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Abstract

Complex traits are known to be influenced by a combination of environmental factors and

rare and common genetic variants. However, detection of such multivariate associations

can be compromised by low statistical power and confounding by population structure. Lin-

ear mixed effects models (LMM) can account for correlations due to relatedness but have

not been applicable in high-dimensional (HD) settings where the number of fixed effect pre-

dictors greatly exceeds the number of samples. False positives or false negatives can result

from two-stage approaches, where the residuals estimated from a null model adjusted for

the subjects’ relationship structure are subsequently used as the response in a standard

penalized regression model. To overcome these challenges, we develop a general penal-

ized LMM with a single random effect called ggmix for simultaneous SNP selection and

adjustment for population structure in high dimensional prediction models. We develop a

blockwise coordinate descent algorithm with automatic tuning parameter selection which is

highly scalable, computationally efficient and has theoretical guarantees of convergence.

Through simulations and three real data examples, we show that ggmix leads to more par-

simonious models compared to the two-stage approach or principal component adjustment

with better prediction accuracy. Our method performs well even in the presence of highly

correlated markers, and when the causal SNPs are included in the kinship matrix. ggmix

can be used to construct polygenic risk scores and select instrumental variables in Mende-

lian randomization studies. Our algorithms are available in an R package available on

CRAN (https://cran.r-project.org/package=ggmix).
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Author summary

This work addresses a recurring challenge in the analysis and interpretation of genetic

association studies: which genetic variants can best predict and are independently associ-

ated with a given phenotype in the presence of population structure? Not controlling con-

founding due to geographic population structure, family and/or cryptic relatedness can

lead to spurious associations. Much of the existing research has therefore focused on

modeling the association between a phenotype and a single genetic variant in a linear

mixed model with a random effect. However, this univariate approach may miss true asso-

ciations due to the stringent significance thresholds required to reduce the number of

false positives and also ignores the correlations between markers. We propose an alterna-

tive method for fitting high-dimensional multivariable models, which selects SNPs that

are independently associated with the phenotype while also accounting for population

structure. We provide an efficient implementation of our algorithm and show through

simulation studies and real data examples that our method outperforms existing methods

in terms of prediction accuracy and controlling the false discovery rate.

Introduction

Genome-wide association studies (GWAS) have become the standard method for analyzing

genetic datasets owing to their success in identifying thousands of genetic variants associated

with complex diseases (https://www.genome.gov/gwastudies/). Despite these impressive find-

ings, the discovered markers have only been able to explain a small proportion of the pheno-

typic variance; this is known as the missing heritability problem [1]. One plausible reason is

that there are many causal variants that each explain a small amount of variation with small

effect sizes [2]. Methods such as GWAS, which test each variant or single nucleotide polymor-

phism (SNP) independently, may miss these true associations due to the stringent significance

thresholds required to reduce the number of false positives [1]. Another major issue to over-

come is that of confounding due to geographic population structure, family and/or cryptic

relatedness which can lead to spurious associations [3]. For example, there may be subpopula-

tions within a study that differ with respect to their genotype frequencies at a particular locus

due to geographical location or their ancestry. This heterogeneity in genotype frequency can

cause correlations with other loci and consequently mimic the signal of association even

though there is no biological association [4, 5]. Studies that separate their sample by ethnicity

to address this confounding suffer from a loss in statistical power due to the drop in sample

size.

To address the first problem, multivariable regression methods have been proposed which

simultaneously fit many SNPs in a single model [6, 7]. Indeed, the power to detect an associa-

tion for a given SNP may be increased when other causal SNPs have been accounted for. Con-

versely, a stronger signal from a causal SNP may weaken false signals when modeled jointly

[6].

Solutions for confounding by population structure have also received significant attention

in the literature [8–11]. There are two main approaches to account for the relatedness between

subjects: 1) the principal component (PC) adjustment method and 2) the linear mixed model

(LMM). The PC adjustment method includes the top PCs of genome-wide SNP genotypes as
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additional covariates in the model [12]. The LMM uses an estimated covariance matrix from

the individuals’ genotypes and includes this information in the form of a random effect [3].

While these problems have been addressed in isolation, there has been relatively little

progress towards addressing them jointly at a large scale. Region-based tests of association

have been developed where a linear combination of p variants is regressed on the response

variable in a mixed model framework [13]. In case-control data, a stepwise logistic-regres-

sion procedure was used to evaluate the relative importance of variants within a small

genetic region [14]. These methods however are not applicable in the high-dimensional set-

ting, i.e., when the number of variables p is much larger than the sample size n, as is often

the case in genetic studies where millions of variants are measured on thousands of

individuals.

There has been recent interest in using penalized linear mixed models, which place a con-

straint on the magnitude of the effect sizes while controlling for confounding factors such as

population structure. For example, the LMM-lasso [15] places a Laplace prior on all main

effects while the adaptive mixed lasso [16] uses the L1 penalty [17] with adaptively chosen

weights [18] to allow for differential shrinkage amongst the variables in the model. Another

method applied a combination of both the lasso and group lasso penalties in order to select

variants within a gene most associated with the response [19]. However, methods such as the

LMM-lasso are normally performed in two steps. First, the variance components are estimated

once from a LMM with a single random effect. These LMMs normally use the estimated

covariance matrix from the individuals’ genotypes to account for the relatedness but assumes

no SNP main effects (i.e. a null model). The residuals from this null model with a single ran-

dom effect can be treated as independent observations because the relatedness has been effec-

tively removed from the original response. In the second step, these residuals are used as the

response in any high-dimensional model that assumes uncorrelated errors. This approach has

both computational and practical advantages since existing penalized regression software such

as glmnet [20] and gglasso [21], which assume independent observations, can be applied

directly to the residuals. However, recent work has shown that there can be a loss in power if a

causal variant is included in the calculation of the covariance matrix as its effect will have been

removed in the first step [13, 22].

In this paper we develop a general penalized LMM framework called ggmix that simulta-

neously selects variables and estimates their effects, accounting for between-individual correla-

tions. We develop a blockwise coordinate descent algorithm with automatic tuning parameter

selection which is highly scalable, computationally efficient and has theoretical guarantees of

convergence. Our method can handle several sparsity inducing penalties such as the lasso [17]

and elastic net [23]. Through simulations and three real data examples, we show that ggmix
leads to more parsimonious models compared to the two-stage approach or principal compo-

nent adjustment with better prediction accuracy. Our method performs well even in the pres-

ence of highly correlated markers, and when the causal SNPs are included in the kinship

matrix.

All of our algorithms are implemented in the ggmix R package hosted on CRAN with

extensive documentation (https://sahirbhatnagar.com/ggmix). We provide a brief demonstra-

tion of the ggmix package in S2 Text.

The rest of the paper is organized as follows. In Results, we compare the performance of

our proposed approach and demonstrate the scenarios where it can be advantageous to use

over existing methods through simulation studies and three real data analyses. This is followed

by a discussion of our results, some limitations and future directions in Discussion. Materials

and methods describes the ggmix model, the optimization procedure and the algorithm used

to fit it.
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Results

In this section we demonstrate the performance of ggmix in a simulation study and three real

data applications.

