
Variable selection for individualised 
treatment rules with discrete outcomes
Zeyu Bian1,2 , Erica E.M. Moodie1 , Susan M. Shortreed3,4,  
Sylvie D. Lambert5,6 and Sahir Bhatnagar1

1Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec H3A 0G4, Canada
2Miami Herbert Business School, University of Miami, Miami, FL 33146, USA
3Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
4Department of Biostatistics, University of Washington, Seattle, Washington, USA
5Ingram School of Nursing, McGill University, Montreal, Quebec, Canada
6St.Mary’s Research Centre, Montreal, Quebec, Canada
Address for correspondence: Zeyu Bian, Miami Herbert Business School, University of Miami, Miami, FL 33146, USA.  
Email: zeyu.bian@miami.edu

Abstract
An individualised treatment rule (ITR) is a decision rule that aims to improve individuals’ health outcomes by 
recommending treatments according to subject-specific information. In observational studies, collected 
data may contain many variables that are irrelevant to treatment decisions. Including all variables in an ITR 
could yield low efficiency and a complicated treatment rule that is difficult to implement. Thus, selecting 
variables to improve the treatment rule is crucial. We propose a doubly robust variable selection method for 
ITRs, and show that it compares favourably with competing approaches. We illustrate the proposed 
method on data from an adaptive, web-based stress management tool.
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1 Introduction
In the precision medicine paradigm, treatment decisions are tailored to individuals rather than relying 
on a ‘one-size-fits-all’ approach. This approach to treatment is beneficial when treatment effects are 
heterogeneous. For example, effective management of stress requires the development of personal
ised approaches, as patients with different characteristics respond to and engage with treatments dif
ferently. With the aim of improving individuals’ health outcomes, individualised treatment rules 
(ITRs) (Chakraborty & Moodie, 2013; Kosorok & Moodie, 2015; Murphy, 2003; Robins, 2004) 
recommend effective treatments based on each person’s specific characteristics. However, collected 
data often contain many variables that are irrelevant for tailoring treatment. Including all variables in 
an analysis could reduce statistical efficiency by estimating unnecessary coefficients whose estimates 
fluctuate around zero for variables that are not useful for tailoring treatment, and yielding an un
necessarily complicated treatment decision rule that is difficult for physicians to interpret or imple
ment. It is therefore important to develop variable selection methods with the objective of 
optimising individuals’ outcomes by identifying useful tailoring variables.

Variable selection for ITRs has been studied in Lu et al. (2013), Jeng et al. (2018), Shi et al. (2018), 
and Bian et al. (2023), all of which focus on penalised regression-based estimation methods. Jeng et al. 
(2018) and Lu et al. (2013) considered only a singly robust method in which the propensity score 
must be correctly specified. Shi et al. (2018) used the Dantzig selector directly to penalise the 
A-learning (Robins, 2004) estimating equation; Bian et al. (2023) used penalised dynamic weighted 
ordinary least squares regression to perform variable selection. Zhang and Zhang (2018) and Zhang 
and Zhang (2022) extended the classification framework for estimating optimal treatment regimes in 
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Zhang et al. (2012) to a setting in which variable selection can be performed. In Zhang and Zhang 
(2018), variables are sequentially selected based on the additional improvement provided by the new 
variable, while Zhang and Zhang (2022) added a penalised term for the objective function to select 
the important variables. The methods considered in Zhang and Zhang (2018), Shi et al. (2018), 
Zhang and Zhang (2022), and Bian et al. (2023) are all doubly robust, i.e. they yield consistent esti
mators while requiring only one of two nuisance models to be correct.

All of the aforementioned methods focus solely on the case in which the outcome is continuous. 
Discrete outcomes introduce additional computational challenges to the estimation of ITRs and 
the variable selection procedure, due to the common use of a non-identity link function. Existing lit
erature focusing on discrete outcomes ITR estimation includes Q-learning (Chakraborty & Moodie, 
2013; Linn et al., 2017), Bayesian additive regression trees (Logan et al., 2019), and A-learning 
(Robins et al., 1992; Tchetgen Tchetgen et al., 2010). However, none of these approaches has 
been extended to include variable selection. Tian et al. (2014) proposed a straightforward method 
for estimating ITRs while performing tailoring variable selection by omitting all main effect terms 
for covariates, and re-scaling the covariates in the interaction terms. In this approach, the binary out
come case was also considered, although only in the randomised-treatment setting. Chen et al. (2017)
further generalised the method in Tian et al. (2014) to observational studies for ITR estimation and 
variable selection. Nevertheless, the proposed approach for binary outcomes requires the propensity 
score to be correctly specified. A further augmentation of Tian et al. (2014) and Chen et al. (2017)
was discussed in Chen et al. (2017) for binary outcomes, yet this augmentation approach still cannot 
achieve the desired double robustness property, because of the use of the non-linear loss function (see 
Remark 2 in Tian et al., 2014 for a more detailed explanation). In other words, the augmentation idea 
for binary outcomes in Chen et al. (2017) is used mainly for the resulting efficiency gain; a correct 
specification of the treatment model is still needed for consistent ITR estimation even if the outcome 
model is correctly specified. In this article, we focus on developing doubly robust ITR estimation with 
variable selection for discrete outcomes (count and binary outcomes).

To provide robustness against model mis-specification, ITRs are often estimated using estimating 
equations (Murphy, 2003; Robins, 2004). There are at least two ways to achieve sparsity in the use 
of estimating equations: via a Dantzig selector (Candes & Tao, 2007) or by a regularised estimating 
equation (REE). Denote by U(θ) ∈ Rp an estimating equation, where θ ∈ Rp. The Dantzig estimator 
􏽢θdan can be found by solving the constrained optimisation problem: 􏽢θdan = argminθ‖θ‖1, subject to 
‖U(θ)‖∞ ≤ nλ, where λ is a tuning parameter used to control sparsity, and n is the sample size. 
Another way to induce sparsity is to solve the REE: U(θ) = nλq(|θ|), where q(| · |) is the subgradient 
of a penalty function ρ(| · |), i.e. q(| · |) = ∂ρ(| · |). For example, lasso (Tibshirani, 1996) regression 
defined by minβ {‖Y − Xθ‖22 + nλ‖θ‖1} is a special case of the REE U(θ) = nλ∂‖θ‖1, where 
U(θ) = XT(Y − Xθ), X ∈ Rn×p is the design matrix, and Y ∈ Rn is the response.

