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ABSTRACT

This review article focuses on the applications of deep learning with

neural networks and multimodal neural networks in the orthopaedic

domain. By providing practical examples of how artificial intelligence

(AI) is being applied successfully in orthopaedic surgery, particularly in

the realm of imaging data sets and the integration of clinical data, this

study aims to provide orthopaedic surgeonswith the necessary tools to

not only evaluate existing literature but also to consider AI’s potential in

their own clinical or research pursuits. We first review standard deep

neural networks which can analyze numerical clinical variables, then

describe convolutional neural networks which can analyze image

data, and then introduce multimodal AI models which analyze various

types of different data. Then, we contrast these deep learning

techniques with related but more limited techniques such as

radiomics, describe how to interpret deep learning studies, and how

to initiate such studies at your institution. Ultimately, by empowering

orthopaedic surgeons with the knowledge and know-how of deep

learning, this review aspires to facilitate the translation of research into

clinical practice, thereby enhancing the efficacy and precision of real-

world orthopaedic care for patients.

Artificial intelligence (AI) and machine learning (ML) methods applied
to orthopaedic research have produced a substantial body of literature
with hundreds of papers published in 2022 alone. While these studies

highlight the prospects of this exciting new technology, delving properly into
the methods demands a certain level of knowledge that may be outside of a
clinician’s expertise. As such, it is pertinent for orthopaedic surgeons to
familiarize themselves with AI methodology and the associated terminology,
enabling them to not only be able to critically appraise emerging research but
also potentially conduct such studies themselves.

A comprehensive review by Shah et al1 summarized applications of classic
ML techniques and terminology in orthopaedics. However, there has been a
notable change in the AI landscape in the past decade, with deep learning
using deep neural networks (DNNs) surpassing classic ML by demonstrating
a greater capacity for complex pattern recognition.2,3 Deep learning on
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medical image data such as radiographs, CTs, or MRIs
enables the automatic extraction and selection of the
most salient features, obviating the need to generate
handcrafted or human-engineered features such as those
used in radiomics. Deep learning provides a richer
representation of the imaging data that can then be
combined with data from other modalities (image data,
genomic data, clinical variables). The use of multimodal
AI (MMAI) is among the most promising use cases
for AI.4

Therefore, this review article focuses on the applica-
tions of deep learning with neural networks and multi-
modal neural networks in the orthopaedic domain. By
providing practical examples of how AI is being applied
successfully in orthopaedic surgery, particularly in the
realm of imaging data sets and the integration of clinical
data, this paper aims to provide orthopaedic surgeons
with the necessary tools to not only evaluate existing
literature but also to consider AI’s potential in their own
clinical or research pursuits.

In this review, we will examine common AI terms,
real-world case studies, and explore the diverse appli-
cations of deep learning in orthopaedic practice. We
begin with standard DNNs which can analyze tradi-
tional numerical clinical variables, then describe con-
volutional neural networks (CNNs) which can analyze
image data, and then introduce MMAI models which
analyze various types of different data. Then, we con-
trast these deep learning techniques with related but
more limited techniques such as radiomics, describe how
to interpret deep learning studies, and how to initiate
such studies at your institution. Ultimately, by em-
powering orthopaedic surgeons with the knowledge and

know-how of deep learning, this review aspires to
facilitate the translation of research into clinical prac-
tice, thereby enhancing the efficacy and precision of
real-world orthopaedic care for patients.

What Is a Deep Neural Network, and How
Do They Learn?
Deep learning involves a network of layers of connected
artificial neurons (Figure 1). The first layer accepts input
variables which are termed “features.” If a model has 10
input variables, there would be 10 neurons in the first
layer. Similar to natural neurons, each artificial neuron
emits an output to neurons in the next layer, and the
strength of the connection between two neurons (the
weights) can be adjusted. DNNs are neural networks
with multiple “hidden” layers between the first input
layer and the output layer. The final layer in a neural
network converges on output neurons. The number of
output neurons will depend on the specific task the
model aims to accomplish. For instance, in a binary
classification task where the model predicts the presence
or absence of an event (will an infection occur?), only
one output neuron is needed. In multiclass classification
task, such as classifying a femoral neck fracture ac-
cording to the Garden classification system, the number
of output neurons would correspond to the total
number of classes (4), with each output neuron repre-
senting one class. The neuron with the highest value
among the outputs corresponds to the chosen class.
When the neural network’s predictions are wrong, an
error function, much like a “feedback loop,” is back