Simulation study

We evaluated the performance of ggmix in a variety of simulated scenarios. For each simula-

tion scenario we compared ggmix to the lasso and the twostep method. For the lasso,

we included the top 10 principal components from the simulated genotypes used to calculate

the kinship matrix as unpenalized predictors in the design matrix. For the twostep method,

we first fitted an intercept only model with a single random effect using the average informa-

tion restricted maximum likelihood (AIREML) algorithm [24] as implemented in the gaston
R package [25]. The residuals from this model were then used as the response in a regular

lasso model. Note that in the twostep method, we removed the kinship effect in the first

step and therefore did not need to make any further adjustments when fitting the penalized

model. We fitted the lasso using the default settings and standardize = FALSE in the

glmnet package [20], with 10-fold cross-validation (CV) to select the optimal tuning parame-

ter. For other parameters in our simulation study, we defined the following quantities:

• n: sample size

• c: percentage of causal SNPs

• β: true effect size vector of length p

• S0 = {j; (β)j 6¼ 0} the index of the true active set with cardinality |S0| = c × p

• causal: the list of causal SNP indices

• kinship: the list of SNP indices for the kinship matrix

• X: n × p matrix of SNPs that were included as covariates in the model

We simulated data from the model

Y ¼ Xβ þPþ ε;

where P � N ð0; Zs2ΦÞ is the polygenic effect and ε � N ð0; ð1 � ZÞs2IÞ is the error term.

Here, Φn×n is the covariance matrix based on the kinship SNPs from n individuals, In×n is the

identity matrix and parameters σ2 and η 2 [0, 1] determine how the variance is divided

between P and ε. The values of the parameters that we used were as follows: narrow sense heri-

tability η = {0.1, 0.3}, number of covariates p = 5, 000, number of kinship SNPs k = 10, 000, per-

centage of causal SNPs c = {0%, 1%} and σ2 = 1. In addition to these parameters, we also varied

the amount of overlap between the causal list and the kinship list. We considered two main

scenarios:

1. None of the causal SNPs are included in kinship set.

2. All of the causal SNPs are included in the kinship set.

Both kinship matrices were meant to contrast the model behavior when the causal SNPs are

included in both the main effects and random effects (referred to as proximal contamination

[8]) versus when the causal SNPs are only included in the main effects. These scenarios are

motivated by the current standard of practice in GWAS where the candidate marker is

excluded from the calculation of the kinship matrix [8]. This approach becomes much more

difficult to apply in large-scale multivariable models where there is likely to be overlap between
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the variables in the design matrix and kinship matrix. We simulated random genotypes from

the BN-PSD admixture model with 1D geography and 10 subpopulations using the bnpsd
package [26, 27]. In Fig 1, we plot the estimated kinship matrix from a single simulated dataset

in the form of a heatmap where a darker color indicates a closer genetic relationship.

In Fig 2 we plot the first two principal component scores calculated from the simulated

genotypes used to calculate the kinship matrix in Fig 1, and color each point by subpopulation

membership. We can see that the PCs can identify the subpopulations which is why including

them as additional covariates in a regression model has been considered a reasonable approach

to control for confounding.

Using this set-up, we randomly partitioned 1000 simulated observations into 80% for train-

ing and 20% for testing. The training set was used to fit the model and select the optimal tun-

ing parameter only, and the resulting model was evaluated on the test set. Let l̂ be the

estimated value of the optimal regularization parameter, β̂l̂ the estimate of β at regularization

parameter l̂, and Ŝl̂ ¼ fj; ðβ̂ l̂Þj 6¼ 0g the index of the set of non-zero estimated coefficients.

Fig 1. Empirical kinship matrix. Example of an empirical kinship matrix used in simulation studies. This scenario models a 1D

geography with extensive admixture.

https://doi.org/10.1371/journal.pgen.1008766.g001

Fig 2. First two principal components. First two principal component scores of the genotype data used to estimate the

kinship matrix where each color represents one of the 10 simulated subpopulations.

https://doi.org/10.1371/journal.pgen.1008766.g002
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To compare the methods in the context of true positive rate (TPR), we selected the largest tun-

ing parameter that would result in a false positive rate (FPR) closest to 5%, but not more. Note

that in practice, this approach to selecting the tuning parameter is generally not possible since

we do not know the underlying true model in advance. For real data, we suggest an informa-

tion criterion approach described in S1 Text or a sample splitting approach such as the one we

used for the UK Biobank analysis. We also compared the model size (jŜ l̂ j), test set prediction

error based on the refitted unpenalized estimates for each selected model, the estimation error

(kβ̂ � βk2

2
), and the variance components (η, σ2) for the polygenic random effect and error

term.

The results are summarized in Table 1. We see that ggmix outperformed the twostep in

terms of TPR, and was comparable to the lasso. This was the case, regardless of true herita-

bility and whether the causal SNPs were included in the calculation of the kinship matrix. For

the twostep however, the TPR at a FPR of 5%, drops, on average, from 0.84 (when causal

SNPs are not in the kinship) to 0.76 (when causal SNPs are in the kinship). Across all simula-

tion scenarios, ggmix had the smallest estimation error, and smallest root mean squared pre-

diction error (RMSE) on the test set while also producing the most parsimonious models. Both

the lasso and twostep selected more false positives, even in the null model scenario. Both

Table 1. Simulation study results. Mean (standard deviation) from 200 simulations stratified by the number of causal SNPs (null, 1%), the overlap between causal SNPs

and kinship matrix (no overlap, all causal SNPs in kinship), and true heritability (10%, 30%). For all simulations, sample size is n = 1000, the number of covariates is

p = 5000, and the number of SNPs used to estimate the kinship matrix is k = 10000. TPR at FPR = 5% is the true positive rate at a fixed false positive rate of 5%. Model Size

(jŜ l̂ j) is the number of selected variables in the training set using the high-dimensional BIC for ggmix and 10-fold cross validation for lasso and twostep. RMSE is

the root mean squared error on the test set. Estimation error is the squared distance between the estimated and true effect sizes. Error variance (σ2) for twostep is esti-

mated from an intercept only LMM with a single random effect and is modeled explicitly in ggmix. For the lasso we use 1

n� jŜ
l̂
j
kY � Xβ̂ l̂k

2

2
[28] as an estimator for σ2.

Heritability (η) for twostep is estimated as s2
g=ðs

2
g þ s

2
e Þ from an intercept only LMM with a single random effect where s2

g and s2
e are the variance components for the

random effect and error term, respectively. η is explictly modeled in ggmix. There is no positive way to calculate η for the lasso since we are using a PC adjustment.

