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Point Estimation

• When sampling is from a population described by a pdf or a pmf
f(x|θ), knowledge of θ yields knowledge of the entire population.

• Hence it is natural to seek a method of finding a good estimator of the
point θ, i.e., a good point estimator

Definition 1.1 (Point estimator).
A point estimator is any function W(X1, . . . ,Xn) of a sample; that is, any
statistic is a point estimator.

• An estimator is a function of the sample, while an estimate is the
realized value of an estimator (a number) that is obtained when a
sample is actually taken

• Notationally, when a sample is taken, an estimator is a function of the
random variables X1, . . . ,Xn, while an estimate is a function of the
realized values x1, . . . , xn.
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Methods of Finding Estimators

• In some cases, there will be an obvious or natural candidate for a point
estimator of a particular parameter, e.g., the sample mean (X̄) as a
point estimator of the population mean (µ)

• However, when we leave a simple case like this, intuition may not
only desert us, it may also lead us astray. Therefore, it is useful to
have some techniques that will at least give us some reasonable
candidates for consideration.

• Maximum Likelihood Estimators is, by far, the most popular technique
for deriving estimators
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Maximum Likelihood Estimator

• Let X1, . . . ,Xn be an iid sample from a population with pdf or pmf
f(x|Θ) where Θ ≡ (θ1, . . . , θk) have unknown values and
x = x1, . . . , xn are the observed sample values. The likelihood
function is defined by

L(Θ|x) = L(θ1, . . . , θk|x1, . . . , xn) =

n∏
i=1

f(xi|θ1, . . . , θk) (1)

Definition 1.2 (Maximum Likelihood Estimator).
For each sample point x, let Θ̂ be a parameter value at which L(Θ|x) attains
its maximum as a function of Θ, with x held fixed. A maximum likelihood
estimator (MLE) of the parameter Θ based on a sample X is Θ̂(X).

• Θ̂(x) is called the maximum likelihood estimate of Θ based on data x
• Θ̂(X) is the maximum likelihood estimator (MLE) of Θ
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Example 1 (Poisson MLE).
Let X1, ...,Xn be iid Poisson(λ). Then the likelihood function is

L(λ|x) =
n∏

i=1

λxi

xi!
e−λ (2)

The log-likehood is given by

ℓ(λ|x) =
n∑

i=1

xi logλ− nλ−
n∑

i=1

log xi! (3)

Taking the derivative of (3) with respect to λ we get:

∂ℓ(λ|x)
∂λ

=

∑n
i=1 xi

λ
− n (4)

Setting (4) equal to zero for the first order condition, and solving for λ, yields λ̂ = x̄. In
order to verify that this is the MLE for λ we take the second derivative of (3) with
respect to λ:

∂2ℓ(λ|x)
∂λ2

= −
∑n

i=1 xi

λ2
(5)

Since (5) is negative and the log-likelihood is concave, λ̂ = x̄ solves for the global
maximum.
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Poisson Unbiased Estimation

Theorem 1.3 (Relationships between a statistic and
population parameter).

Let X1, . . . ,Xn be a random sample from a population with mean µ and variance
σ2 < ∞.

a. EX̄ = µ

b. Var X̄ = σ2

n
c. ES2 = σ2

where X̄ and S2 are the sample mean and sample variance, respectively.

Applying Theorem 1.3 to X1, . . . ,Xn iid Poisson(λ) we have

EλX̄ = λ, for all λ,

EλS2 = λ, for all λ,

so both X̄ and S2 are unbiased estimators of λ.
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Poisson MLE using optim
We can use the stats::optim function in R to find the MLE, provided we have a
likelihood function. The optim can maximize (or minimize) an objective function
using many different algorithms. This is referred to as solving the objective
function numerically.

# define the objective function
ll.poisson <- function(lambda, x) {

sum(x) * log(lambda) - length(x) * lambda
}

# generate some data
data <- rpois(1e6, 5)

# by default optim finds the min, but the
# negative min is the max therefore we need
# to use list(fnscale = -1)
opt <- optim(par = 2,

fn = ll.poisson,
method = "BFGS",
control = list(fnscale = -1),
x = data)

# compare numeric vs. analytical solutions
c(numerical = opt$par,

xbar = mean(data),
samplevar = var(data))

## numerical xbar samplevar
## 5.000532 5.000535 5.015680

curve(ll.poisson(x, data), 0,10, xlab = "lambda",lwd = 4)
abline(h = opt$value, v = opt$par, lty = 2, lwd = 4, col = "red")
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Methods of Evaluating Estimators

• As we saw in the Poisson example, X̄ and S2 are both unbiased
estimators of λ. How do we choose between these estimators?