While the Dantzig selector and REE work well for continuous outcomes (Shi et al., 2018), their 
implementation in ITRs can be difficult for discrete outcomes, which are usually modelled with 
non-identity link functions. Indeed, the existing doubly robust estimating equations to estimate 
ITRs for discrete outcomes are non-linear (Robins et al., 1992; Tchetgen Tchetgen et al., 2010, 
see later in Section 2.2), and hence the Dantzig selector cannot be solved using linear programming 
(James & Radchenko, 2009). As for REE, it has been studied in Johnson et al. (2008) and Wang et 
al. (2012) using local quadratic approximation (Fan & Li, 2001) to solve the REE, which is com
putationally burdensome since it requires the calculation of the inverse of the Hessian matrix. 
Finally, even if the solution of the Dantzig selector or the REE can be found, selecting the tuning 
parameter in an ITR context is challenging since the goal is inference about treatment effects rather 
than just predictive performance. This means that we cannot simply select the tuning parameter 
that has the lowest prediction error as in the more classical prediction setting.

Our work proposing new doubly robust estimating functions for count and binary outcomes is 
motivated by the desire to evaluate the effectiveness of a web-based stress management interven
tion for individuals with cardiovascular disease. We use longitudinal data collected as part of a 
two-stage pilot sequential multiple assignment randomised trial (Lambert et al., 2021) for estimat
ing a stress management ITR. Due to the small sample size of the study (50 observations) and rela
tively large number of potentially relevant variables collected, selecting useful variables for 
tailoring treatment solely based on expert knowledge can be an extremely challenging task. Our 
newly proposed estimating equations allow integration of variable selection approaches. We apply 
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this variable selection approach with our proposed algorithm for solving the proposed estimating 
equations to provide valuable insights into the influence of various tailoring variables on patient 
outcomes, enabling the development of more effective and personalised approaches to the 
stepped-care approach for web-based stress management.

Specifically, in this work, we propose two new, doubly robust estimating functions for count 
and binary outcomes, respectively, in the setting of binary treatment with a single stage, to esti
mate an ITR. A benefit of our proposed estimating function is that it can be easily generalised to a 
penalised framework, which permits estimating the optimal treatment regimes and selecting im
portant tailoring variables simultaneously. We show that with a suitable choice of weights, a sim
ple penalised regression model for estimating an ITR enjoys the desired double robustness 
property and is straightforward to implement. The advantage of the newly proposed approach 
compared to alternative regularised ITR estimation methods is that it can be viewed from a mini
misation perspective. Hence, the implementation is simple, various penalty functions can be 
used, and the solution can be found using existing computationally efficient tools in standard 
software. We propose a tuning parameter selection procedure to address that the goal of an 
ITR analysis is estimating a decision rule rather than prediction. To our knowledge, doubly ro
bust variable selection in ITR estimation for discrete outcomes has not been studied in existing 
literature.

The rest of this article is organised as follows. In Section 2, we present introductory concepts and 
review existing doubly robust estimation methods for discrete outcomes. In Section 3, we intro
duce our proposed estimation methods, and we extend them to a penalised framework in 
Section 4, followed by statements of theoretical properties. A number of simulation studies are 
in Section 5. Finally, in Section 6, we apply our method to data from an adaptive web-based stress 
management study.

2 Background
2.1 Notations, assumptions, and introductory concepts
Throughout, we use uppercase letters to denote random variables and lowercase letters to denote 
observed values. We use non-bold letters to denote individual-level data and bold letters to denote 
all observations in the data, e.g. Xi ∈ Rp are the covariates for subject i, while X ∈ Rn×p are cova
riates for all subjects. In a single stage ITR, Vi = (Xi, Ai, Yi) consists of the data for the ith subject, 
where Xi is the subject’s baseline covariates, Ai is the binary treatment received, and Yi is the sub
ject’s outcome. Throughout, we consider binary treatment in a static setting (single-stage ITR), 
while extension to general discrete allocations is discussed in Section 7. In the sequel, we will sup
press subscript i where it is clear. We denote the potential outcome under the treatment a as Ya. 
The objective of an ITR analysis is to find the optimal treatment dopt(X) such that the expected 
potential outcome E(Yd) is maximised across the population of individuals. To estimate ITRs, 
we assume the following standard causal assumptions: (a) the stable unit treatment value assump
tion (SUTVA) (Rubin, 1980): an individual’s potential outcome is not affected by other subjects’ 
treatment assignments; (b) consistency: Y = AY1 + (1 − A)Y0; (c) conditional exchangeability 
(Robins, 1997): Ya ⊥⊥ A|X = x; and (d) positivity: P(A = a|X = x) > 0 almost surely for all x and 
a = 0, 1.

Finally, we assume that the observations Vi, i = 1, . . . , n are independent and identically dis
tributed with probability density h(V) with respect to a measure ν. Moreover, we assume the re
lationship between Y and (X, A) can be captured by a semi-parametric regression model: 
g(E(Ya|X = x)) = g(E(Y|X = x, A = a)) = f0(x; β) + γ(x, a; ψ), where g is a known link function, 
f0 is an unknown baseline function, and γ is a known function that satisfies γ(x, 0; ψ) = 0, which 
is referred to as the blip function (Robins, 2004). A blip function can be interpreted as the differ
ence on the linear predictor scale of the transformed mean potential outcomes

γ x, a
( 􏼁

= g E(Ya|X = x)
( 􏼁

− g E(Y0|X = x)
( 􏼁

= g E(Ya|X = x, A = a)
( 􏼁

− g E(Y0|X = x, A = 0)
( 􏼁

.

In this modelling paradigm, f0 is irrelevant for making treatment decisions (a nuisance model). 
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Hence, our parameter of interest is ψ, and the optimal ITR dopt(x) is given by

dopt(x) = argmax
d

E(Yd) = argmax
d

EX E g−1(f0(X; β) + γ X, d(X); ψ
( 􏼁

)
􏼂 􏼃

|X
􏼈 􏼉

= argmax
d

EX f0(X; β) + γ X, d(X); ψ
( 􏼁􏼂 􏼃

= argmax
d

γ X, d(X); ψ
( 􏼁

= I(γ X, 1; ψ
( 􏼁

> 0), 

given an increasing link function. Throughout, we assume a log link for count outcomes and a logit 
link for binary outcomes.