Null model 1% Causal SNPs

No overlap All causal SNPs in kinship No overlap All causal SNPs in kinship

Metric Method 10% 30% 10% 30% 10% 30% 10% 30%

TPR at FPR twostep 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.84 (0.05) 0.84 (0.05) 0.76 (0.09) 0.77 (0.08)

lasso 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.86 (0.05) 0.85 (0.05) 0.86 (0.05) 0.86 (0.05)

ggmix 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.86 (0.05) 0.86 (0.05) 0.85 (0.05) 0.86 (0.05)

Model Size twostep 0 (0, 5) 0 (0, 2) 0 (0, 5) 0 (0, 2) 328 (289, 388) 332 (287, 385) 284 (250, 329) 284 (253, 319)

lasso 0 (0, 6) 0 (0, 5) 0 (0, 6) 0 (0, 5) 278 (246, 317) 276 (245, 314) 279 (252, 321) 285 (244, 319)

ggmix 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 43 (39, 49) 43 (39, 48) 44 (38, 49) 43 (38, 48)

RMSE twostep 1.02 (0.07) 1.02 (0.06) 1.02 (0.07) 1.02 (0.06) 1.42 (0.10) 1.41 (0.10) 1.44 (0.33) 1.40 (0.22)

lasso 1.02 (0.06) 1.02 (0.06) 1.02 (0.06) 1.02 (0.06) 1.39 (0.09) 1.38 (0.09) 1.40 (0.08) 1.38 (0.08)

ggmix 1.00 (0.05) 1.00 (0.05) 1.00 (0.05) 1.00 (0.05) 1.22 (0.10) 1.20 (0.10) 1.23 (0.11) 1.23 (0.12)

Estimation Error twostep 0.12 (0.22) 0.09 (0.19) 0.12 (0.22) 0.09 (0.19) 2.97 (0.60) 2.92 (0.60) 3.60 (5.41) 3.21 (3.46)

lasso 0.13 (0.21) 0.12 (0.22) 0.13 (0.21) 0.12 (0.22) 2.76 (0.46) 2.69 (0.47) 2.82 (0.48) 2.75 (0.48)

ggmix 0.00 (0.01) 0.01 (0.02) 0.00 (0.01) 0.01 (0.02) 2.11 (1.28) 2.04 (1.22) 2.21 (1.24) 2.28 (1.34)

Error Variance twostep 0.87 (0.11) 0.69 (0.15) 0.87 (0.11) 0.69 (0.15) 14.23 (3.53) 14.13 (3.52) 1.42 (1.71) 1.28 (1.66)

lasso 0.98 (0.05) 0.96 (0.05) 0.98 (0.05) 0.96 (0.05) 1.04 (0.13) 1.02 (0.13) 1.03 (0.14) 1.01 (0.14)

ggmix 0.85 (0.18) 0.64 (0.20) 0.85 (0.18) 0.64 (0.20) 2.00 (0.49) 1.86 (0.51) 1.06 (0.46) 0.83 (0.45)

Heritability twostep 0.13 (0.11) 0.31 (0.15) 0.13 (0.11) 0.31 (0.15) 0.26 (0.14) 0.26 (0.14) 0.92 (0.08) 0.93 (0.08)

lasso – – – – – – – –

ggmix 0.15 (0.18) 0.37 (0.21) 0.15 (0.18) 0.37 (0.21) 0.18 (0.16) 0.23 (0.17) 0.59 (0.20) 0.68 (0.19)

Note: median (inter-quartile range) is given for model size.

https://doi.org/10.1371/journal.pgen.1008766.t001
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the twostep and ggmix overestimated the heritability though ggmix was closer to the true

value. When none of the causal SNPs were in the kinship, both methods tended to overesti-

mate the truth when η = 10% and underestimate when η = 30%. Across all simulation scenar-

ios ggmix was able to (on average) correctly estimate the error variance. The lasso tended

to overestimate σ2 in the null model while the twostep overestimated σ2 when none of the

causal SNPs were in the kinship matrix.

Overall, we observed that variable selection results and RMSE for ggmix were similar

regardless of whether the causal SNPs were in the kinship matrix or not. This result is encour-

aging since in practice the kinship matrix is constructed from a random sample of SNPs across

the genome, some of which are likely to be causal, particularly in polygenic traits.

In particular, our simulation results show that the principal component adjustment method

may not be the best approach to control for confounding by population structure, particularly

when variable selection is of interest.

Real data applications

Three datasets with different features were used to illustrate the potential advantages of

ggmix over existing approaches such as PC adjustment in a lasso regression. In the first

two datasets, family structure induced low levels of correlation and sparsity in signals. In the

last, a dataset involving mouse crosses, correlations were extremely strong and could confound

signals.

UK Biobank. With more than 500,000 participants, the UK Biobank is one of the largest

genotyped health care registries in the world. Among these participants, 147,731 have been

inferred to be related to at least one individual in this cohort [29]. Such a widespread genetic

relatedness may confound association studies and bias trait predictions if not properly

accounted for. Among these related individuals, 18,150 have a documented familial relation-

ship (parent-offspring, full siblings, second degree or third degree) that was previously inferred

in [30]. We attempted to derive a polygenic risk score for height among these individuals. As

suggested by a reviewer, the goal of this analysis was to see how the different methods per-

formed for a highly polygenic trait in a set of related individuals. We compared the ggmix-

derived polygenic risk score to those derived by the twostep and lasso methods.

We first estimated the pairwise kinship coefficient among the 18,150 reportedly related

individuals based on 784,256 genotyped SNPs using KING [31]. We grouped related individu-

als with a kinship coefficient > 0.044 [31] into 8,300 pedigrees. We then randomly split the

dataset into a training set, a model selection set and a test set of roughly equal sample size,

ensuring all individuals in the same pedigree were assigned into the same set. We inverse nor-

malized the standing height after adjusting for age, sex, genotyping array, and assessment cen-

ter following Yengo et al. [32].

To reduce computational complexity, we selected 10,000 SNPs with the largest effect sizes

associated with height from a recent large meta-analysis [32]. Among these 10,000 SNPs, 1,233

were genotyped and used for estimating the kinship whereas the other 8,767 SNPs were

imputed based on the Haplotype Reference Consortium reference panel [33]. The distribution

of the 10,000 SNPs by chromosome and whether or not the SNP was imputed is shown in S1

Fig. We see that every chromosome contributed SNPs to the model with 15% coming from

chromosome 6. The markers we used are theoretically independent since Yengo et al. per-

formed a COJO analysis which should have tuned down signals due to linkage disequilibrium

[32]. We used ggmix, twostep and lasso to select SNPs most predictive of the inverse

normalized height on the training set, and chose the λ with the lowest prediction RMSE on the

model selection set for each method. We then examined the performance of each derived
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polygenic risk score on the test set. Similar to simulation study, we adjusted for the top 10

genetic PCs as unpenalized predictors when fitting the lasso models, and supplied the kin-

ship matrix based on 784,256 genotyped SNPs to ggmix and twostep.

We found that with a kinship matrix estimated using all genotyped SNPs, ggmix had the

possibility to achieve a lower RMSE on the model selection set compared to the twostep and

lasso methods (Fig 3A). An optimized ggmix-derived polygenic risk score that utilized the

least number of SNPs was also able to better predict the trait with lower RMSE on the test set

(Fig 3B).

We additionally applied a Bayesian Sparse Linear Mixed Model (BSLMM) [34] implemented

in the GEMMA package [35] to derive a polygenic risk score on the training set. A posterior

probability of inclusion of each SNP was provided and prediction was based on all SNPs with a

positive posterior probability. We found that although the BSLMM-based polygenic risk score

leveraged the most SNPs, it did not achieve a comparable prediction accuracy as the other

three methods (Fig 3B). Likely due to the small effect sizes of these SNPs, only 94, 35 and 1

SNPs had a posterior inclusion probability above 0.05, 0.10 and 0.50, respectively. The model

would have further reduced prediction accuracy if the prediction was based only on these

SNPs.