Figure 1

A DNN which accepts 5 input variables, has two hidden layers, and predicts two outcomes is depicted. When the predictions are
wrong, back propagation is used to adjust the weights between neurons in each layer. This process repeats iteratively until errors are
minimized. DNNs = deep neural networks
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propagated through the network which adjusts the
weights between neurons and thus the network’s out-
puts (predictions) are adjusted. The network determines
the appropriate direction for the weight adjustments by
following the “gradient descent,” a process using cal-
culus aimed at reducing errors. The network will keep
nudging the weights in the correct direction until errors
are minimized. This process repeats iteratively over the
training set of data until the model’s predictions are as
accurate as possible. This is how DNNs learn. Some but
not all classic ML algorithms also use gradient descent,
but much fewer weights or parameters are tuned (dozens
in classic ML versus up to billions in deep learning). As
deep learning is a small subset of ML algorithms, these
terms should not be used interchangeably.

Anastasio et al5 used a DNN to identify the best
combination of biologic agents to aid in bone repair.
They extracted data from 225 published studies. Their
DNN has 16 input neurons, for the 16 different com-
binations of agents such as bone-morphogenic-protein-2
(BMP2), BMP7 among others, and different doses,
reported in their literature search. Their DNN has 26
output neurons with each output neuron predicting a
different aspect of bone healing. In their case, outputs
ranged from “bone healing at 3 months” to “mean time
to radiographic union,” “need for repeat bone graft-
ing,” and others. They averaged the predicted perfor-
mance on each of these outcomes. Their DNN model
predicts that using a combination of three factors
(BMP2, BMP7, and osteogenin) was more effective than
using any single factor, given this combination of inputs
had the highest average predicted performance across all
26 outputs.5

This is an example of “supervised learning,” where
the desired outputs or classifications, known as “la-
bels,” are known. When large data sets are available but
no appropriate groupings or labels are present, “unsu-
pervised learning” can be used, often to reduce the
dimension of input or to cluster the inputs together, for
example, to group patients with similar features.

What Is “Learned” by Deep Neural
Networks?
Underlying how neural networks “learn” is the funda-
mental concept that any causal relationship between
inputs, whether traditional clinical variables, image
data, or genomic data, and outputs such as predictions
or classifications, can be expressed through a mathe-
matical function.6 The objective of deep learning algo-

rithms is to discover the mathematical function that best
describes the relationships between inputs and outputs.
In other words, deep learning uncovers the best mapping
or pattern recognition between the inputs available and
the predictions or classifications desired in a given study.

To accomplish this, deep learning algorithms must be
trained on high-quality data. The available variables or
“features” should accurately reflect and represent the
clinical problem. For example, if it is unknown whether
a patient is diabetic or not, an algorithm will be missing
a key piece of information when predicting whether a
prosthetic joint infection (PJI) will occur. Second, the
outcomes of interest or “ground truth labels” must be
accurately defined. If patients who never developed a PJI
are mistakenly labelled in the data set as having a PJI,
the algorithm will learn the wrong patterns in the data
and will make more errors when tested on new patients.
For instance, ImageNet is an open-source data set of
images used to train image models.7 Even state-of-the-
art models cannot demonstrate 100% performance on
this data set because many of the images are incorrectly
labelled.8 However, if proper input features are avail-
able to train on and the labels are accurate, with suf-
ficient data, deep learning algorithms will use gradient
descent to find the optimal combination of weights
between neurons that best ties input features to the
correct outputs. Note, however, that the final model will
also reflect any biases in the data used for training.9

How Are Images Analyzed by Deep Neural
Networks?
When humans interpret the world around us or images
such as a radiograph or MRI, the initial processing of
visual information within the visual cortex begins with
V1. This area is responsible for processing low-level
features such as lines and edges. The outputs of V1 are
then sent to subsequent areas that would assemble these
low-level features into more complex features such as
blobs and color (V2), shapes (V3, V4), movements (V5),
and even objects (inferotemporal cortex) and persons
(fusiform face area).10