• The mean squared error (MSE) of an estimator W of a parameter θ is
the function of θ defined by

Eθ(W− θ)2 = VarθW+ (BiasθW)2

• If W1 and W2 are both unbiased estimators of a parameter θ, that is,
EθW1 = EθW2 = θ, then their MSE is equal to their variances → we
should choose the estimator with the smaller variance

• If we can find an unbiased estimator with uniformly smallest variance
– a best unbiased estimator – then our task is done.
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Uniformly Minimum Variance Unbiased Estimator

• The goal of this section is to investigate a method for finding a “best”
unbiased estimator defined in the following way:

Definition 1.4 (UMVUE).
W∗(X) is the best unbiased estimator, or uniformly minimum variance
unbiased estimator (UMVUE) of τ(θ) if

1. Eθ [W∗(X) | θ] = τ(θ) for all θ (unbiased)

2. Var [W∗(X) | θ] ≤ Var[W(X) | θ] for all θ, where W is any other unbiased
estimator of τ(θ) (minimum variance).

• Finding a best unbiased estimator (if one exists) is not an easy task as
we’ll see in the next example
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Poisson Unbiased Estimation Revisited

• Recall that by applying Theorem 1.3 to X1, . . . ,Xn iid Poisson(λ)

EλX̄ = λ, for all λ,

EλS2 = λ, for all λ,

so both X̄ and S2 are unbiased estimators of λ.

• Again from Theorem 1.3, we have VarλX̄ = λ/n

• Varλ
[
S2
]
= 1

nµ4 +
µ2
2(n−3)
n(n−1) where µj is the j th centered moment →

lengthy calculation
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Poisson Unbiased Estimation Revisited

• Even if we can establish that X̄ is better than S2, consider the class of
estimators

Wa(X̄, S2) = aX̄+ (1− a)S2.

For every constant a, EλWa(X̄, S2) = λ, so we now have infinitely
many unbiased estimators of λ.

• Even if X̄ is better than S2, is it better than every Wa(X̄, S2)?
• Furthermore, how can we be sure that there are not other, better,

unbiased estimators lurking about?
• This example shows some of the problems that might be encountered

in trying to find a best unbiased estimator, and perhaps that a more
comprehensive approach is desirable.
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How to find the Best Unbiased Estimator?

• Find the lower bound of variances of any unbiased estimator of τ(θ),
say B(θ).

• If W∗ is an unbiased estimator of τ(θ) and satisfies
Var [W∗(X) | θ] = B(θ), then W∗ is the best unbiased estimator.

• This is the appraoch taken with the use of the Cramér–Rao Lower
Bound. The names Cramér and Rao are often interchanged depending
on the textbook and professor’s training.
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Cramér–Rao Inequality

Theorem 1.5 (Cramér–Rao Lower Bound (CRLB)).

Let X1, · · · ,Xn be iid with common pdf f(x | θ). Let W(X) = W(X1, . . . ,Xn)
be a statistic with mean EθW(X) = k(θ) satisfying

d
dθ

EθW(X) =
d
dθ

∫
x∈X

W(x)f(x | θ)dx =

∫
x∈X

∂

∂θ
W(x)f(x | θ)dx

and
Varθ W(X) < ∞

Then, a lower bound of Varθ W(X) is

Varθ W(X) ≥ [k′(θ)]2

nI(θ)

where I(θ) is the Fisher information
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Fisher Information

• Before we prove the CRLB, we first recall 1) the Fisher information
and 2) the formula for the covariance of two random variables.

Theorem 1.6 (Fisher information).

If X is a random variable with pdf f(x | θ) which satisfies certain regularity
assumptions then

Eθ

[
∂

∂θ
log f(X | θ)

]
= 0

and

Eθ

[(
∂

∂θ
log f(X | θ)

)2
]
= −Eθ

[
∂2

∂θ2
log f(X | θ)

]
The quantity I(θ) = Eθ

[(
∂
∂θ log f(X | θ)

)2]
is called the information number

or Fisher information.
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Correlation review

• E[X] = µX,E[Y] = µY,Var[X] = σ2
X,Var[Y] = σ2

Y

• Assume 0 < σ2
X < ∞ and 0 < σ2

Y < ∞

Definition 1.7 (Correlation coefficient).
The correlation of X and Y is the number defined by

ρXY =
Cov[X, Y]
σXσY

The value ρXY is also called the correlation coefficient.