2.2 Existing estimation methods for discrete outcomes

2.2.1 A-learning for count outcomes
Denote by xψ the covariates in the blip model and by xβ the covariates in the baseline model; in 
what follows, the superscript is omitted if they are identical. We assume that the blip function 
is of the form of γ(xψ, a; ψ) = aψTxψ in the sequel. Then the A-learning estimating equation 
(Robins et al., 1992) for a count outcome, with a log link function, is

U1(ψ) =
1
n

􏽘n

i=1

xψ
i (ai −􏽢πi) exp { − γ(xψ

i , ai; ψ)} yi − exp (f (xβ
i ;􏽢β) + γ(xψ

i , ai; ψ))
􏼐 􏼑

, 

where f is the posited baseline model (not necessarily identical to f0), 􏽢β is a plug-in estimator, and 􏽢π is the 
estimated propensity score. The propensity score (Rosenbaum & Rubin, 1983) is defined as the coarsest 
balancing score b(x) such that b(x) = P(A = 1|x), i.e. the probability of treatment received conditional 
on confounders. In observational studies, this quantity is unknown and needs to be estimated from the 
data. It can be shown that U1(ψ) is an unbiased estimating equation (Robins et al., 1992), provided that 
at least one nuisance model (propensity score model or baseline model) is correctly specified. This prop
erty is the so-called double robustness property (Bang & Robins, 2005). Since in observational studies, 
one can never be sure that either a baseline model or a propensity score model is correct, a double ro
bustness estimator hence is highly desirable, as it provides some safeguards against model mis- 
specification. Furthermore, in settings such as our motivating example, where treatment is randomised, 
doubly robust methods ensure consistency since the treatment allocation model is known by design.

2.2.2 A-learning for binary outcomes
Estimation is more complicated when the outcome is binary; the blip parameter is estimated by 
solving the following estimating equation, assuming a logit link function:

U2(ψ) =
1
n

􏽘n

i=1

xψ
i (ai −􏽢π∗) yi − expit(f (xβ

i ;􏽢β) + γ(xψ
i , ai; ψ))

􏼐 􏼑
, 

where

􏽢π∗ = 1 +
(1 − expit(u(x;􏽢τ))expit(f (x;􏽢β))

expit(u(x;􏽢τ))expit(f (x;􏽢β) + γ(x, a; ψ))

􏼠 􏼡−1

, 

expit(t) = exp (t)
1+exp (t), and u(x; τ) is the nuisance treatment model of E(A|Y = 0, X). Tchetgen Tchetgen 

et al. (2010) showed that U2(ψ) is an unbiased estimating equation when at least one of E(Y|X, A = 0) 
or E(A|X, Y = 0) is correctly specified. Note that for the logit link, the quantity E(A|Y = 0, X) is 
modelled instead of the propensity score to assure the double robustness property, because of 
the symmetry property of the odds ratio:

eX⊤ψ =
P(Y = 1|A = 1, X)P(Y = 0|A = 0, X)
P(Y = 0|A = 1, X)P(Y = 1|A = 0, X)

=
P(A = 1|Y = 1, X)P(A = 0|Y = 0, X)
P(A = 0|Y = 1, X)P(A = 1|Y = 0, X)

.
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Chen (2007) showed that there are at least two ways to study the association parameter (in our 
case, the blip parameter): through the density of Y given X and A or through the density of A given 
X and Y. This provides an intuitive explanation of why E(Y|X, A = 0) and E(A|X, Y = 0) are mod
elled to assure the double robustness property.

As noted above, the implementation of the Dantzig selector or the REE can be difficult for the 
A-learning estimating function. In the next section, we propose an alternative estimation method 
that is also doubly robust and can easily accommodate variable selection.

3 Doubly robust weighted generalised linear model
In this section, we propose two new estimating equations for count and binary outcomes, respect
ively, and we show that solving these two estimating equations can be reformulated as an iterative
ly reweighted generalised linear model (IRGLM). The obtained estimators are doubly robust, and 
the proposed estimating equation can be easily generalised to a variable selection framework. 
Throughout, we posit a linear model for the baseline function, i.e. f (x; β) = xTβ, which is not ne
cessarily identical to the true baseline model f0.

3.1 Count outcomes
For count outcomes, we present the following estimating function:

U3(β, ψ) =
􏽘n

i=1

aix
ψ
i

xβ
i

􏼠 􏼡

|ai −􏽢πi| exp { − γ(xψ
i , a; ψ)} yi − exp (f (xβ

i ; β) + γ(xψ
i , a; ψ))

􏼐 􏼑
.

This estimating equation is inspired by the A-learning estimating equation U1(ψ) and the weighted 
least squares equation using overlap weights |ai − πi| in Wallace and Moodie (2015). The overlap 
weights |ai − πi| ensure that the above estimating equation is unbiased even if the baseline model is 
mis-specified (under the setting that π is correctly specified). Moreover, Wallace and Moodie 
(2015) empirically demonstrated that the use of overlap weights can improves efficiency of the re
sulting estimator over estimators of the same form that use alternative weights such as inverse 
probability of treatment weights. Note that this equation takes a similar form to U1(ψ), with 
the leading term exp { − γ(xψ

i , a; ψ)}, and shares a similar form to Wallace and Moodie (2015) us
ing overlap weights, but is not identical to either.

Assumption 1 When at least one of the two nuisance models π or f is correctly specified, 
there exists a unique population parameter θ∗ = (β∗, ψ∗) such that 
E[U3(β∗, ψ∗)] = 0.

Theorem 1 Assume that the SUTVA, ignorability, consistency, and positivity conditions 
described in Section 2.1 and Assumption 1 hold as described in Section 3.1. If 
the posited baseline model satisfies xψ ⊆ xβ, and the link function g is known, 
then the solution ψ∗ to E[U3(β, ψ)] = 0 satisfies ψ∗ = ψ0, where ψ0 is the 
underlying true blip parameter.

Theorem 1 states that under standard causal assumptions, the population parameter ψ∗ is 
equivalent to the true data-generating value of the blip (and corresponding ITR) parameter ψ0, 
if one of two nuisance models, π or f, is correctly specified. This implies that the blip estimator 
􏽢ψ obtained by solving U3(β, ψ) is a doubly robust estimator.