GAW20. In the most recent Genetic Analysis Workship 20 (GAW20), the causal model-

ing group investigated causal relationships between DNA methylation (exposure) within some

genes and the change in high-density lipoproteins ΔHDL (outcome) using Mendelian

Fig 3. Model selection and testing in the UK Biobank. (a) Root-mean-square error of three methods on the model selection set with respect to a grid search of

penalty factor used on the training set. (b) Performance of four methods on the test set with penalty factor optimized on the model selection set. The x-axis has a

logarithmic scale. The BSLMM method optimized coefficients of each SNP through an MCMC process on the training set and was directly evaluated on the test set.

https://doi.org/10.1371/journal.pgen.1008766.g003

PLOS GENETICS Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008766 May 4, 2020 8 / 25

https://doi.org/10.1371/journal.pgen.1008766.g003
https://doi.org/10.1371/journal.pgen.1008766


Randomization (MR) [36]. Penalized regression methods were used to select SNPs strongly

associated with the exposure in order to be used as an instrumental variable (IV) [37, 38].

However, since GAW20 data consisted of families, twostep methods were used which could

have resulted in a large number of false positives or false negatives. ggmix now provides an

alternative approach that could be used for selecting the IV while accounting for the family

structure of the data.

We applied ggmix to all 200 GAW20 simulation datasets, each of 679 observations, and

compared its performance to the twostep and lasso methods. Using a Factored Spectrally

Transformed Linear Mixed Model (FaST-LMM) [39] adjusted for age and sex, we validated

the effect of rs9661059 on blood lipid trait to be significant (genome-wide p = 6.29 × 10−9).

Though several other SNPs were also associated with the phenotype, these associations were

probably mediated by CpG-SNP interaction pairs and did not reach statistical significance.

Therefore, to avoid ambiguity, we only focused on chromosome 1 containing 51,104 SNPs,

including rs9661059. Given that population admixture in the GAW20 data was likely, we esti-

mated the population kinship using REAP [40] after decomposing population compositions

using ADMIXTURE [41]. We used 100,276 LD-pruned whole-genome genotyped SNPs for

estimating the kinship. Among these, 8100 were included as covariates in our models based on

chromosome 1. The causal SNP was also among the 100,276 SNPs. All methods were fit

according to the same settings described in our simulation study, and adjusting for age and

sex. We calculated the median (inter-quartile range) number of active variables, and RMSE

(standard deviation) based on five-fold CV on each simulated dataset.

On each simulated replicate, we calibrated the methods so that they could be easily com-

pared by fixing the true positive rate to 1 and then minimizing the false positive rate. Hence,

the selected SNP, rs9661059, was likely to be the true positive for each method, and non-causal

SNPs were excluded to the greatest extent. All three methods precisely chose the correct pre-

dictor without any false positives in more than half of the replicates, as the causal signal was

strong. However, when some false positives were selected (i.e. when the number of active

variables > 1), ggmix performed comparably to twostep, while the lasso was inclined to

select more false positives as suggested by the larger third quartile number of active variables

(Table 2). We also observed that ggmix outperformed the twostep method with lower CV

RMSE using the same number of SNPs. Meanwhile, it achieved roughly the same prediction

accuracy as lasso but with fewer non-causal SNPs (Table 2). It is also worth mentioning that

Table 2. GAW20 simulation study results. Summary of model performance based on 200 GAW20 simulations for the

twostep, lasso, ggmix and BSLMM model with different posterior inclusion probability (PIP) thresholds. Five-

fold cross-validation root-mean-square error (RMSE) was reported for each simulation replicate. Prediction perfor-

mance was not reported for BSLMM with PIP greater than 0.05, 0.10 and 0.50 because some of the replications con-

tained no active SNPs.

Method Model Size RMSE (SD)

twostep 1 (1–11) 0.3604 (0.0242)

lasso 1 (1–15) 0.3105 (0.0199)

ggmix 1 (1–12) 0.3146 (0.0210)

BSLMM (PIP > 0) 40,737 (39,901–41,539) 0.2503 (0.0099)

BSLMM (PIP > 0.05) 2 (1–4) -

BSLMM (PIP > 0.10) 0 (0–1) -

BSLMM (PIP > 0.50) 0 (0–0) -

Note: median (inter-quartile range) is given for model size.

https://doi.org/10.1371/journal.pgen.1008766.t002
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there was very little correlation between the causal SNP and SNPs within a 1Mb-window

around it (see S2 Fig), making it an ideal scenario for the lasso and related methods.

We also applied the BSLMM method by performing five-fold CV on each of the 200 simu-

lated replicates. We found that while BSLMM achieved a lower CV RMSE compared to the

other methods (Table 2), this higher prediction accuracy relied on approximately 80% of the

51,104 SNPs with a positive posterior inclusion probability. This may suggest overfitting in

this dataset. We additionally tried imposing a stricter posterior inclusion probability threshold

(0.05, 0.10 and 0.50) in order to improve feature selection. These thresholds however, resulted

in overly sparse models as most SNPs had a low posterior probability. It is also noteworthy

that we did not adjust for age and sex in the BSLMM model, as the current implementation of

the method in the GEMMA package does not allow adjustment for covariates.

Mouse crosses and sensitivity to mycobacterial infection. Mouse inbred strains of

genetically identical individuals are extensively used in research. Crosses of different inbred

strains are useful for various studies of heritability focusing on either observable phenotypes or

molecular mechanisms, and in particular, recombinant congenic strains have been an

extremely useful resource for many years [42]. However, ignoring complex genetic relation-

ships in association studies can lead to inflated false positives in genetic association studies

when different inbred strains and their crosses are investigated [43–45]. Therefore, a previous

study developed and implemented a mixed model to find loci associated with mouse sensitivity

to mycobacterial infection [46]. The random effects in the model captured complex correla-

tions between the recombinant congenic mouse strains based on the proportion of the DNA

shared identical by descent. Through a series of mixed model fits at each marker, new loci that

impact growth of mycobacteria on chromosome 1 and chromosome 11 were identified.

Here we show that ggmix can identify these loci, as well as potentially others, in a single

analysis. We reanalyzed the growth permissiveness in the spleen, as measured by colony form-

ing units (CFUs), 6 weeks after infection from Mycobacterium bovis Bacille Calmette-Guerin

(BCG) Russia strain as reported in [46].

By taking the consensus between the “main model” and the “conditional model” of the orig-

inal study, we regarded markers D1Mit435 on chromosome 1 and D11Mit119 on chromo-

some 11 as two true positive loci. We directly estimated the kinship between mice using

genotypes at 625 microsatellite markers. The estimated kinship was entered directly into

ggmix and twostep. For the lasso, we calculated and included the first 10 principal com-

ponents of the estimated kinship. To evaluate the robustness of different models, we boot-

strapped the 189-sample dataset and repeated the analysis 200 times. We then conceived a

two-fold criteria to evaluate performance of each model. We first examined whether a model

could pick up both true positive loci using some λ. If the model failed to pick up both loci

simultaneously with any λ, we counted as modeling failure on the corresponding boostrap rep-

licate; otherwise, we counted as modeling success and recorded which other loci were picked

up given the largest λ. Consequently, similar to the strategy used in the GAW20 analysis, we

optimized the models by tuning the penalty factor such that these two true positive loci were

picked up, while the number of other active loci was minimized. Significant markers were

defined as those captured in at least half of the successful bootstrap replicates (Fig 4).

We demonstrated that ggmix recognized the true associations more robustly than two-
step and lasso. In almost all (99%) bootstrap replicates, ggmix was able to capture both

true positives, while the twostep failed in 19% of the replicates and the lasso failed in 56%

of the replicates by missing at least one of the two true positives (Fig 4). The robustness of

ggmix is particularly noteworthy due to the strong correlations between all microsatellite

markers in this dataset (see S3 Fig). These strong correlations with the causal markers, partially
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explain the poor performance of the lasso as it suffers from unstable selections in the pres-

ence of correlated variables (e.g. [47]).