Theorem 1.8 (Bounds of ρX,Y).

For any random variables X and Y,
(a) −1 ≤ ρXY ≤ 1

(b) |ρXY| = 1 if and only if there exists numbers a ̸= 0 and b such that
P(Y = aX + b) = 1. If ρXY = 1 then a > 0, and if ρXY = −1 then a < 0
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P(Y = aX + b) = 1. If ρXY = 1 then a > 0, and if ρXY = −1 then a < 0
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Now we are ready to prove Theorem 1.5 (1/3)

Proof.

• Let Di =
∂
∂θ log f (Xi | θ) =

∂
∂θ f(Xi|θ)
f(Xi|θ) so that

D =
∂

∂θ

{
log

n∏
i=1

f (Xi | θ)

}
=

n∑
i=1

∂

∂θ
log f (Xi | θ) =

n∑
i=1

Di

Since Theorem 1.8 implies {Cov[W(X),D]}2 ≤ Var[W(X)]Var[D] it
follows that

Var[W(X)] ≥ {Cov[W(X),D]}2

Var[D]

• Since E[D] =
∑n

i=1 E [Di]
Thm. 1.6

= 0, we have

Cov[W(X),D] = E[W(X)D]
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Proof of Theorem 1.5 (2/3)

EθW(X) = k(θ) =
∫

· · ·
∫

W(x)
n∏

i=1

f (xi | θ) dx1 · · · dxn

Differentiating with respect to θ, we obtain

k′(θ) =
∫

· · ·
∫

W(x) ∂

∂θ

n∏
i=1

f (xi | θ) dx1 · · · dxn

=

∫
· · ·
∫

W(x)
n∑

i=1

 ∂

∂θ
f (xi | θ)

∏
j̸=i

f (xj | θ)

 dx1 · · · dxn

=

∫
· · ·
∫

W(x)
n∑

i=1

{
∂
∂θ f (xi | θ)
f (xi | θ)

}
︸ ︷︷ ︸

D

f(x | θ)dx1 · · · dxn

= E[W(X)D]

Methods of Evaluating Estimators 19 / 40



Proof of Theorem 1.5 (2/3)

EθW(X) = k(θ) =
∫

· · ·
∫

W(x)
n∏

i=1

f (xi | θ) dx1 · · · dxn

Differentiating with respect to θ, we obtain

k′(θ) =
∫

· · ·
∫

W(x) ∂

∂θ

n∏
i=1

f (xi | θ) dx1 · · · dxn

=

∫
· · ·
∫

W(x)
n∑

i=1

 ∂

∂θ
f (xi | θ)

∏
j̸=i

f (xj | θ)

 dx1 · · · dxn

=

∫
· · ·
∫

W(x)
n∑

i=1

{
∂
∂θ f (xi | θ)
f (xi | θ)

}
︸ ︷︷ ︸

D

f(x | θ)dx1 · · · dxn

= E[W(X)D]

Methods of Evaluating Estimators 19 / 40 .



Proof of Theorem 1.5 (3/3)

Furthermore, we have

Var[D] = E
[
D2
]
= E

[(∑n
i=1 Di

)2]
= E

[∑
i Di
∑

j Dj

]
= E

[∑
i
∑

j DiDj

]
=
∑n

i=1

∑n
j=1 E [DiDj]

=
∑n

i=1 E
[
D2

i
]
+
∑n

i=1

∑n
j=1
j̸=i

E [DiDj]

=
∑n

i=1 E
[(

∂
∂θ log f(x | θ)

)2]
+
∑n

i=1

∑n
j=1
j̸=i

E [DiDj]

=
∑n

i=1 I(θ) +
∑n

i=1

∑n
j=1
j ̸=i

E [Di] E [Dj] = nI(θ) + 0.

Putting this all together, we have

Var[W(X)] ≥ {Cov[W(X),D]}2

Var[D]
=

{k′(θ)}2

nI(θ)

.