Remark 1 The condition of the existence of a unique population parameter is similar to 
the condition of the existence of the quasi-maximum likelihood estimate 
when the likelihood is mis-specified (White, 1982). The assumption that xψ ⊆ xβ 

in the posited model is referred to as the strong heredity assumption (Chipman, 
1996): the corresponding main effects of an interaction term must be included in 
the model.
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Now we demonstrate that U3(β, ψ) can be specified as an IRGLM for which efficient computa
tional solutions exist, and thus a penalised estimator can be constructed from the penalised gen
eralised weighted linear model accordingly. We propose Algorithm 1 to solve U3(β, ψ). The key 
is to treat the |ai −􏽢πi| exp { − γ(xψ

i , a; ψ)} term in U3(β, ψ) as a constant in each iteration t. In 
this way, Step 7 in Algorithm 1 is equivalent to a weighted generalised linear model (GLM) 
with weights |ai −􏽢πi| exp { − γ(xψ

i , a; 􏽥ψt)}, where 􏽢π is the estimated propensity score that does 
not change across iterations and 􏽥ψ is the current value of the blip parameter estimate from the 
most recent iteration update. This can be solved efficiently using, for example, the glm function 
in R and specifying the weights argument.

3.2 Binary outcomes
A similar framework can be built for binary outcomes using the logit link function. We present 
estimating equation U4(β, ψ) for binary outcomes:

U4(β, ψ) =
􏽘n

i=1

aix
ψ
i

xβ
i

􏼠 􏼡

|ai −􏽢π∗i | yi − expit(f (xβ
i ; β) + γ(xψ

i , a; ψ))
􏼐 􏼑

, 

Algorithm 1 

1: function (xi, ai, yi,􏽢πi, ε)
2:  Set iteration counter t← 0

3:  Initialize 􏽥ψ0

4:  wi0 ← |ai −􏽢πi| exp { − γ(xψ
i , ai; 􏽥ψ0)} for i = 1, . . . , n

5:  repeat

6:   Solve βt and ψt such that

7:   
􏽐n

i=1

aix
ψ
i

xβ
i

􏼠 􏼡

wit(yi − exp (f (xβ
i ; βt) + γ(xψ

i , ai; ψt))) = 0

8:   􏽥ψt+1 ← ψt

9:   wi(t+1) ← |ai −􏽢πi| exp { − γ(xψ
i , ai; 􏽥ψt+1)}

10:   t← t + 1

11:  until ‖ψt − ψt−1‖ < ε

Algorithm 2 

1: function (xi, ai, yi,􏽢πi, ε)
2:  Set iteration counter t← 0

3:  Initialize: 􏽥ψ0

4:  wi0 ← |ai −􏽢π∗i (􏽥ψ0)| for i = 1, . . . , n

5:  repeat

6:   Solve βt and ψt such that

7:   
􏽐n

i=1

aix
ψ
i

xβ
i

􏼠 􏼡

wit(yi − expit(f (xβ
i ; βt) + γ(xψ

i , ai; ψt))) = 0

8:   􏽥ψt+1 ← ψt

9:   wi(t+1) ← |ai −􏽢π∗i (􏽥ψt+1)|

10:   t← t + 1

11:  until ‖ψt − ψt−1‖ < ε
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where

􏽢π∗ = 1 +
(1 − expit(u(x;􏽢ξ))expit(f (x;􏽢β∗))

expit(u(x;􏽢ξ)expit(f (x;􏽢β∗) + γ(x, 1; ψ))

􏼠 􏼡−1

, 

and u(x; ξ) is the nuisance treatment model for E(A|Y = 0, X). Under mild conditions, the solution 
of U4(β, ψ) is a doubly robust estimator. Note that all theoretical properties for count outcomes 
can be applied equally to binary outcomes; for convenience and space, we include the results for 
binary outcomes in the online supplementary Appendix (Section A). Algorithm 2 can be used to 
solve U4(β, ψ), once again treating the term |ai −􏽢π∗i | as a constant in each iteration.

4 Tailoring variable selection
In this section, we introduce sparsity to our proposed estimating function using the formulation of 
an REE, and show that this REE is asymptotically equivalent to a penalised weighted GLM given 
an appropriate initial estimator. Throughout, the main effect of the treatment A is not penalised, as 
our goal is to select the important tailoring variables.

4.1 Penalised doubly robust method
Due to the non-linear part (log or logit link) of the estimating equation for discrete outcomes, a 
Dantzig selector with A-learning estimating equation U1(ψ) or U2(ψ) cannot be solved using linear 
programming (James & Radchenko, 2009). Hence, we pursue an REE approach to introduce 
sparsity to the proposed estimating equations U3(β, ψ) and U4(β, ψ), and once again, reformulate 
the REE as a penalised weighted GLM. We call this approach the penalised doubly robust (PDR) 
method, as it will be shown later that the penalised estimator obtained by solving the ITR REE is a 
doubly robust estimator.

For count and binary outcomes, ITR REE requires finding the solution of, respectively,

􏽘

i=1

aix
ψ
i

xβ
i

􏼠 􏼡

|ai −􏽢πi| exp { − γ(xψ
i , a; ψ)} yi − exp (f (xβ

i ; β) + γ(xψ
i , a; ψ))

􏼐 􏼑
= nλq(|θ|), (1) 

and

􏽘

i=1

aix
ψ
i

xβ
i

􏼠 􏼡

|ai −􏽢π∗i | yi − expit(f (xβ
i ; β) + γ(xψ

i , a; ψ))
􏼐 􏼑

= nλq(|θ|). (2) 

To estimate the blip parameters, ψ, consistently, we require that the penalised model satisfies the 
following properties: (a) no false exclusion of tailoring variables and (b) the selected model has the 
strong heredity property, i.e. 􏽢ψj ≠ 0 =⇒􏽢βj ≠ 0 (i.e. without loss of generality, assume that xψ has 
the same ‘ordering’ as xβ). Many penalty functions can yield a model that has variable selection 
consistency, i.e. no false inclusion and no false exclusion; for example, lasso, SCAD (Fan & Li, 
2001), and adaptive lasso (Zou, 2006). However, these methods all fail to achieve the strong her
edity property. Thus, further work is required to implement them in this setting. Bian et al. (2023)
used reparametrisation to ensure strong heredity when using penalisation in the context of ITR. 
Here, we modify the adaptive lasso penalty and show using these modified adaptive weights allows 
not only the strong heredity constraint to be met, but also the (asymptotically) unbiased estimation 
of blip parameters.