We also identified several other loci that might also be associated with susceptibility to

mycobacterial infection (Table 3). Among these new potentially-associated markers,

D2Mit156 was found to play a role in control of parasite numbers of Leishmania tropica in

lymph nodes [48]. An earlier study identified a parent-of-origin effect at D17Mit221 on

CD4M levels [49]. This effect was more visible in crosses than in parental strains. In addition,

D14Mit131, selected only by ggmix, was found to have a 9% loss of heterozygosity in hybrids

of two inbred mouse strains [50], indicating the potential presence of putative suppressor

genes pertaining to immune surveillance and tumor progression [51]. This result might also

suggest association with anti-bacterial responses yet to be discovered.

Fig 4. Comparison of model performance on the mouse cross data. Pie charts depict model robustness where grey areas denote bootstrap replicates on which

the corresponding model is unable to capture both true positives using any penalty factor, whereas colored areas denote successful replicates. Chromosome-based

signals record in how many successful replicates the corresponding loci are picked up by the corresponding optimized model. Red dashed lines delineate

significance thresholds.

https://doi.org/10.1371/journal.pgen.1008766.g004
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Discussion

We have developed a general penalized LMM framework called ggmix which simultaneously

selects SNPs and adjusts for population structure in high dimensional prediction models. We

compared our method to the twostage procedure, where in the first stage, the dependence

between observations is adjusted for in a LMM with a single random effect and no covariates

(i.e. null model). The residuals from this null model can then be used in any model for inde-

pendent observations because the relatedness has been effectively removed from the original

response. We also compared our method to the lasso and BSLMM which are closely related

to ggmix since they also jointly model the relatedness and SNPs in a single step. The key dif-

ferences are that the lasso uses a principal component adjustment and BSLMM is a Bayesian

method focused on phenotype prediction.

Through an extensive simulation study and three real data analyses that mimic many exper-

imental designs in genetics, we show that the current approaches of PC adjustment and two-

stage procedures are not necessarily sufficient to control for confounding by population struc-

ture leading to a high number of false positives. Our simulation results show that ggmix out-

performs existing methods in terms of sparsity and prediction error even when the causal

variants are included in the kinship matrix (Table 1). Many methods for single-SNP analyses

avoid this proximal contamination [8] by using a leave-one-chromosome-out scheme [52],

i.e., construct the kinship matrix using all chromosomes except the one on which the marker

being tested is located. However, this approach is not possible if we want to model many SNPs

(across many chromosomes) jointly to create, for example, a polygenic risk score. For the pur-

poses of variable selection, we would also want to model all chromosomes together since the

power to detect an association for a given SNP may be increased when other causal SNPs have

been accounted for. Conversely, a stronger signal from a causal SNP may weaken false signals

when modeled jointly [6], particularly when the markers are highly correlated as in the mouse

crosses example.

In the UK Biobank, we found that with a kinship matrix estimated using all genotyped

SNPs, ggmix had achieved a lower RMSE on the model selection set compared to the two-
step and lasso methods. Furthermore, an optimized ggmix-derived polygenic risk score

that utilized the least number of SNPs was also able to better predict the trait with lower RMSE

on the test set. In the GAW20 example, we showed that while all methods were able to select

the strongest causal SNP, ggmix did so with the least amount of false positives while also

maintaining good predictive ability. In the mouse crosses example, we showed that ggmix is

robust to perturbations in the data using a bootstrap analysis. Indeed, ggmix was able to con-

sistently select the true positives across bootstrap replicates, while twostep failed in 19% of

the replicates and lasso failed in 56% of the replicates by missing of at least one of the two

Table 3. Mouse crosses and sensitivity to mycobacterial infection. Additional loci significantly associated with mouse susceptibility to mycobacterial infection, after

excluding two true positives. Loci needed to be identified in at least 50% of the successful bootstrap replicates that captured both true positive loci.

Method Marker Position in cM Position in bp

twostep N/A N/A N/A

lasso D2Mit156 Chr2:31.66 Chr2:57081653-57081799

D14Mit155 Chr14:31.52 Chr14:59828398-59828596

ggmix D2Mit156 Chr2:31.66 Chr2:57081653-57081799

D14Mit131 Chr14:63.59 Chr14:120006565-120006669

D17Mit221 Chr17:59.77 Chr17:90087704-90087842

Note: median (inter-quartile range) is given for model size.

https://doi.org/10.1371/journal.pgen.1008766.t003
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true positives. Our re-analysis of the data also lead to some potentially new findings, not found

by existing methods, that may warrant further study. This particular example had many mark-

ers that were strongly correlated with each other (see S3 Fig). Nevertheless, we observed that

the two true positive loci were the most often selected while none of the nearby markers were

picked up in more than 50% of the 200 bootstrap replicates. This shows that our method does

recognize the true positives in the presence of highly correlated markers. Nevertheless, we

think the issue of variable selection for correlated SNPs warrants further study. The recently

proposed Precision Lasso [47] seeks to address this problem in the high-dimensional fixed

effects model.

We emphasize here that previously developed methods such as the LMM-lasso [15] use a

two-stage fitting procedure without any convergence details. From a practical point of view,

there is currently no implementation that provides a principled way of determining the

sequence of tuning parameters to fit, nor a procedure that automatically selects the optimal

value of the tuning parameter. To our knowledge, we are the first to develop a coordinate gra-

dient descent (CGD) algorithm in the specific context of fitting a penalized LMM for popula-

tion structure correction with theoretical guarantees of convergence. Furthermore, we develop

a principled method for automatic tuning parameter selection and provide an easy-to-use soft-

ware implementation in order to promote wider uptake of these more complex methods by

applied practitioners.

Although we derive a CGD algorithm for the ℓ1 penalty, our approach can also be easily

extended to other penalties such as the elastic net and group lasso with the same guarantees of

convergence. A limitation of ggmix is that it first requires computing the covariance matrix

with a computation time of Oðn2kÞ followed by a spectral decomposition of this matrix in

Oðn3Þ time where k is the number of SNP genotypes used to construct the covariance matrix.

This computation becomes prohibitive for large cohorts such as the UK Biobank [53] which

have collected genetic information on half a million individuals. When the matrix of geno-

types used to construct the covariance matrix is low rank, there are additional computational

speedups that can be implemented. While this has been developed for the univariate case [8],

to our knowledge, this has not been explored in the multivariable case. We are currently

developing a low rank version of the penalized LMM developed here, which reduces the time

complexity from Oðn2kÞ to Oðnk2Þ. There is also the issue of how our model scales with an

increasing number of covariates (p). Due to the coordinate-wise optimization procedure, we

expect this to be less of an issue, but still prohibitive for p> 1 × 105. The biglasso package

[54] uses memory mapping strategies for large p, and this is something we are exploring for

ggmix.

As was brought up by a reviewer, the simulations and real data analyses presented here con-

tained many more markers used to estimate the kinship than the sample size (n/k� 0.1). In

the single locus association test, Yang el al. [22] found that proximal contamination was an

issue when n/k� 1. We believe further theoretical study is needed to see if these results can be

generalized to the multivariable models being fit here. Once the computational limitations of

sample size mentioned above have been addressed, these theoretical results can be supported

by simulation studies.