Methods of Evaluating Estimators 20 / 40



Proof of Theorem 1.5 (3/3)

Furthermore, we have

Var[D] = E
[
D2
]
= E

[(∑n
i=1 Di

)2]
= E

[∑
i Di
∑

j Dj

]
= E

[∑
i
∑

j DiDj

]
=
∑n

i=1

∑n
j=1 E [DiDj]

=
∑n

i=1 E
[
D2

i
]
+
∑n

i=1

∑n
j=1
j̸=i

E [DiDj]

=
∑n

i=1 E
[(

∂
∂θ log f(x | θ)

)2]
+
∑n

i=1

∑n
j=1
j̸=i

E [DiDj]

=
∑n

i=1 I(θ) +
∑n

i=1

∑n
j=1
j ̸=i

E [Di] E [Dj] = nI(θ) + 0.

Putting this all together, we have

Var[W(X)] ≥ {Cov[W(X),D]}2

Var[D]
=

{k′(θ)}2

nI(θ)

.

Methods of Evaluating Estimators 20 / 40 .



A useful corollary

Corollary 1.9.
Under the assumptions of Theorem 1.5, if W(X) = W(X1, . . . ,Xn) is an
unbiased estimator of θ, so that k(θ) = θ, then the Rao-Cramér inequality
becomes

Var(W(X)) ≥ 1

nI(θ)
.
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Poisson example revisited (again) I

Example 2.

Let X1, . . . ,Xn be iid Poisson (λ). Find the Cramér-Rao lower bound on the
variance of unbiased estimators of λ. Also, find the MLE and show that it
attains the Cramér-Rao lower bound. Since ∂2

∂λ2 log f(x | λ) =

∂2

∂λ2

[
log
{
λxe−λ(x!)−1

}]
=

∂2

∂λ2
[x logλ− λ− log(x!)] = − x

λ2

we have

E
[
∂2

∂λ2
log f(X | λ)

]
= E

[
− 1

λ2
X
]
= − 1

λ2
E[X] = − 1

λ2
λ = − 1

λ

By Theorem 1.6,

E

[(
∂

∂θ
log f(X | θ)

)2
]
= −E

[
∂2

∂λ2
log f(X | λ)

]
=

1

λ
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Poisson example revisited (again) II

Example 2.
So the Cramér-Rao lower bound for an unbiased estimator in the iid case is( d

dθEθ[W(X)])2
nEθ

[(
∂
∂θ log f(X | θ)

)2] =
1

n
(
1
λ

) =
λ

n

The MLE of λ is λ̂ = X̄ and Var[X̄] = Var[X1]
n = λ

n so it attains the CRLB.
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CRLB for Normal Distribution Variance Estimator I

Example 3.
Let X1, . . . ,Xn be iid Normal

(
µ, σ2

)
random variables. Find the Cramér-Rao

lower bound on unbiased estimators of σ2. Does S2 satisfy the CRLB?

∂2

∂ (σ2)
2 log f

(
x | µ, σ2

)
=

∂2

∂ (σ2)
2

[
−1

2
log(2π)− 1

2
log
(
σ2
)
− 1

2σ2
(x− µ)2

]
=

1

2σ4
− (x− µ)2

σ6

Theorem 1.6 implies that

E

[(
∂

∂θ
log f

(
X | µ, σ2

))2
]
= −E

[
∂2

∂(σ2)2
log f

(
X | µ, σ2

)]
= −E

[
1

2σ4
− (X− µ)2

σ6

]
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CRLB for Normal Distribution Variance Estimator II
Example 3.

= −E
[

1

2σ4
− (X− µ)2

σ6

]
= − 1

2σ4
+

E
[
(X− µ)2

]
σ6

= − 1

2σ4
+

σ2

σ6
=

1

2σ4

Thus, the CRLB is

1

nE
[(

∂
∂θ log f(X | θ)

)2] =
2σ4

n
.

So, S2 does not satisfy the CRLB since

Var
[
S2
]
=

2σ4

n− 1
=

n
n− 1

(
2σ4

n

)
>

2σ4

n
= CRLB
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• In the previous example we are left with an incomplete answer; that
is, is there a better unbiased estimator of σ2 than S2, or is the CRLB
unattainable?

• The conditions for attainment of the CRLB are actually quite simple.
• Recall that the bound follows from an application of the

Cauchy-Schwarz Inequality, so conditions for attainment of the bound
are the conditions for equality in the Cauchy-Schwarz Inequality.