We omit the subscript for the estimating functions U3(β, ψ) and U4(β, ψ) for now, as the prop
erties for both count and binary outcomes can be developed using a general notation U(β, ψ). Let 
θ0 = (β0, ψ0) denote the underlying true parameters and recall that θ∗ = (β∗, ψ∗) is the unique 
population parameter such that E[U(β∗, ψ∗)] = 0. Let s be the number of non-zero components 
of ψ0 (or equivalently, ψ∗) and S denote the set of indices of non-zero components for ψ0. 
Denote by Sifinmath the set of indices of non-zero components for β∗. To satisfy the strong 

304                                                                                                                                                     Bian et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/73/2/298/7337330 by guest on 15 January 2025

http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad096#supplementary-data


heredity property, we want the estimated baseline model to satisfy 􏽢βS̃ ≠ 0 as n goes to infinity, where 
􏽥S = S ∪ Sifinmath (as such, S ⊆􏽥S and hence strong heredity holds). The goal is to estimate a targeted 
indices set S∗, such that 􏽢θS∗ ≠ 0 and 􏽢θS∗c = 0 with probability tending to 1, where S∗c is the complement 
of S∗ (note that θ∗S∗ = (β∗

S̃
, ψ∗S)).

Suppose we have an initial estimator 􏽢θini = (􏽢βini, 􏽢ψini), such that 
��
n
√
‖􏽢βini − β∗‖ = Op(1) and 

��
n
√
‖􏽢ψini − ψ∗‖ = Op(1). Following the adaptive lasso (Zou, 2006) principle, we construct our 

adaptive weights for the corresponding coefficients β and ψ as follows:

􏽢ωβ
j = max |􏽢βini

j |, |􏽢ψ
ini
j |

􏼐 􏼑􏽮 􏽯−1
and 􏽢ωψ

j = |􏽢ψini
j |

−1. (3) 

We then use the penalty function ρ(|θ|) = ρ(|β|) + ρ(|ψ|), where

ρ(|β|) =
􏽘p

j=1

􏽢ωβ
j |βj| and ρ(|ψ|) =

􏽘p

j=1

􏽢ωψ
j |ψj|.

In this way, for non-zero coefficients of blip variables, the associated weights and those of their 
corresponding main effects both converge to finite constants, and thus always remain in the model. 
We refer to our proposed weights in Expression (3) as modified adaptive weights, since these build 
on the adaptive lasso framework but differ in the choice of 􏽢ωβ

j . Theorem 2 establishes the existence 
of a 

��
n
√

-consistent solution to the ITR REE (1) and (2).

Theorem 2 (Existence and Selection Consistency). Assume that conditions in Theorem 1
hold, penalty functions are constructed using the modified adaptive weights 
described in Expression (3), and the tuning parameter satisfies 

��
n
√

λ = o(1) 
and nλ→∞. There then exists a 

��
n
√

-consistent solution 􏽢θ = (􏽢β, 􏽢ψ) of the 
ITR REE, such that 􏽢ψS ≠ 0 and 􏽢ψSc

= 0.

By Lemma 1 in the online supplementary Appendix B.2, to establish the existence of the REE 
solution, it suffices to show that for sufficiently large n, there exists a constant r, such that on 
the boundary of a ball around θ∗ with radius n−1/2r, the variational inequality holds for function 
U(θ) − nλq(|θ|) with high probability. That is, for any ε > 0,

P inf
‖θ−θ∗‖=n−1/2r

(θ − θ∗)T[U(θ) − nλq(|θ|)] > 0
􏼒 􏼓

> 1 − ε.

This technique has been adopted in Portnoy (1984) and Wang (2011) to prove the existence of the 
M-estimator and generalised estimated equations estimator when the number of predictors is 
large. Theorem 3 establishes the asymptotic normality of the ITR REE estimators under standard 
regularity conditions (see online supplementary Appendix B for details).

Theorem 3 (Asymptotic Normality). For any 
��
n
√

-consistent solution 􏽢θ of ITR REE,

��
n
√

J(ψ∗S){􏽢ψS − ψ∗S + J(ψ∗S)−1λq(|ψ∗S|)}→d N 0, I(ψ∗S)
( 􏼁

, 

where I(θ) ∈ R2p×2p is the variance of the estimating equation U(Vi, θ), J(θ) ∈ 
R2p×2p is the quantity Eθ[ − ∂U(Vi, θ)

∂θ ], p is the length of the full covariate vector 
Xi, and I(ψ∗S) and J(ψ∗S) are the corresponding s × s sub-matrices of I and J 
evaluated at the truth.

A detailed proof of Theorems 2 and 3 are in the online supplementary Appendix (Sections B.4 
and B.5). To illustrate the double robustness property of our proposed estimators, we borrow the 
idea of the oracle estimator (Fan & Li, 2001). Define the oracle estimator 􏽢ψora ∈ Rs as the solution 
of U(β, ψ) using f (xS̃) and γ(xS, a) (i.e. assume that the zero and non-zero coefficients are known in 
advance). Since we do not know the truly important variables in the application, the oracle 
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estimator is just a concept to help establish the theoretical properties in variable selection. Due to 
the double robustness of U(β, ψ), 􏽢ψora is a consistent asymptotically normal estimator of ψ∗S under 
standard regularity conditions for M-estimators. The properties of 􏽢ψ in Theorems 2 and 3 are re
ferred to as the oracle property (Fan & Li, 2001), i.e. 􏽢ψ performs as well as the oracle estimator 
􏽢ψora.

Corollary (Double Robustness). The oracle estimator 􏽢ψora constructed above is a doubly 
robust estimator of ψ0. Since the resulting estimator 􏽢ψ mimics the oracle esti
mator 􏽢ψora, 􏽢ψ is also a doubly robust estimator. That is to say, the resulting es
timator 􏽢ψ is a consistent estimator of ψ0 if either of two nuisance models is 
correct.