For a neural network to interpret an image, it must
first be represented by a grid of numbers, where
each number represents the pixel intensity in that location
(Figure 2). For CT scans, each pixel is denoted by a
numeric value known as the Hounsfield unit. As
opposed to DNNs which accept a set of clinical varia-
bles as their input, CNNs are a type of DNN designed to
accept a grid of numbers representing images as input.
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They can accept 2D images or 3D volumes of varying
sizes. Their name, CNN, refers to the convolution
operation. This mathematical operation allows low-
level features such as lines or edges to be extracted from
images. Subsequent layers of a CNN will combine these
low-level features into higher-order features, similarly to
the mammalian visual system. AlexNet is the first CNN
that won the ImageNet competition in 2012 and
demonstrated the superiority of deep learning to ra-
diomics and other methods for image analysis.11 While
AlexNet contained 12 layers, the CNNs that followed
have advanced markedly, with many of the more
modern algorithms such as DenseNet-12112 having
more than 100 layers and other novel elements such as
combining multiple levels of extracted features at dif-
ferent layers.

These CNNs extract low-level features (lines, edges)
and combine them spatially to extract higher-order fea-
tures. For example, a 256 · 256 radiograph or 256 ·
256 · 30 (30 slices) MRI or CT is converted to a smaller
set of numbers that represent what the algorithm con-
siders to be the essential information within the image.
This is known as the “embedding” layer. This down-
sampling reduces the spatial dimensions while retaining
the most salient information, similar to how MP3 files
zipped (compressed) to a smaller file size still retain their
core information. Just as zipped files can be unzipped,
once an image is downsampled to an “embedding” layer,
the original image can then be recreated. Moreover, the
core features encoded in this “embedding” layer can be
used to convert, for example, a CT scan into an MRI.13

For our purposes, this embedding layer contains the
most relevant features from the input data tailored to the
task at hand. These features are identified using the back

propagation method of learning described above. This
process of downsampling and back propagation allows
the CNN to learn intricate and abstract patterns from
raw medical image data and excel in handling complex
tasks with remarkable performance, whether the task is
image classification, object detection, segmentation, or
others.

In fact, most of the published orthopaedic literature
using ML uses CNNs to interpret radiographs. The
number of orthopaedic studies using CNNs are too
numerous to individually cite, but published uses include
identifying hip fractures14 and distal radius fractures,15

classifying knee osteoarthritis based on MRI,16 and
predicting bone age based on radiographs.17 Several
groups have trained CNNs to identify hip arthroplasty
implants based on radiographs.18,19

Borjali demonstrate 100% accuracy in recognizing
whether an implant is an Accolade II (Stryker), Coral
(DePuy Synthes), or S-ROM (DePuy Synthes) with a
sample size of only 252 patients.19 They used an 80/10/
10 train/validation/test partition with their data,
meaning that a model was trained on 80% of the cohort.
Ten percent of the cohort, the “validation set,”was used
to guide training and to tune the “hyperparameters”—
the modifiable aspects of a neural network aside from
the weights, such as learning rate, number of neurons in
each layer, and the activation and loss functions used.
Once the model’s weights and hyperparameters were
optimized, the performance was then evaluated on the
remaining 10% of patients in the “test” set—which are
patients who were never encountered during training.
Both 80/10/10 and 70/15/15 splits are commonly used
in training image models. Ideally, the test data would be
taken from a different institution to better assess if the

Figure 2

A convolutional neural network (CNN) is a neural network designed to accept images as input. The image is represented as a grid of
numbers representing the information at each pixel. Initial layers of the CNN extract low-level features such as lines and edges, while
higher order features are extracted in deeper layers. The core information of an image is represented in the embedding layer. This
information can then be used for the specific research question. In this case, a DNN is used to relate the embedding layer to the
outcomes of interest (outputs). CNNs = convolutional neural networks, DNNs = deep neural networks
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model generalizes well; this is known as external
validation.

To help their model learn and achieve great perfor-
mance on their classification task, Borjali et al used an
important process known as “data augmentation” to
increase the amount of training data. Some examples of
data augmentation are rotating, zooming in or out, or
flipping the images along an axis. This step mimics the
variety of what can be encountered in real life and al-
lows the CNN to be invariant to relative positioning or
orientation of the object within the image. An “epoch”
is when the model has completed one training iteration
over each radiograph in the training set, and usually
several hundred epochs are required in deep learning.
Borjali et al trained their network for 350 epochs, and
with transformations applied at each epoch to the
radiographs, they state that more than 69,000 radio-
graphs were used to train the model.