There are other applications in which our method could be used as well. For example, there

has been a renewed interest in polygenic risk scores (PRS) which aim to predict complex dis-

eases from genotypes. ggmix could be used to build a PRS with the distinct advantage of

modeling SNPs jointly, allowing for main effects as well as interactions to be accounted for.

Based on our results, ggmix has the potential to produce more robust and parsimonious

models than the lasso with better predictive accuracy.
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Our method is also suitable for fine mapping SNP association signals in genomic regions,

where the goal is to pinpoint individual variants most likely to impact the undelying biological

mechanisms of disease [55].

Materials and methods

Model set-up

Let i = 1, . . ., N be a grouping index, j = 1, . . ., ni the observation index within a group and

NT ¼
PN

i¼1
ni the total number of observations. For each group let yi ¼ ðy1; . . . ; yniÞ be the

observed vector of responses or phenotypes, Xi an ni × (p + 1) design matrix (with the

column of 1s for the intercept), bi a group-specific random effect vector of length ni and

εi ¼ ðεi1; . . . ; εiniÞ the individual error terms. Denote the stacked vectors

Y ¼ ðyi; . . . ; yNÞ
T
2 RNT�1

, b ¼ ðbi; . . . ; bNÞ
T
2 RNT�1

, ε ¼ ðεi; . . . ; εNÞ
T
2 RNT�1

, and the

stacked matrix X ¼ ðXT
1
; . . . ;XT

NÞ 2 R
NT�ðpþ1Þ

. Furthermore, let β ¼ ðβ0; β1; . . . ; βpÞ
T
2

Rðpþ1Þ�1
be a vector of fixed effects regression coefficients corresponding to X. We consider the

following linear mixed model with a single random effect [56]:

Y ¼ Xβþ bþ ε;

where the random effect b and the error variance ε are assigned the distributions

b � N ð0; Zs2ΦÞ ε � N ð0; ð1 � ZÞs2IÞ:

Here, ΦNT�NT
is a known positive semi-definite and symmetric covariance or kinship matrix

calculated from SNPs sampled across the genome, INT�NT is the identity matrix and parameters

σ2 and η 2 [0, 1] determine how the variance is divided between b and ε. Note that η is also the

narrow-sense heritability (h2), defined as the proportion of phenotypic variance attributable to

the additive genetic factors [1]. The joint density of Y is therefore multivariate normal:

Yjðβ; Z;s2Þ � N ðXβ; Zs2Φþ ð1 � ZÞs2IÞ: ð1Þ

The LMM-Lasso method [15] considers an alternative but equivalent parameterization

given by:

Yjðβ; d;s2
gÞ � N ðXβ; s2

gðΦþ dIÞÞ; ð2Þ

where d ¼ s2
e=s

2
g , s

2
g is the genetic variance and s2

e is the residual variance. We instead con-

sider the parameterization in Eq 1 since maximization is easier over the compact set η 2 [0, 1]

than over the unbounded interval δ 2 [0,1) [56]. We define the complete parameter vector as

Θ≔ (β, η, σ2). The negative log-likelihood for Eq 1 is given by

� ‘ðΘÞ /
NT

2
logðs2Þ þ

1

2
log det Vð Þð Þ þ

1

2s2
ðY � XβÞTV� 1 Y � Xβð Þ; ð3Þ

where V = ηΦ + (1 − η)I and det(V) is the determinant of V.

Let Φ = UDUT be the eigen (spectral) decomposition of the kinship matrix Φ, where

UNT�NT
is an orthonormal matrix of eigenvectors (i.e. UUT = I) and DNT�NT

is a diagonal matrix
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of eigenvalues Λi. V can then be further simplified [56]

V ¼ ZΦþ ð1 � ZÞI

¼ ZUDUT þ ð1 � ZÞUIUT

¼ UZDUT þ Uð1 � ZÞIUT

¼ UðZDþ ð1 � ZÞIÞUT

¼ U~DUT;

ð4Þ

where

~D ¼ ZDþ ð1 � ZÞI

¼ Z

L1

L2

. .
.

LNT

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

þ ð1 � ZÞ

1

1

. .
.

1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼

1þ ZðL1 � 1Þ

1þ ZðL2 � 1Þ

. .
.

1þ ZðLNT
� 1Þ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð5Þ

¼ diagf1þ ZðL1 � 1Þ; 1þ ZðL2 � 1Þ; . . . ; 1þ ZðLNT
� 1Þg: ð6Þ

Since Eq 5 is a diagonal matrix, its inverse is also a diagonal matrix:

~D � 1 ¼ diag
1

1þ ZðL1 � 1Þ
;

1

1þ ZðL2 � 1Þ
; . . . ;

1

1þ ZðLNT
� 1Þ

( )

: ð7Þ

From Eqs 4 and 6, log(det(V)) simplifies to

logðdetðVÞÞ ¼ logðdetðUÞdetð~DÞdetðUTÞÞ

¼ log
YNT

i¼1

ð1þ ZðLi � 1ÞÞ

( )

¼
XNT

i¼1

logð1þ ZðLi � 1ÞÞ;

ð8Þ

since det(U) = 1. It also follows from Eq 4 that

V� 1 ¼ ðU ~DUTÞ
� 1

¼ ðUTÞ
� 1
ð ~DÞ� 1U� 1

¼ U ~D � 1UT;

ð9Þ

since for an orthonormal matrix U−1 = UT. Substituting Eqs 7, 8 and 9 into Eq 3 the negative
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log-likelihood becomes

� ‘ðΘÞ /
NT

2
logðs2Þ þ

1

2

XNT

i¼1

logð1þ ZðLi � 1ÞÞ þ
1

2s2
ðY � XβÞTU ~D � 1UT Y � Xβð Þ

¼
NT

2
logðs2Þ þ

1

2

XNT

i¼1

logð1þ ZðLi � 1ÞÞ þ
1

2s2
ðUTY � UTXβÞT ~D � 1 UTY � UTXβð Þ

¼
NT

2
logðs2Þ þ

1

2

XNT

i¼1

logð1þ ZðLi � 1ÞÞ þ
1

2s2
ð~Y � ~XβÞT ~D � 1 ~Y � ~Xβ

� �

¼
NT

2
logðs2Þ þ

1

2

XNT

i¼1

logð1þ ZðLi � 1ÞÞ þ
1

2s2

XNT

i¼1

ð~Y i �
Pp

j¼0
~Xijþ1βjÞ

2

1þ ZðLi � 1Þ
;

ð10Þ

where ~Y ¼ UTY, ~X ¼ UTX, ~Y i denotes the ith element of ~Y, ~Xij is the i, jth entry of ~X and 1 is a

column vector of NT ones.