4.2 A one-step estimator
For settings in which the number of variables, p, is fixed, we present an approximation to solve 
the ITR REE (1) in one step. Suppose that we can find an initial estimator 􏽢ψini of the blip param
eter, such that 

��
n
√
‖􏽢ψini − ψ∗‖2 = Op(1). Then we can plug 􏽢ψini into the weight term of Expression 

(1) and solve it directly, which is equivalent to maximising a weighted penalised likelihood. 
Taking the count outcomes as an example, we can use the solution of the unpenalised estimating 
equation U1(θ) or U3(β, θ) as the initial estimator. Then under mild conditions, using 􏽢ψini as a 
plug-in estimator will have a negligible effect on the resulting estimator 􏽢ψ. That is, the solution 
of

􏽘

i=1

aix
ψ
i

xβ
i

􏼠 􏼡

|ai −􏽢πi| exp { − γ(xψ
i , ai; 􏽢ψini)} yi − exp (f (xβ

i ; β) + γ(xψ
i , ai; ψ))

􏼐 􏼑
= nλ∂ρ(|θ|) 

is asymptotically equivalent to the solution of equation (1). In high-dimensional settings in which 
an unpenalised initial estimator cannot easily be computed, the ridge penalty can be used to ob
tain the initial estimator.

4.3 Tuning parameter selection
The choice of the tuning parameter λ in Expressions (1) and (2) plays an important role in the per
formance of the REE: An inappropriately large or small value of λ will greatly weaken the perform
ance of the resulting estimator in generating the estimation error and variable selection results. As 
previously noted, our proposed method can be viewed from a minimisation perspective, i.e. 
􏽢θ = argminθ{Ln(θ; y) + nλρ(|θ|)}. Following the idea used in classical information criteria 
(Akaike, 1974; Schwarz, 1978), we propose to select the tuning parameter by choosing the model 
that has the smallest value of n−1[Dλ(􏽢θ, y) + κnsλ], where Dλ(􏽢θ, y) = 2[Lsat

n (􏽢θ; y) − Ln(􏽢θ; y)] is the 
quasi-deviance, Lsat

n is the quasi-log-likelihood of the saturated model, κn is some positive se
quence, and sλ is the number of non-zero components in the model for a given λ. We suggest setting 
κn as log ( log n) log p following Fan and Tang (2013), as this can achieve model selection consist
ency in a penalised likelihood setting. In practice, we could also use cross-validation to choose the 
tuning parameter that corresponds to the lowest average loss Lcv

n (􏽢θ; y).
In a penalised likelihood, where the goal is prediction, the optimal λ is often chosen so the cor

responding model has the lowest information criterion, usually estimated by a measure of model fit 
(e.g. negative log-likelihood) with an extra penalty term such as the Akaike information criterion 
(Akaike, 1974) or the Bayesian information criterion (Schwarz, 1978). However, using an Akaike 
or Bayesian information criterion to select the tuning parameter will fail if the likelihood is mis- 
specified (i.e. outcome model is mis-specified). Thus, these classic methods of tuning parameter se
lection are not appropriate to the doubly robust setting where a likelihood is not positive and the 
mean model is not assumed to be correctly specified. Our proposed approach to selecting the tun
ing parameter outlined above requires that only one of the nuisance models is correctly specified.

306                                                                                                                                                     Bian et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/73/2/298/7337330 by guest on 15 January 2025



5 Numerical studies
In this section, we illustrate the double robustness of our proposed method and show how the 
choice of the initial estimator can impact the resulting estimators.

5.1 Competing methods and implementation
We compare our proposed method with three different methods: unpenalised A-learning, Zhang 
and Zhang (2018) and Zhang and Zhang (2022), where the last two competing methods were es
tablished based on the binary classification framework proposed in Zhang et al. (2012). The R 
package drgee (Zetterqvist & Sjölander, 2015) is implemented to obtain the A-learning esti
mates; in addition, the sample code to conduct methods in Zhang and Zhang (2018) and 
Zhang and Zhang (2022) can be found in the supplementary material for the latter article.

Recall that in Section 4.2, the initial estimator can be obtained from A-learning or our proposed 
IRGLM. We now evaluate the performance of our proposed PDR method using two different ini
tial estimators for the variable selection rate and the resulting error rate in the estimated treatment 
decision, as well as for the value function (expected outcome) of the estimated decision rules. The 
error rates and the average value function were calculated over a testing set of size 10,000. The 
data generation procedure for count outcomes is 

• Step 1: Generate 15 independent multivariate normal covariates (X1, . . ., X15) with mean 
equal to 0.5 and unit variance.

• Step 2: Generate treatment such that P(A = 1|x1, x2) = expit( − 0.2 +
􏽐2

j=1 xj).
• Step 3: Set the blip function as γ(x, a; ψ) = a(ψ0 + ψ1x1) for ψ0 = 1 and ψ1 = −2.
• Step 4: Set the baseline model to f (x; β) = exp ( − x2

1 − x2
2 + x3 − x4) + x1 − 0.2x2.

• Step 5: Generate the outcome Y ∼ Poisson( exp (f (x; β) + γ(x, a; ψ))).

Under this data generation procedure, the optimal treatment is I(1 − 2x1 > 0), which corresponds 
to treatment A = 1 for about 50% of subjects, and the marginal mean of the outcome under ob
served (rather than optimal) treatment is 1.21.

The data generation procedure for binary outcomes is the same for Steps 1–3 above. In Step 4, we 
now set the nuisance treatment model as E(A|Y = 0, X = x) = exp ( − x2

1 − x2
2 + x3 − x4) + x1 

−0.2x2, and marginalise the conditional expectation over the distribution of Y to obtain the propen
sity score model E(A|X = x). Lastly, we generate the outcome Y ∼ Bernoulli(expit(f (x; β) + 
γ(x, a; ψ))). Under this data generation procedure, the optimal treatment corresponds to treatment 
A = 1 for about 50% of subjects, and the marginal mean of the outcome under observed (rather 
than optimal) treatment is 0.47.

For both count outcomes and binary outcomes, we consider two scenarios with two sample sizes 
(500 and 1,000). The baseline model is mis-specified in scenario 1 (a linear working model is used), 
and the treatment model is mis-specified in scenario 2 (the propensity score is setting to 0.5 for all 
the observations). For PDR, we consider two alternative initial estimators: In the first case, referred 
to as PDR1, the estimator is obtained from A-learning, and in the second, PDR2, from our pro
posed IRGLM approach. Finally, we refer to unpenalised A-learning and the methods in Zhang 
and Zhang (2018) and Zhang and Zhang (2022) as UA, ZZ1, and ZZ2, respectively.