The number of epochs required is often guided by when
performance ceases to improve on the validation data set. It
is important to note that more epochs do not always
translate to better performance. It is possible for amodel to
overtrain for toomanyepochs and“overfit” to the training
data: This is demonstrated by better performance on the
validation set and worsening performance on the final test
set. This means the model is memorizing its training data,
without learning associations that generalize to unseen
data. Therefore, once performance on the validation set
plateaus, training can be stopped.

How Are Models Evaluated?
Borjali et al report overall accuracy as their outcome
metric. Given their 100% accuracy, this would be re-
flected in other performance metrics as well. However, is
raw accuracy a goodmeasure of amodel’s performance?

When prediction models are tested on imbalanced
classes, that is, outcomes are not split nearly 50/50, then
raw accuracy is not a good metric. For example, if a PJI
occurs inonly�2% of an elective total knee arthroplasty
cohort, an algorithm can be “98% accurate” by pre-
dicting no PJIs at all, without having learned any insight
into the problem. For unbalanced classes, metrics which
combine sensitivity and specificity, such as the F1 score,
are preferred. Models predicting time-based outcomes
such as implant survival or patient survival have their
own metrics. Please see Table 1 for list of common
metrics used in deep learning research.

What Is Multimodal Artificial Intelligence?
Thus far, the deep learning models described have been
trained on and evaluate only clinical variables (DNNs) or
only image data (CNNs). However, relying solely on
information derived from one data type may not provide
a comprehensive understanding of a patient’s condi-
tion.20 In addition to clinical variables and image data,
genomic information or data from histopathology can
also play a notable role in specific tasks. Integrating

Table 1. Common Metrics in Deep Learning Research

Metric Explanation

F1 score The harmonic mean of sensitivity and positive predictive value.
Better than raw accuracy for imbalanced classes

Area under the receiver operator curve (AUC/AUROC) Graphical depiction of model performance that plots true
positive against false-positive rates at different classification
thresholds. It quantifies the overall performance of a
classification task and represent the ability of a model to
distinguish between classes at various threshold values

C-Index Extension of AUC to survival curves. Represents the proportion
of patients that can be ordered such that patients with higher
predicted survival actually survive longer

Brier score Represents the mean squared difference between the model’s
predictions and the actual outcomes. Lower Brier scores are
favorable

Calibration plot Depicts differences between predicted and actual outcomes at
different ranges of the predicted values. Helps to determine
whether the model performs equally well across the entire
range of possible outcomes or eg, better in the middle range of
usual outcomes (where there may be more training data) and
poorer at higher and lower ends of the outcome

JAAOS® ---
-- June 1, 2024, Vol 32, No 11 ---
-- © American Academy of Orthopaedic Surgeons e527

R
eview

Section:
O
rthopaedic

A
dvances

Anthony Bozzo, MD, MSc, FRCSC, et al

D
ow

nloaded from
 http://journals.lw

w
.com

/jaaos by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

4/O
A

V
pD

D
a8K

K
G

K
V

0Y
m

y+
78=

 on 01/19/2025



diverse information from multiple modalities into a
unified task is the essence of MMAI.

To achieve MMAI, it is essential to represent all
information from different domains as numerical for-
mats. As discussed earlier, CNNs can extract features
from diagnostic imaging, essentially generating a vector
of numbers (the embedding layer in Figure 2). Similarly,
clinical and genetic information can be transformed into
numerical vectors, and histopathology slides can also be
encoded into numerical representations using CNNs.
These numerical representations from various sources
can then be concatenated or serially combined. The
resulting sequence of numbers representing the core
feature of multiple modalities can then be evaluated by a
final DNN (or a classic ML algorithm) and related to the
outcome of interest (Figure 3).

Recently, a success story in the field of MMAI was
published in Nature in 2022.21 The paper focuses on
prostate cancer. The MMAI model was trained and vali-
dated using clinical and histopathological data from five
phase III randomized trials. In this study, a simple CNN
(ResNet50) was employed to extract deep features from
digital pathology slides. These extracted deep features were
then combined with essential clinical variables, including
age, prostate-specific antigen (PSA), and Gleason score.
The resulting concatenated feature vector was then used to
generate an AI score that predicts oncological outcomes
better than previous prediction models in their field.21