• The following Corollary is a useful tool because it gives us a way of
finding a best unbiased estimator

Corollary 1.10 (Attainment).

Let X1, · · · ,Xn be iid with pdf /pmffX(x | θ), where fX(x | θ) satisfies the
assumptions of the Cramer-Rao Theorem. Let L(θ | x) =

∏n
i=1 fX (xi | θ)

denote the likelihood function. If W(X) is unbiased for τ(θ), then W(X)
attains the Cramer-Rao lower bound if and only if

∂

∂θ
log L(θ | x) = Sn(x | θ) = a(θ)[W(X)− τ(θ)]

for some function a(θ).
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Continuation of Example 3

Is CRLB for σ2 attainable?

L
(
σ2 | x

)
=

n∏
i=1

1√
2πσ2

exp

[
− (xi − µ)

2

2σ2

]

log L
(
σ2 | x

)
= −n

2
log
(
2πσ2

)
−

n∑
i=1

(xi − µ)
2

2σ2

∂ log L
(
σ2 | x

)
∂σ2

= −n
2

2π

2πσ2
+

n∑
i=1

(xi − µ)
2

2 (σ2)
2

= − n
2σ2

+

n∑
i=1

(xi − µ)
2

2σ4

=
n

2σ4

(∑n
i=1 (xi − µ)

2

n
− σ2

)
= a

(
σ2
)(

W(x)− σ2
)
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Continuation of Example 3

Therefore,

1. If µ is known, the best unbiased estimator for σ2 is
∑n

i=1 (xi − µ)
2
/n,

and it attains the Cramer-Rao lower bound, i.e.

Var

[∑n
i=1 (Xi − µ)

2

n

]
=

2σ4

n

2. If µ is not known, the Cramer-Rao lower-bound cannot be attained.
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Bernoulli example I
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Bernoulli example II
Example 4 (Bernoulli).

Let X1, · · · ,Xn
i.i.d.∼ Bernoulli (p). Is X̄ the best unbiased estimator of p? Does

it attain the Cramer-Rao lower bound?

L(p | x) =
n∏

i=1

pxi(1− p)1−xi

log L(p | x) = log
n∏

i=1

pxi(1− p)1−xi

=

n∑
i=1

log
[
pxi(1− p)1−xi

]
=

n∑
i=1

[xi log p+ (1− xi) log(1− p)]

= log p
n∑

i=1

xi + log(1− p)

(
n−

n∑
i=1

xi

)
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Bernoulli example III

Example 4 (Bernoulli).
∂

∂p
log L(p | x) =

∑n
i=1 xi

p
−

n−
∑n

i=1 xi

1− p

=
nx̄
p

− n(1− x̄)
1− p

=
(1− p)nx̄− np(1− x̄)

p(1− p)

=
n(x̄− p)
p(1− p)

= a(p)[W(x)− τ(p)]

where a(p) =
n

p(1− p)
,W(x) = x̄, τ(p) = p. Therefore, X̄ is the best

unbiased estimator for p and attains the Cramer-Rao lower bound.
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Recap
Point Estimation
Maximum Likelihood Estimator
MLE example

Methods of Evaluating Estimators
Uniformly Minimum Variance Unbiased Estimator
Challenges in finding the UMVUE
Cramér–Rao Lower Bound (CRLB)
Fisher Information
Correlation review
CRLB proof
Attainment of CRLB
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Methods for finding best unbiased estimator

• In the previous section, the concept of sufficiency was not used in our
search for unbiased estimates. We will now see that consideration of
sufficiency is a powerful tool, indeed.

• The main theorem of this section, which relates sufficient statistics to
unbiased estimates, is, as in the case of the Cramér-Rao Theorem,
another clever application of some well-known theorems:

• Let X and Y be two random variables.
▶ E(X) = E[E(X | Y)]
▶ Var(X) = E[Var(X | Y)] + Var[E(X | Y)]
▶ E[g(X) | Y] =

∫
x∈X g(x)f(x | Y)dx is a function of Y.

▶ If X and Y are independent, E[g(X) | Y] = E[g(X)].
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Searching for a better unbiased estimator

Theorem 1.11 (Rao-Blackwell Theorem).
• Suppose W(X) is an unbiased estimator of τ(θ). That is,

E[W(X)] = τ(θ).

• Suppose T(X) is any function of X = (X1, · · · ,Xn) and is a sufficient
statistic for θ.

• Define the estimator ϕ(T) = E(W(X) | T). Then the following holds:
1. E[ϕ(T) | θ] = τ(θ)
2. Var[ϕ(T) | θ] ≤ Var(W | θ) for all θ.

That is, ϕ(T) is a uniformly better unbiased estimator of τ(θ).
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Proof of Rao-Blackwell (Theorem 1.11)

1. τ(θ) = E[W(X)] = E[E(W(X) | T)] = E[ϕ(T)] ( unbiased for τ(θ))

2.
Var(W) = Var[E(W | T)] + E[Var(W | T)]

= Var(ϕ(T)) + E[Var(W | T)]
≥ Var(ϕ(T)) ( smaller variance than W)

3. Need to show ϕ(T) is indeed an estimator.

ϕ(T) = E[W(X) | T]

=

∫
x∈X

W(x)f(x | T)dx

Because T is a sufficient statistic, f(x | T) does not depend on θ.
Therefore, ϕ(T) =

∫
x∈X W(x)f(x | T)dx does not depend on θ, and

ϕ(T) is indeed an estimator of θ.
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Sufficiency in Action: Rao-Blackwellization

• The concept of data reduction without losing any information is an
appealing idea. But one might ask what can sufficiency do for me
apart from dimension reduction?

• Given two decision rules (procedures) δ1, δ2, if one of them always
had a smaller risk, we would naturally prefer that procedure.

• The Rao-Blackwell theorem, proved independently by C.R. Rao and
David Blackwell (Rao (1945), Blackwell (1947)), provides a concrete
benefit of looking at sufficient statistics from a viewpoint of preferring
procedures with lower risk.

• The Rao-Blackwell theorem says that after you have chosen your
model, there is no reason to look beyond a minimal sufficient statistic
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Rao-Blackwellization in Poisson

• Suppose based on X1, · · · ,Xn
iid∼ Poi(λ), we wish to estimate

Pλ(X = 0) = e−λ.

• A layman’s estimate might be the fraction of data values equal to zero:

δ1 (X1, · · · ,Xn) =
1

n

n∑
i=1

IXi=0

• Rao-Blackwell theorem tells us we can do better by conditioning on∑n
i=1 Xi, because

∑n
i=1 Xi is sufficient in the iid Poisson case.
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• Rao-Blackwell theorem tells us we can do better by conditioning on∑n
i=1 Xi, because

∑n
i=1 Xi is sufficient in the iid Poisson case.
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Rao-Blackwellization in Poisson

• To calculate this conditional expectation, recall that if Xi, 1 ≤ i ≤ n
are iid Poi(λ), then any Xi given that

∑n
i=1 Xi = t is distributed as

Bin
(
t, 1

n

)

• Then,

Eλ

[
δ1 (X1, · · · ,Xn) |

n∑
i=1

Xi = t

]
=

1

n

n∑
i=1

Eλ

[
IXi=0 |

n∑
i=1

Xi = t

]

=
1

n

n∑
i=1

Pλ

[
Xi = 0 |

n∑
i=1

Xi = t

]

=
1

n

n∑
i=1

(
1− 1

n

)t

=

(
1− 1

n

)t

• Thus, in the iid Poisson case, for estimating the probability of the zero
value (no events),

(
1− 1

n

)∑n
i=1 Xi is better than the layman’s estimator

1
n

∑n
i=1 IXi=0
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Simulation
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True probability = P(X=0) where X follows a Poisson(5) distribution
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Simulation

set.seed(334)
tt <- lapply(seq(5, 1000, by = 5), function(i){
n <- i
x <- rpois(n, lambda = 5)
data.frame(

n = n,
naive = mean(x == 0),
RB = (1-1/n)^{sum(x)},
truth = dpois(0,5))

})

ttt <- do.call(rbind,tt)

library(tidyverse)
library(cowplot)

ttt %>%
pivot_longer(cols = -1, names_to = "type") %>%
ggplot(mapping = aes(x = n, y = value, color = type)) +

geom_smooth(se=FALSE) +
cowplot::theme_minimal_grid() +
xlab("sample size") +
ylab("estimate of P(X=0)")+
labs(caption = "True probability = P(X=0) where X follows a Poisson(5) distribution")
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