Tables 1 and 2 present the error rate (proportion of times the estimated optimal ITR fails to co
incide with the true optimal ITR); value; false-negative rate (i.e. setting a tailoring variable’s coef
ficient to 0 when it should be non-zero); false-positive rate (i.e. selecting a tailoring variable when 
the coefficient should in fact be zero) of the blip parameter estimates of the three methods for 
binary and count outcomes, respectively. In summary, all four methods have similar and good per
formance; this is expected as they are all doubly robust methods. For count outcomes, in scenario 1 
with sample size 500, ZZ2 has the smallest error rate and the largest value; as the sample size in
creases to 1,000, our proposed PDR1 outperforms other methods with respect to error rate and the 
value. As for scenario 2, our proposed PDR1 and PDR2 outperform all other competing methods 
regardless of the sample size. For example, when n = 1,000, PDR2 has the smallest error rate as 
well as the largest value; moreover, the FP and FN are both 0. The results of methods evaluated 
here for binary outcomes generally exhibit similarities to those for count outcomes.

J R Stat Soc Series C: Applied Statistics, 2024, Vol. 73, No. 2                                                               307
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/73/2/298/7337330 by guest on 15 January 2025



We make some final remarks on the simulation results here. First, no obvious difference in the 
error rate, value, and variable selection performance were observed between PDR1 and PDR2 in 
the simulations. Second, the penalisation-based methods (PDRs and ZZ2) have a larger FP rate 
than the sequentially selection-based method ZZ1 in general. Specifically, ZZ1 has the best vari
able selection performance: for example, it achieves 0 FP rate for binary outcomes in both scen
arios. Our proposed PDR approach has a slightly higher FP rate than ZZ1, however, it still can 
yield a larger value and a smaller error rate than ZZ1 in many settings. Moreover, our PDR ap
proach has a much smaller FP rate than ZZ2, although they both are based on the ℓ1 penalty, 
PDR takes advantage of using the data-dependant adaptive weights and hence achieve a better 
variable selection performance than ZZ2.

Table 1. Error rate (ER), value, false-negative (FN), and false-positive (FP) rate of variable selection results, with 
n = 500 and 1,000, for 400 simulations and test size 10,000 in three scenarios for a count outcome

Scenario 1 Scenario 2

UA ZZ1 ZZ2 PDR1 PDR2 UA ZZ1 ZZ2 PDR1 PDR2

n = 500

ER 0.13 0.07 0.06 0.07 0.08 0.09 0.05 0.06 0.03 0.03

Value 3.28 3.34 3.35 3.34 3.33 3.33 3.35 3.35 3.36 3.36

FN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FP 1.00 0.03 0.17 0.16 0.19 1.00 0.00 0.22 0.04 0.01

n = 1,000

ER 0.09 0.06 0.05 0.04 0.04 0.06 0.04 0.05 0.03 0.03

Value 3.33 3.35 3.35 3.36 3.35 3.35 3.36 3.36 3.36 3.36

FN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FP 1.00 0.00 0.16 0.07 0.08 1.00 0.00 0.24 0.01 0.00

Note. For comparison, the value function of the true optimal regime, and the strategies of always treat and never treat are 
3.36, 1.82, and 2.08, respectively. PDR = penalised doubly robust; UA = unpenalised A-learning; ZZ1 = Zhang and 
Zhang (2018); ZZ2 = Zhang and Zhang (2022).

Table 2. Error rate (ER), value, false-negative (FN), and false-positive (FP) rate of variable selection results, with 
n = 500 and 1,000, for 400 simulations and a test size 10,000 in three scenarios for a binary outcome

Scenario 1 Scenario 2

UA ZZ1 ZZ2 PDR1 PDR2 UA ZZ1 ZZ2 PDR1 PDR2

n = 500

ER 0.18 0.08 0.08 0.07 0.07 0.18 0.07 0.07 0.07 0.08

Value 0.61 0.64 0.63 0.64 0.64 0.61 0.63 0.64 0.64 0.64

FN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FP 1.00 0.00 0.21 0.05 0.05 1.00 0.00 0.21 0.04 0.08

n = 1,000

ER 0.13 0.07 0.07 0.05 0.05 0.13 0.06 0.05 0.04 0.05

Value 0.63 0.64 0.64 0.64 0.64 0.63 0.63 0.64 0.64 0.64

FN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FP 1.00 0.00 0.24 0.03 0.02 1.00 0.00 0.25 0.03 0.05

Note. For comparison, the value function of the true optimal regime, and the strategies of always treat and never treat are 
0.64, 0.48, and 0.48, respectively. PDR = penalised doubly robust; UA = unpenalised A-learning; ZZ1 = Zhang and 
Zhang (2018); ZZ2 = Zhang and Zhang (2022).
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In this section, we have focused exclusively on settings where assumptions are met. For a dem
onstration of the impact of violations of the assumption of correct specification of the blip model 
function, please see the online supplementary Appendix C (Table C1). As anticipated, perform
ance deteriorates significantly when this key assumption is not met.

6 Application to an adaptive web-based stress management study
We illustrate the newly proposed approach on a dataset from a two-stage pilot of a sequential mul
tiple assignment randomised trial (Lambert et al., 2021). The trial aimed to assess a web-based, 
stress management intervention adapted across time using a stepped-care approach for people 
with cardiovascular disease. We focus our analysis on the first stage only, in which 50 participants 
were randomised into two treatment groups, each with probability 0.5, stratified by recruitment 
source and stress level. The two treatment groups were: website only (A = 0) and website plus 
weekly telephone coaching (A = 1).

The primary outcome in this analysis is the stress subscale from the Depression Anxiety Stress 
Scales (DASS) (Lovibond & Lovibond, 1996), which is a count outcome measured at 6 weeks after 
stage 1 randomised allocation. A lower DASS-stress subscale score suggests the presence of fewer 
symptoms of stress, so the optimal treatment decision minimises the DASS-stress subscale score. 
The aims of our analysis were to determine the tailoring variables related to the decision rule 
and to obtain the estimated ITR for individuals with cardiovascular disease. We restricted our ana
lysis to eight variables: mental component score, age, DASS-stress subscale score at baseline, sex, 
marital status, stomach condition, physical component score, and vision. These were previously 
found to be useful for tailoring treatment using Bian et al. (2023).