After the publication, the National Comprehensive
Cancer Network recommended the use of this AI algo-
rithm as a prognostic tool, providing Level 1 evidence for
its validation. However, it is worth noting that the

prostate cancer study had access to prospectively col-
lected trial data and histopathology data from 5,654
patients, which contributes to the robustness of the
findings. Given that orthopaedic cancers, sarcomas, are a
relatively rarer and heterogeneous disease entity, finding
a sufficient number of cases for MMAI may remain
challenging.However, recent work indicates that smaller
data sets that contain multimodal data can outperform
larger data sets with only one datamodality.4 Within the
orthopaedic literature, a multimodal deep learning
model has been used to evaluate surgical knot tying
ability.22 The model combined analysis of both images
of the final knot and kinematic time series data from a
sensor to score “overall performance,” “respect for
tissue,” and “time and motion.”22

Comparison With Radiomics
Radiomics is a method to extract features from images
which is not based on deep learning. The key difference is
that unlike CNNs, the radiomics features are “human
engineered”—they follow predetermined rules for
combining the pixel information. These features can
include measures of contrast, brightness, heterogeneity,
texture, and others. While CNNs can learn an embed-
ding of an image that captures its core information,
radiomics can only determine which of the preset fea-
tures, and combinations of those preset features, are
related the outcome. It cannot learn new features, and
the data set may be better represented by features not
included in the radiomics package.

Figure 3

To achieve multimodal AI, it is essential to represent information from different domains in consistent numerical formats. CNNs extract
features from images. Initially as a 2D or 3D grid of numbers, the image data is then represented by a 1D vector of numbers (the
embedding layer in Figure 2). Similarly, clinical variables information can be transformed into a numerical vector. These numerical
representations from various sources can then be concatenated or serially combined. The resulting sequence of numbers representing
the core feature of multiple modalities can then be evaluated by a final DNN and related to the outcome of interest. CNNs =
convolutional neural networks, DNNs = deep neural networks
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While radiomics hasdemonstrated the ability topredict
the risk of metastasis of patients with sarcoma based on
positron emission tomography (PET) images23 and to
differentiate between more aggressive and less aggressive
osteosarcomas based on MRI images,24 critical concerns
of radiomics include feature stability, reproducibility, and
repeatability.25 Different radiomics extraction packages
may yield varied results, as demonstrated in a study by
Carloni et al.26 Furthermore, when radiomics is com-
pared with CNNs on the same data set, radiomics fea-
tures commonly prove less accurate and perform poorer
on external validation.27-29 Radiomics is certainly capa-
ble of extracting features from images and is useful
because of its easier implementation and lower compu-
tational requirements compared with CNNs. However,
given their higher accuracy and robustness to external
validation, CNNs represent the benchmark for extracting
features from images and analyzing them in unimodal or
multimodal AI models.

How to Critically Appraise Papers Using
These Methods
Several studies in orthopaedics and other specialties exist
where ML is touted in the title, but linear regression dem-
onstrates the best performance.30 Readers must be able to
separate hype from true advances. When evaluating a
paper which uses ML algorithm, one should first identify
what type of algorithms was used: classic ML or DNNs?
Were one or multiple data modalities incorporated?

What is the sample size? Was data augmentation
used? Did they make use of transfer learning? Transfer
learning involves using knowledge gained from a model
pretrained on a related task and then retraining it on a
target task to enhance performance.

What performance metrics are reported? As men-
tioned above, reporting just overall accuracy of the
model is not representative of an algorithm’s ability to
learn when classes are unbalanced. Was performance
reported only on the training data set or validation data
set? Was there an external testing data set?

What aspects aiding model interpretability have been
reported by the authors? It is not enough to simply pro-
vide a prediction. In order to peel back the ‘black box’ of
machine learning and trust the predictions, clinicians
should know why the model is making a prediction.
Some classic ML algorithms like random forests allow
the relative importance of predictor variables to be
visualized. To determine this, the algorithm removes a
predictor variable and records the resulting decrease in

performance. Variables are then ranked by their con-
tribution to overall accuracy of the model.

For models analyzing images, attention maps or heat
maps can be used to determine which pixels are most
contributing to the model’s predictions. For example,
Navarro et al31 used a unimodal CNN (DenseNet 121)
to analyze individual slices of the MRI of a sarcoma and
predict if it is high grade or low grade. They demonstrate
heat maps for examples where the model was correct
(heat map corresponds to areas of the sarcoma) and
instances where the model was wrong (heat map is
overlayed onto empty pixels). By knowing which pixels
a CNN is paying attention to, physicians can under-
stand what aspects of an image are deemed most salient
or if spurious associations were made (Figure 4).