Penalized maximum likelihood estimator

We define the p + 3 length vector of parameters Θ≔ (Θ0, Θ1, . . ., Θp+1, Θp+2, Θp+3) = (β, η, σ2)

where β 2 Rpþ1
; Z 2 0; 1½ �; s2 > 0. In what follows, p + 2 and p + 3 are the indices in Θ for η

and σ2, respectively. In light of our goals to select variables associated with the response

in high-dimensional data, we propose to place a constraint on the magnitude of the regres-

sion coefficients. This can be achieved by adding a penalty term to the likelihood function

Eq 10. The penalty term is a necessary constraint because in our applications, the sample

size is much smaller than the number of predictors. We define the following objective func-

tion:

QlðΘÞ ¼ f ðΘÞ þ l
X

j6¼0

vjPjðbjÞ;

where f(Θ) ≔ −ℓ(Θ) is defined in Eq 10, Pj(�) is a penalty term on the fixed regression coeffi-

cients β1, . . ., βp+1 (we do not penalize the intercept) controlled by the nonnegative regulari-

zation parameter λ, and vj is the penalty factor for jth covariate. These penalty factors serve

as a way of allowing parameters to be penalized differently. Note that we do not penalize η
or σ2. An estimate of the regression parameters Θ̂l is obtained by

Θ̂l ¼ arg min
Θ

QlðΘÞ: ð11Þ

This is the general set-up for our model. In the next Section we provide more specific details

on how we solve Eq 11. We note here that the main difference between the proposed model,

and the lmmlasso [57], is that we rotate the response vector Y and the design matrix X by

the eigen vectors of the kinship matrix. This results in a diagonal covariance matrix making

our method orders of magnitude faster and usable for high-dimensional genetic data.

A secondary difference is that we are limiting ourselves to a single unpenalized random

effect.

Computational algorithm

We use a general purpose block coordinate gradient descent algorithm (CGD) [58] to solve Eq

11. At each iteration, we cycle through the coordinates and minimize the objective function

with respect to one coordinate only. For continuously differentiable f(�) and convex and block-
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separable P(�) (i.e. P(β) = ∑i Pi(βi)), Tseng and Yun [58] show that the solution generated by

the CGD method is a stationary point of Qλ(�) if the coordinates are updated in a Gauss-Seidel

manner i.e. Qλ(�) is minimized with respect to one parameter while holding all others fixed.

The CGD algorithm has been successfully applied in fixed effects models (e.g. [20, 59]) and lin-

ear mixed models with an ℓ1 penalty [57]. In the next section we provide some brief details

about Algorithm 1. A more thorough treatment of the algorithm is given in S1 Text.

Algorithm 1: Block Coordinate Gradient Descent
Set the iteration counter k  0, initial values for the parameter vec-
tor Θ(0) and convergence threshold �;
for λ 2 {λmax, . . ., λmin} do
repeat

βðkþ1Þ  arg min
β

Qlðβ; Z
ðkÞ; s2 ðkÞÞ

Zðkþ1Þ  arg min
Z

Qlðβ
ðkþ1Þ; Z; s2 ðkÞÞ

s2 ðkþ1Þ
 arg min

s2

Qlðβ
ðkþ1Þ; Zðkþ1Þ; s2Þ

k  k + 1
until convergence criterion is satisfied: kΘ(k+1) − Θ(k)k2 < �;

end

Updates for the β parameter. Recall that the part of the objective function that depends

on β has the form

QlðΘÞ ¼
1

2

XNT

i¼1

wi
~Y i �

Xp

j¼0

~Xijþ1βj

 !2

þ l
Xp

j¼1

vjjβjj;

where

wi≔
1

s2ð1þ ZðLi � 1ÞÞ
:

Conditional on η(k) and σ2(k), it can be shown that the solution for βj, j = 1, . . ., p is given by

βðkþ1Þ

j  
Slð
PNT

i¼1
wi

~Xijð
~Y i �

P
‘6¼j

~Xi‘β
ðkÞ
‘ ÞÞ

PNT
i¼1

wi
~X2
ij

;

where SlðxÞ is the soft-thresholding operator

SlðxÞ ¼ signðxÞðjxj � lÞ
þ
;

sign(x) is the signum function

signðxÞ ¼

� 1 x < 0

0 x ¼ 0

1 x > 0

8
>>><

>>>:

;

and (x)+ = max(x, 0). We provide the full derivation in S1 Text.
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Updates for the η paramter. Given β(k+1) and σ2(k), solving for η(k+1) becomes a univariate

optimization problem:

Zðkþ1Þ  arg min
Z

1

2

XNT

i¼1

logð1þ ZðLi � 1ÞÞ þ
1

2s2 ðkÞ

XNT

i¼1

ð~Y i �
Pp

j¼0
~Xijþ1β

ðkþ1Þ

j Þ
2

1þ ZðLi � 1Þ
:

We use a bound constrained optimization algorithm [60] implemented in the optim function

in R and set the lower and upper bounds to be 0.01 and 0.99, respectively.

Updates for the σ2 parameter. Conditional on β(k+1) and η(k+1), σ2(k+1) can be solved for

using the following equation:

s2 ðkþ1Þ
 arg min

s2

NT

2
logðs2Þ þ

1

2s2

XNT

i¼1

ð~Y i �
Pp

j¼0
~Xijþ1bjÞ

2

1þ ZðLi � 1Þ
: ð12Þ

There exists an analytic solution for Eq 12 given by:

s2 ðkþ1Þ
 

1

NT

XNT

i¼1

ð~Y i �
Pp

j¼0
~Xijþ1b

ðkþ1Þ

j Þ
2

1þ Zðkþ1ÞðLi � 1Þ
:

Regularization path. In this section we describe how to determine the sequence of tuning

parameters λ at which to fit the model. Recall that our objective function has the form

QlðΘÞ ¼
NT

2
logðs2Þ þ

1

2

XNT

i¼1

logð1þ ZðLi � 1ÞÞ þ
1

2

XNT

i¼1

wi
~Y i �

Xp

j¼0

~Xijþ1βj

 !2

þ l
Xp

j¼1

vjjbjj: ð13Þ

The Karush-Kuhn-Tucker (KKT) optimality conditions for Eq 13 are given by:

@

@b1; . . . ; bp
QlðΘÞ ¼ 0p

@

@b0

QlðΘÞ ¼ 0

@

@Z
QlðΘÞ ¼ 0

@

@s2
QlðΘÞ ¼ 0:

ð14Þ
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The equations in Eq 14 are equivalent to

XNT

i¼1

wi
~Xi1ð

~Y i �
Xp

j¼0

~Xijþ1bjÞ ¼ 0

1

vj

XNT

i¼1

wi
~Xij

~Y i �
Xp

j¼0

~Xijþ1bj

 !

¼ lgj

gj 2

signðb̂ jÞ if b̂ j 6¼ 0

½� 1; 1� if b̂ j ¼ 0

8
><

>:
; for j ¼ 1; . . . ; p

1

2

XNT

i¼1

Li � 1

1þ ZðLi � 1Þ
1 �
ð~Y i �

Pp
j¼0

~Xijþ1bjÞ
2

s2ð1þ ZðLi � 1ÞÞ

 !