A logistic regression model was posited to estimate the propensity score adjusted for the recruit
ment source and stress level. We applied PDR to this study with A-learning as the initial estimator 
(referred to as PDR1 in Section 5); both the baseline model and the blip model are posited to be 
linear. We found that five variables were relevant for tailoring treatment: DASS at baseline, sex, 
marital status, stomach condition, and vision. The estimated treatment rule is

􏽢aopt = I{ − 0.78 + 0.09I(male) + 0.45I(unmarried) + 0.01DASS

+ 0.45I(stomach=yes) − 0.08I(vision=yes) < 0}.

For example, a married woman who does not have either a vision problem or a stomach ailment 
and who has a DASS greater than 13 would be recommended for website plus weekly telephone 
coaching (A = 1). We compared our estimated treatment rule with results using the approach in 
Bian et al. (2023), treating the DASS as a continuous measure. We found that 74% of subjects’ rec
ommended treatments were the same under the two strategies. Moreover, all five non-zero, esti
mated blip parameters had the same sign as the estimated blip parameters using Bian et al. (2023).

We also considered, for illustrative purposes, an analysis that dichotomises the outcome Y at its 
median, using our proposed binary outcome approach. However, due to the small sample size, nei
ther A-learning nor standard logistic regression yielded a solution, due to lack of convergence.

Finally, we applied our newly proposed approach to data from the Sequenced Treatment 
Alternatives to Relieve Depression (STAR*D) study (Fava et al., 2003). The STAR*D data are 
considered a benchmark dataset for ITR analyses and were analysed in Chakraborty et al. 
(2013), Shi et al. (2018), Wallace et al. (2019), and Bian et al. (2023), among others. While these 
data are less novel, we considered the comparison relevant and provide results in the online 
supplementary Appendix D. In summary, the findings in the current analysis, using the methods 
we propose for both count and binary outcomes, align well with the results found in 
Chakraborty et al. (2013), Wallace et al. (2019), and Bian et al. (2023).

7 Discussion
We proposed new, doubly robust estimating functions to estimate an ITR when the outcome is 
discrete and the log or logit link functions are used to model the outcome. The newly proposed 
approach can be solved using a weighted GLM iteratively, given a suitable choice of observational 
weights. The benefit of our proposed estimating function is that it is easily generalised to a 
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penalised framework, which permits estimating a parsimonious ITR and selecting important tai
loring variables simultaneously. Based on this finding, we also present a doubly robust criterion to 
select the tuning parameter. Numerical studies indicated that the newly proposed PDR method 
compares favourably with other competing approaches in the context of ITRs. To our knowledge, 
doubly robust variable selection approach for ITRs with binary or count outcomes has not previ
ously been studied.

We applied our proposed variable selection method to a sequential multiple assignment rando
mised trial (Lambert et al., 2021) to evaluate the effectiveness of a web-based stress management 
intervention for individuals with cardiovascular disease. We found that five variables were rele
vant for tailoring treatment: DASS at baseline, sex, marital status, stomach condition, and vision. 
Furthermore, we derived a linear decision rule that may assist physicians in effectively recom
mending the web-based stress management intervention for patients with cardiovascular disease. 
This analysis yielded important insights into the influence (or lack thereof) of potential tailoring 
variables on patient primary outcomes, thus aiding to develop more effective and personalised ap
proaches to care.

One limitation of our proposed method is that we require that the parametric form of the blip 
function is known (i.e. that the blip is correctly specified). This requirement is slightly stronger 
than the assumption that the parametric form of the treatment regimes is correctly specified 
(see, e.g. Zhang & Zhang, 2022), since assuming that the blip function is correct implies that 
the treatment regime is correct, but not the converse. An interesting avenue for future research 
would be to consider imposing smoothness assumptions on the blip function and estimating it us
ing off-the-shelf non-parametric variable selection tools, for instance using splines with a penalty 
to control overfitting.

In this paper, for simplicity, we focus on a binary treatment setting. The extension to general 
discrete allocations, in which a = {0, 1, . . . , l}, is straightforward: a multinomial model analogous 
to the generalised propensity score could be fit in place of π. Taking the outcomes to be counts, for 
example, the estimating function now is

􏽘

a≠0

􏽘n

i=1

I(Ai = a)xψ
i

xβ
i

􏼠 􏼡

|I(Ai = a) − P(Ai = a)| exp { − γ(xψ
i , a; ψ)}

× yi − exp (f (xβ
i ; β) + γ(xψ

i , a; ψ)
􏼐 􏼑

= 0.

As such, the estimation procedure and the theoretical results can be adapted without extra diffi
culty. Similarly, continuous exposure densities can be modelled directly, or approximated using 
quantile binning and modelled via a multinomial regression. Both of these approaches rely on a 
generalised propensity score (Imbens, 2000) and were implemented in a continuous outcome set
ting for individualised treatment by Schulz and Moodie (2021).

To obtain a doubly robust estimator, a well-behaved initial estimator is needed, which can be 
estimated using an unpenalised doubly robust approach. When the number of predictors is larger 
than the sample size, we recommend using the ridge estimator to acquire the initial estimate. In 
future work, we could also build on an idea in Huang et al. (2008), which used the marginal re
gression approach to obtain the initial estimator for the adaptive lasso (i.e. the outcome is re
gressed separately on each variable). However, this technique is more challenging in our setting, 
as it violates the assumption that the blip model is correctly specified. This is partial identification 
problem has been studied in van der Laan and Robins (2003), and this work may shed light on how 
to use marginal regression to obtain a valid initial estimator. It also may be of interest, in future 
work, to investigate the algorithm to directly solve the REE instead of using the approximation. 
As this alternative does not require an initial estimator, and it might perform better in a large p, 
small n scenario.

The extension of the single-stage estimation approach to a multistage setting also requires fur
ther investigation. In a multistage setting, the estimation procedure is conducted recursively using 
backward induction, and the ‘outcome’ at each stage is set to be a predicted or estimated optimal 
response. For discrete outcomes, the optimal outcome is usually modelled by multiplicative effects, 
e.g. the optimal outcome at the (k − 1)th stage for a count outcome is computed by 
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􏽢yopt
k−1 = y ×

􏽑K
k exp {γk(xψ

k ,􏽢aopt
k ; ψk) − γk(xψ

k , ak; ψk)}, where K is the total number of stages. A chal
lenge under the multistage scenario is that the estimated optimal outcome at any stage for subjects 
with zero-valued outcome will always remain zero, unless adjustments are made (Wallace et al., 
2019), which may lead to a loss of efficiency.
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