Reporting guidelines such as Transparent reporting of a
multivariable prediction model for individual prognosis or
diagnosis (TRIPOD-AI), Checklist for Artificial Intelligence
in Medical Imaging, and other risk of bias tools have been
developed for AI models and continue to be refined.32,33

These checklists can be applied to the AI studies being
reviewed and should be used when designing a study using
deep learning methods. We provide a checklist to aid in
critically appraising studies using ML (Table 2).

Figure 4

A, An axial MRI slice depicting a soft-tissue sarcoma used to
train a multimodal neural network. B, A corresponding heat map
from the same patient is displayed. Pixels shaded in red are
those that the network deemed most salient for its predictions.
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What Data and Expertise Are Needed for
Your Center to Do Machine Learning
Research?
Analysis of clinical variables alone does not require any
special implant or infrastructure. Analysis can be per-
formed in several coding languages such as R and
Python. The training of CNNs on image data requires
dedicated graphics processing units (GPUs) andmay take
days to complete training depending on the complexity of
the model. However, several options for researchers are
now available. For example, Google’s Colab provides
free access to a Python environment and GPUs through
their cloud service. Access to GPUs is also available from
Amazon Web Services and other providers.

Successful MMAI studies require collaboration
between orthopaedic surgeons and data scientists to
optimize the data collection and network architectures
required for different clinical questions.

How should your image data be prepared for neural
network analysis? “Preprocessing” is the term used to
describe preparation of the image data set before
analysis. After preprocessing, pixel data are standard-
ized between images in the data set so that true differ-
ences between the images can be extracted. Common
preprocessing techniques include N4 bias correction and
Z-score normalization.34

To reduce computational costs and the time needed to
train a CNN, sometimes only a region of interest or
volumeof interestwithin the largerMRI is analyzed. This
is achieved with the use of segmentation masks which
indicate which pixels should be included in the analysis.
Segmentation can be performed manually or automati-
cally by trained neural networks.35

What to Expect Next
Given the emerging popularity of ML in orthopaedic
research, it is important that systematic reviews be per-
formed. One of the first such reviews demonstrated that
most papers fail to report the standardized checklists.36 It
is imperative that the orthopaedic community embrace
and require checklists such as TRIPOD-AI, just as we
have for reporting the results of other types of clinical
research.

Furthermore, deep learning algorithms will continue
to advance at a rapid pace, and we will likely witness the
integration of deep learning solutions in patient care
pathways. The rate limiting step for impactful deep
learning studies is the availability of high-quality data.
Current challenges to AI studies include the fact that
data from different modalities can exist in disparate
“silos” within an institution, that is, the patient’s

Table 2. Checklist of Discussion Items When Reviewing and Critically Appraising a Machine Learning Article

Area Questions

Algorithms Was classic machine learning or deep learning used? Was multimodal
AI used? Was the network architecture explained?

Data What is the sample size? Was data augmentation used? Did they make
use of transfer learning? Do they specify how their data were
preprocessed? If it is supervised learning, how were the labels
obtained? Are the output labels (classes) well balanced, and if not, what
measures were taken to correct this? Is the data single center or
multicenter? Retrospective or prospective?

Model training What split in the data was used to train and validate the model? Was
external validation with a test set performed?

Results What outcome measure is reported? Do the authors use performance
metrics beyond simple overall accuracy? Are Brier scores or calibration
plots provided?
Does a benchmark for comparison exist, and if so, was it compared? Is
the improvement clinically significant? Is an increase in net benefit to
the patient demonstrated?

Model interpretability For models based on clinical variables, was variable importance
reported?
For models based on image data, were heat maps provided?

Reporting guidelines Were TRIPOD-AI, CLAIM, and/or other risk of bias tools used?

AI = artificial intelligence, CLAIM = Checklist for Artificial Intelligence in Medical Imaging
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laboratory values are not stored with their imaging data
nor with their clinical notes. Ultimately, large multicenter
databases of high-quality prospective data are needed to
maximize deep learning to benefit our patients. This is
especially true for rare conditions with low prevalence,
such as sarcomas. Fortunately, federated learning, a
privacy preserving method of data analysis, can be used
to transcend historical and emerging barriers of data
sharing between institutions. Similar to a traveling fel-
lowship, an algorithm in the cloud can be sent to train on
data from multiple centers, without the centers ever
having to send data outside of their institution.37
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