¼ 0

s2 �
1

NT

XNT

i¼1

ð~Y i �
Pp

j¼0
~Xijþ1bjÞ

2

1þ ZðLi � 1Þ
¼ 0;

ð15Þ

where wi is given by Eq, ~XT
� 1

is ~XT with the first column removed, ~XT
1

is the first column of ~XT ,

and g 2 Rp
is the subgradient function of the ℓ1 norm evaluated at ðb̂1; . . . ; b̂pÞ. Therefore Θ̂ is

a solution in Eq 11 if and only if Θ̂ satisfies Eq 15 for some γ. We can determine a decreasing

sequence of tuning parameters by starting at a maximal value for λ = λmax for which b̂ j ¼ 0 for

j = 1, . . ., p. In this case, the KKT conditions in Eq 15 are equivalent to

1

vj

XNT

i¼1

jwi
~Xijð

~Y i �
~Xi1b0Þj � l; 8j ¼ 1; . . . ; p

b0 ¼

PNT
i¼1

wi
~Xi1

~Y i
PNT

i¼1
wi

~X2
i1

1

2

XNT

i¼1

Li � 1

1þ ZðLi � 1Þ
1 �

ð~Y i �
~Xi1b0Þ

2

s2ð1þ ZðLi � 1ÞÞ

� �

¼ 0

s2 ¼
1

NT

XNT

i¼1

ð~Y i �
~Xi1b0Þ

2

1þ ZðLi � 1Þ
:

ð16Þ

We can solve the KKT system of equations in Eq 16 (with a numerical solution for η) in order

to have an explicit form of the stationary point Θ̂0 ¼ fb̂0; 0p; Ẑ; ŝ2g. Once we have Θ̂0, we can

solve for the smallest value of λ such that the entire vector (b̂1; . . . ; b̂p) is 0:

lmax ¼ max
j

1

vj

XNT

i¼1

ŵi
~Xij

~Y i �
~Xi1b̂0

� �
�
�
�
�
�

�
�
�
�
�

( )

; j ¼ 1; . . . ; p:

Following Friedman et al. [20], we choose τλmax to be the smallest value of tuning parameters

λmin, and construct a sequence of K values decreasing from λmax to λmin on the log scale. The

defaults are set to K = 100, τ = 0.01 if n< p and τ = 0.001 if n� p.

Warm starts. The way in which we have derived the sequence of tuning parameters using

the KKT conditions, allows us to implement warm starts. That is, the solution Θ̂ for λk is used
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as the initial value Θ(0) for λk+1. This strategy leads to computational speedups and has been

implemented in the ggmix R package.

Prediction of the random effects. We use an empirical Bayes approach (e.g. [61]) to pre-

dict the random effects b. Let the maximum a posteriori (MAP) estimate be defined as

b̂ ¼ arg max
b

f ðbjY; β; Z; s2Þ; ð17Þ

where, by using Bayes rule, f(b|Y, β, η, σ2) can be expressed as

f ðbjY; β; Z;s2Þ ¼
f ðYjb;β; Z; s2ÞpðbjZ; s2Þ

f ðYjβ; Z;s2Þ

/ f ðYjb;β; Z; s2ÞpðbjZ; s2Þ

/ exp �
1

2s2
ðY � Xβ � bÞTðY � Xβ � bÞ �

1

2Zs2
bTΦ� 1b

� �

¼ exp �
1

2s2
ðY � Xβ � bÞTðY � Xβ � bÞ þ

1

Z
bTΦ� 1b

� �� �

:

ð18Þ

Solving for Eq 17 is equivalent to minimizing the exponent in Eq 18:

b̂ ¼ arg min
b

ðY � Xβ � bÞTðY � Xβ � bÞ þ
1

Z
bTΦ� 1b

� �

: ð19Þ

Taking the derivative of Eq 19 with respect to b and setting it to 0 we get:

0 ¼ � 2ðY � Xβ � bÞ þ
2

Z
Φ� 1b

¼ � ðY � XβÞ þ bþ
1

Z
Φ� 1

� �

b

ðY � XβÞ ¼ INT�NT þ
1

Z
Φ� 1

� �

b

b̂ ¼ INT�NT þ
1

Ẑ
Φ� 1

� �� 1

ðY � Xβ̂Þ

¼ INT�NT þ
1

Ẑ
UD� 1UT

� �� 1

ðY � Xβ̂Þ;

where ðβ̂; ẐÞ are the estimates obtained from Algorithm 1.

Phenotype prediction. Here we describe the method used for predicting the unobserved

phenotype Y? in a set of individuals with predictor set X? that were not used in the model

training e.g. a testing set. Let q denote the number of observations in the testing set and N − q
the number of observations in the training set. We assume that a ggmix model has been fit on

a set of training individuals with observed phenotype Y and predictor set X. We further

assume that Y and Y? are jointly multivariate Normal:

Y?

Y

� �

� N
μ1ðq�1Þ

μ2ðN� qÞ�1

� �

;
Σ11ðq�qÞ

Σ12q�ðN� qÞ

Σ21ðN� qÞ�q
Σ22ðN� qÞ�ðN� qÞ

" # !

:
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Then, from standard multivariate Normal theory, the conditional distribution Y?|Y, η, σ2,

β, X, X? is N ðm?;Σ?Þ where

μ? ¼ μ1 þ Σ12Σ
� 1

22
ðY � m2Þ

Σ? ¼ Σ11 � Σ12Σ
� 1

22
Σ21:

The phenotype prediction is thus given by:

μ?q�1
¼ X?βþ

1

s2
Σ12V

� 1ðY � XβÞ

¼ X?βþ
1

s2
Σ12U ~D � 1UTðY � XβÞ

¼ X?βþ
1

s2
Σ12U ~D � 1ð~Y � ~XβÞ

¼ X?βþ
1

s2
Zs2Φ?U ~D � 1ð~Y � ~XβÞ

¼ X?βþ ZΦ?U ~D � 1ð~Y � ~XβÞ;

where Φ? is the q × (N − q) covariance matrix between the testing and training individuals.

Choice of the optimal tuning parameter. In order to choose the optimal value of the tun-

ing parameter λ, we use the generalized information criterion [62] (GIC):

GICl ¼ � 2‘ðβ̂; ŝ2; ẐÞ þ an � d̂f l;

where d̂f l is the number of non-zero elements in β̂l [63] plus two (representing the variance

parameters η and σ2). Several authors have used this criterion for variable selection in mixed

models with an = log NT [57, 64], which corresponds to the BIC. We instead choose the high-

dimensional BIC [65] given by an = log(log(NT)) � log(p). This is the default choice in our

ggmix R package, though the interface is flexible to allow the user to select their choice of an.

Software availability

The ggmix method is written in an R package, which is freely available on CRAN at https://

cran.r-project.org/package=ggmix. The complete documentation for this package is available

at https://sahirbhatnagar.com/ggmix/. Scripts for running the analyses and reproducing the

tables and figures reported in the manuscript are available in an RMarkdown document at

https://github.com/sahirbhatnagar/ggmix/blob/master/manuscript/bin/tables-figures.Rmd.

Supporting information

S1 Fig. Distribution of SNPs used in UK Biobank analysis. Distribution of SNPs used in UK

Biobank analysis by chromosome and whether or not the SNP was imputed.

(TIF)

S2 Fig. LD structure among the markers in the GAW20 dataset. We illustrate the LD struc-

ture among the markers in the GAW20 dataset. We show the pairwise r2 for 655 SNPs within a

1Mb-window around the causal SNP rs9661059 (indicated) that we focused on. The dotplot

above the heatmap denotes r2 between each SNP and the causal SNP. It is clear that although

strong correlation does exist between some SNPs, none of these nearby SNPs is correlated

with the causal SNP. The only dot denoting an r2 = 1 represents the causal SNP itself.

(TIF)
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S3 Fig. LD structure among the markers in the mouse dataset. We illustrate the LD structure

among the markers in the mouse dataset. Shown is the pairwise r2 for all microsatellite mark-

ers. It is clear that many markers are considerably strongly correlated with each other, as we

expected.

(TIF)

S1 Text. Block coordinate gradient descent algorithm. We provide a full derivation of the

algorithm used to solve the ggmix objective function.

(PDF)

S2 Text. ggmix Package Showcase. We introduce the freely available and open source

ggmix package in R available on CRAN (https://cran.r-project.org/package=ggmix).

(PDF)
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