to interpret

You don’t need to pre-define relationships between
variables

Automatically handles higher-order interactions

46

Limitations

CART models generally produce unstable predictions (next
class→ random forests)

47

Exercise

48

Build a tree by hand = no software!

Build a tree using the dataset provided below

Use the parameters
minsplit = 6 and minbucket = 2

Years Hits Salary
-Rey Quinones 1 68 70
-Barry Bonds 1 92 100

-Pete Incaviglia 1 135 172
-Dan Gladden 4 97 210
-Juan Samuel 4 157 640
-Joe Carter 4 200 250

-Tim Wallach 7 112 750
-Rafael Ramirez 7 119 875
-Harold Baines 7 169 950

49

References I

[1] Leo Breiman et al. Classification and regression trees.
CRC press, 1984.

[2] Jerome Friedman, Trevor Hastie, and Robert Tibshirani.
The elements of statistical learning. Vol. 1. Springer series
in statistics New York, 2001.

[3] Gareth James et al. An introduction to statistical learning.
Vol. 112. Springer, 2013.

[4] Gareth James et al. “Package ‘ISLR’”. In: (2017).
[5] Olivier Lopez, Xavier Milhaud, and

Pierre-Emmanuel Thérond. “Arbres de régression et de
classification (CART)”. In: l’actuariel 15 (2015), pp. 42–44.

50

Session Info
R version 3.4.1 (2017-06-30)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.3 LTS

Matrix products: default
BLAS: /usr/lib/openblas-base/libblas.so.3
LAPACK: /usr/lib/libopenblasp-r0.2.18.so

attached base packages:
[1] methods stats graphics grDevices utils datasets base

other attached packages:
[1] dplyr_0.7.2 purrr_0.2.3 readr_1.1.1
[4] tidyr_0.7.1 tibble_1.4.2 tidyverse_1.1.1
[7] caret_6.0-77 lattice_0.20-35 plotmo_3.3.4

[10] TeachingDemos_2.10 plotrix_3.6-6 visreg_2.4-1
[13] sjmisc_2.6.1 sjPlot_2.3.3 cowplot_0.8.0.9000
[16] ggplot2_2.2.1.9000 xtable_1.8-2 rpart.plot_2.1.2
[19] rpart_4.1-11 data.table_1.10.4-3 ISLR_1.2
[22] knitr_1.19

loaded via a namespace (and not attached):
[1] TH.data_1.0-8 minqa_1.2.4 colorspace_1.3-2
[4] class_7.3-14 modeltools_0.2-21 sjlabelled_1.0.1
[7] glmmTMB_0.1.1 DRR_0.0.2 DT_0.2

[10] prodlim_1.6.1 mvtnorm_1.0-6 lubridate_1.6.0
[13] xml2_1.1.1 coin_1.2-1 RSkittleBrewer_1.1
[16] codetools_0.2-15 splines_3.4.1 mnormt_1.5-5
[19] robustbase_0.92-7 effects_3.1-2 RcppRoll_0.2.2
[22] jsonlite_1.5 nloptr_1.0.4 broom_0.4.2
[25] ddalpha_1.2.1 kernlab_0.9-25 shiny_1.0.5
[28] compiler_3.4.1 httr_1.3.1 sjstats_0.11.0
[31] assertthat_0.2.0 Matrix_1.2-11 lazyeval_0.2.1
[34] htmltools_0.3.6 tools_3.4.1 bindrcpp_0.2
[37] coda_0.19-1 gtable_0.2.0 glue_1.1.1
[40] reshape2_1.4.3 merTools_0.3.0 Rcpp_0.12.15
[43] cellranger_1.1.0 nlme_3.1-131 iterators_1.0.8
[46] psych_1.7.5 lmtest_0.9-35 timeDate_3012.100
[49] gower_0.1.2 stringr_1.2.0 rvest_0.3.2
[52] lme4_1.1-13 mime_0.5 pacman_0.4.6
[55] stringdist_0.9.4.6 DEoptimR_1.0-8 MASS_7.3-47
[58] zoo_1.8-0 scales_0.5.0.9000 ipred_0.9-6
[61] hms_0.3 parallel_3.4.1 sandwich_2.4-0
[64] pwr_1.2-1 TMB_1.7.11 stringi_1.1.5
[67] highr_0.6 foreach_1.4.3 blme_1.0-4
[70] lava_1.5 rlang_0.1.6 pkgconfig_2.0.1
[73] arm_1.9-3 evaluate_0.10.1 bindr_0.1
[76] recipes_0.1.0 htmlwidgets_0.9 CVST_0.2-1
[79] plyr_1.8.4 magrittr_1.5 R6_2.2.2
[82] multcomp_1.4-7 dimRed_0.1.0 pillar_1.1.0
[85] haven_1.1.0 foreign_0.8-69 withr_2.1.1.9000
[88] survival_2.41-3 abind_1.4-5 nnet_7.3-12
[91] modelr_0.1.1 grid_3.4.1 readxl_1.0.0
[94] forcats_0.2.0 ModelMetrics_1.1.0 digest_0.6.15
[97] httpuv_1.3.5 stats4_3.4.1 munsell_0.4.3

	Introduction
	A motivating example
	The Details
	Comparison with a Linear Model
	Exercise

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	0.100:
	0.101:
	0.102:
	0.103:
	0.104:
	0.105:
	0.106:
	0.107:
	0.108:
	0.109:
	0.110:
	0.111:
	0.112:
	0.113:
	0.114:
	0.115:
	0.116:
	0.117:
	0.118:
	0.119:
	0.120:
	0.121:
	0.122:
	0.123:
	0.124:
	0.125:
	0.126:
	0.127:
	0.128:
	0.129:
	0.130:
	0.131:
	0.132:
	0.133:
	0.134:
	0.135:
	0.136:
	0.137:
	0.138:
	0.139:
	0.140:
	0.141:
	0.142:
	0.143:
	0.144:
	0.145:
	0.146:
	0.147:
	0.148:
	0.149:
	0.150:
	0.151:
	0.152:
	0.153:
	0.154:
	0.155:
	0.156:
	0.157:
	0.158:
	0.159:
	0.160:
	0.161:
	0.162:
	0.163:
	0.164:
	0.165:
	0.166:
	0.167:
	0.168:
	0.169:
	0.170:
	0.171:
	0.172:
	0.173:
	0.174:
	0.175:
	0.176:
	0.177:
	0.178:
	0.179:
	0.180:
	0.181:
	0.182:
	0.183:
	0.184:
	0.185:
	0.186:
	0.187:
	0.188:
	0.189:
	0.190:
	0.191:
	0.192:
	0.193:
	0.194:
	0.195:
	0.196:
	0.197:
	0.198:
	0.199:
	0.200:
	0.201:
	0.202:
	0.203:
	0.204:
	0.205:
	0.206:
	0.207:
	0.208:
	0.209:
	0.210:
	0.211:
	0.212:
	0.213:
	0.214:
	0.215:
	0.216:
	0.217:
	0.218:
	0.219:
	0.220:
	0.221:
	0.222:
	0.223:
	0.224:
	0.225:
	0.226:
	0.227:
	0.228:
	0.229:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PauseLeft:
	1.PlayLeft:
	1.PlayPauseLeft:
	1.PauseRight:
	1.PlayRight:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:

