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1. Introduction

The impressive capabilities of large language models (LLMs) to
perform a wide range of cognitive tasks have garnered substantial
attention from both the public and the radiology community.1 Pro-
prietary large language models (LLMs), such as ChatGPT, have domi-
nated the spotlight due to the widespread perception that they
outperform free, open-source LLMs, though they may not necessarily
surpass deep learning models in certain tasks.2 This study compares the
diagnostic accuracy of GPT-4o and LLaMA 3-70b, which are represen-
tative of proprietary and open-source LLMs, respectively, due to their
popularity and performance, in generating differential diagnoses for
Radiology Diagnosis Please cases. These challenging cases capture the
complexities of radiology, providing a rigorous evaluation of each
model's ability to generate differential diagnoses across a diverse spec-
trum of pathologies.

2. Methods

This prospective study adheres to the Checklist for Artificial Intelli-
gence in Medical Imaging and was exempt from research ethics board
review due to the use of publicly available data. The Radiology Diagnosis
Please dataset, comprising 287 cases from August 1998 to July 2023,

excluding information leak cases, was utilized.3 GPT-4o (OpenAI, USA)
and LLaMA 3-70b (Meta, USA) were prompted to generate the top five
differential diagnoses based on history, imaging findings, and both
combined. Default hyperparameters were applied, except for tempera-
ture, which was set to 0. Three radiologists ([AUTHOR-6], 8; [AUTHOR-
4], 8; [AUTHOR-3], 23 years of experience, respectively) independently
evaluated the output of each LLM, with discrepancies resolved through
mediated discussion. Exact McNemar tests were performed using the
statsmodels Python package (version 0.14.2), with the null hypothesis
that both LLMs have the same proportion of cases where their pre-
dictions disagree. The significance level was set at α = 0.05.

3. Results

GPT-4o achieved diagnostic accuracies of 55/287 (19.2 %) for his-
tory, 133/287 (46.3 %) for imaging findings, and 160/287 (55.7 %) for
history and imaging findings combined. LLaMA 3-70b achieved diag-
nostic accuracies of 58/287 (20.2 %) for history, 121/287 (42.2 %) for
imaging findings, and 152/287 (53.0 %) for history and imaging find-
ings combined. Both LLMs demonstrated comparable performance
across all 10 evaluated subspecialties (Fig. 1, Table 1).

☆ Summary statement: LLaMA 3-70b achieved statistically equivalent diagnostic accuracy compared to the proprietary large language model GPT-4o on the
Radiology Diagnosis Please differential diagnosis generation task, demonstrating substantial advancements in open-source LLM capabilities.
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4. Discussion

Although the progressive improvement of proprietary frontier
models is commonly assumed, the same cannot be said for open-source
models, which often lack access to the same scale of training data,
computational resources, and proprietary algorithmic innovations.
However, both GPT-4o and LLaMA 3-70b demonstrated substantial
diagnostic capabilities, surpassing the performance of earlier GPT

generations.4,5 While GPT-4o achieved slightly higher diagnostic accu-
racy compared to LLaMA 3-70b, the lack of statistical significance in the
performance gap suggests equivalence in generating accurate differen-
tial diagnoses.

Open-source models offer several benefits. Freely available model
weights with more permissive licensing for local inference provisioning
promote greater collaboration and adoption. On-premises deployment
of open-source models also addresses security and patient privacy

Fig. 1. Comparison of diagnostic accuracy of GPT-4o and LLaMA 3-70b on 287 Radiology Diagnosis Please cases using text-based inputs of A) history, B) imaging
findings, and C) history and imaging findings combined. (BR: Breast, CV: Cardiovascular, CH: Chest, GI: Gastrointestinal, GU: Genitourinary, HN: Head & Neck, MSK:
Musculoskeletal, NR: Neuroradiology, OB: Obstetrics, PD: Pediatric).
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concerns associated with utilizing proprietary models in mission-critical
clinical workflows.6 Continued real-world benchmarking and validation
efforts are essential to ensure the efficacy and reliability of LLMs in
clinical practice.7

The primary limitation of this pilot study is the limited generaliz-
ability of its findings. By evaluating two representative LLMs, the study
provides an initial comparison of proprietary and open-source models.
Additionally, model performance was evaluated on a single diagnostic
task, which may not encompass the full spectrum of pathologies
encountered in clinical practice. Future studies comparing a larger
number of models are necessary to validate these findings and to
establish a more comprehensive understanding of LLM performance in
radiology.8

Although this study focused on text-based cases, multimodal LLMs
hold great promise in medical imaging. By integrating image and text
analysis, these models can extract insights from both medical images
and clinical data. Recent research has explored the application of
multimodal LLMs for detecting radiologic findings on radiographs,
revealing both their potential and associated challenges.9,10 As

multimodal LLMs continue to evolve, their integration into clinical
workflows could enhance the accuracy and efficiency of radiologists.
Future studies should focus on validating multimodal LLMs in clinical
settings to fully realize their potential in medical imaging.

In conclusion, this pilot study challenges the prevailing assumption
that proprietary LLMs outperform their open-source counterparts,
providing empirical evidence of their comparable diagnostic accuracy in
generating differential diagnoses for radiology cases. These findings
highlight the potential for integrating high-performance open-source
LLMs in clinical settings. Such a paradigm shift could lead to more
accessible and cost-effective generative artificial intelligence applica-
tions in radiology, ultimately enhancing patient care.
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Fig. 1. (continued).

Table 1
Overall and subspecialty diagnostic accuracy of GPT-4o and LLaMA 3-70b on 287 Radiology Diagnosis Please cases.

Subspecialty History only Imaging findings only History and imaging findings

GPT-4o LLaMA
3-70b

P-value GPT-4o LLaMA
3-70b

P-value GPT-4o LLaMA
3-70b

P-value

55/287 (19.2) 58/287 (20.2) 0.74 133/287 (46.3) 121/287 (42.2) 0.16 160/287 (55.7) 152/287 (53.0) 0.38

Breast 3/10 (30) 1/10 (10) 0.5 4/10 (40) 4/10 (40) 1.0 5/10 (50) 5/10 (50) 1.0
Cardiovascular 2/17 (12) 4/17 (24) 0.5 12/17 (71) 13/17 (76) 1.0 14/17 (82) 12/17 (71) 0.69
Chest 5/35 (14) 7/35 (20) 0.5 14/35 (40) 12/35 (34) 0.73 17/35 (49) 16/35 (46) 1.0
Gastrointestinal 9/56 (16) 10/56 (18) 1.0 28/56 (50) 23/56 (41) 0.18 32/56 (57) 29/56 (52) 0.51
Genitourinary 3/26 (12) 1/26 (4) 0.5 11/26 (42) 11/26 (42) 1.0 12/26 (46) 12/26 (46) 1.0
Head & neck 1/9 (11) 2/9 (22) 1.0 7/9 (78) 6/9 (67) 1.0 7/9 (78) 7/9 (78) 1.0
Musculoskeletal 4/30 (13) 5/30 (17) 1.0 10/30 (33) 12/30 (40) 0.69 14/30 (47) 13/30 (43) 1.0
Neuroradiology 13/46 (28) 13/46 (28) 1.0 16/46 (35) 16/46 (35) 1.0 24/46 (52) 26/46 (57) 0.77
Obstetrical 0/6 (0) 1/6 (17) 1.0 4/6 (67) 2/6 (33) 0.5 4/6 (67) 4/6 (67) 1.0
Pediatric 15/52 (29) 14/52 (27) 1.0 27/52 (52) 22/52 (42) 0.18 31/52 (60) 28/52 (54) 0.58

Note.—Data are presented as the proportion of cases answered correctly, with percentages shown in parentheses. Each case was categorized by body system based on a
review of the original case images and diagnoses. For cases involving multiple systems, the initiating body system was selected. P-values were derived from exact
McNemar tests.
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