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ABSTRACT
Background: Oncological resection and reconstruction involving the lower extremities commonly lead to reoperations that

impact patient outcomes and healthcare resources. This study aimed to develop a machine learning (ML) model to predict this

reoperation risk.

Methods: This study was conducted according to TRIPOD+AI. Data from the PARITY trial was used to develop ML models to

predict the 1‐year reoperation risk following lower extremity oncological resection and reconstruction. Six ML algorithms were

tuned and calibrated based on fivefold cross‐validation. The best‐performing model was identified using classification and

calibration metrics.

Results: The polynomial support vector machine (SVM) model was chosen as the best‐performing model. During internal

validation, the SVM exhibited an AUC‐ROC of 0.73 and a Brier score of 0.17. Using an optimal threshold that balances all

quadrants of the confusion matrix, the SVM exhibited a sensitivity of 0.45 and a specificity of 0.81. Using a high‐sensitivity
threshold, the SVM exhibited a sensitivity of 0.68 and a specificity of 0.68. Total operative time was the most important feature

for reoperation risk prediction.

Conclusion: The models may facilitate reoperation risk stratification, allowing for better patient counseling and for physicians

to implement measures that reduce surgical risks.

1 | Introduction

Surgical management of malignant lower extremity bone tumors
and soft tissue sarcomas typically consists of amputation or limb
salvage surgery. Limb salvage surgery, which includes oncological

resection followed by extensive endoprosthetic reconstruction,
has emerged as the preferred approach in 70%–85% of cases [1, 2]
due to its superior functional outcomes [3, 4] and similar onco-
logical results [5, 6] compared to amputations. While the success
rate of oncological limb salvage surgeries has greatly improved
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due to advancements in surgical techniques, neoadjuvant thera-
pies, and endoprosthetic hardware, it is still associated with a
high risk of postoperative complications such as surgical site
infections and prosthetic failures, which often necessitate revision
surgeries [7]. For instance, a previous analysis of pediatric pa-
tients undergoing lower extremity endoprosthetic reconstruction
for bone tumors demonstrated a 30% reoperation rate in the
first year after surgery [8]. These revision surgeries can severely
impact patient outcomes and quality of life, increase patients'
healthcare expenses, and exacerbate disease burdens placed on
healthcare systems [9–11].

Thus, a patient's reoperation risk is an important factor to consider
and discuss with patients when planning limb salvage surgeries.
Nevertheless, it can be difficult to predict and quantify reoperation
risk based on surgeon experience alone. Machine learning (ML)
has been shown to be an effective approach to predict post-
operative clinical outcomes [12, 13]. Having accurate, ML‐
powered predictions on reoperation risk can help set realistic
patient expectations during preoperative and postoperative coun-
seling. Patients predicted to have a high reoperation risk can also
receive tailored treatments aimed at reducing their risk such as
prehabilitation programs to improve their functional status [14]
the use of silver‐coated implants to prevent infection [15, 16], the
use of negative pressure wound therapy [17], or alternative sur-
gical options such as amputation [18]. In the postoperative phase,
patients' reoperation riskscan be reduced using strategic suction
drain placements, vigilant monitoring and early intervention for
common postoperative complications such as hematomas, and
early mobilization protocols [19–21].

To our knowledge, there are currently no predictive ML models
available to provide individualized reoperation risk stratifica-
tion in the context of lower extremity oncological resection and
reconstruction surgeries. This largely stems from the rarity of
bone cancers [22] and the accompanying lack of high‐quality
training and validation data. However, the recent dissemination
of results from the Prophylactic Antibiotic Regimens in Tumor
Surgery (PARITY) trial [23] provides the high‐quality and
multicentered data needed to develop such a model. Therefore,
the purpose of this study is to develop and internally
validate ML models that can provide individualized predictions
of 1‐year reoperation risk following oncological resection and
endoprosthetic reconstruction of the lower extremities.

2 | Materials and Methods

This study was conducted and reported in accordance with the
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis + AI (TRIPOD+AI) Check-
list for Prediction Model Development (Supporting Information
S1: Table S1) [24].

2.1 | Data Sources

The PARITY trial [23] is a multicentered, blinded, parallel‐
group randomized controlled trial that compared a 5‐day
versus 1‐day prophylactic antibiotics regimen on reducing

postoperative surgical site infections in patients with a primary
bone tumor or soft tissue sarcoma that underwent lower ex-
tremity oncologic resection and complex endoprosthetic
reconstruction. It was performed across 48 clinical sites in 12
countries from January 1, 2013, to October 29, 2019. Detailed
eligibility criteria and study protocol has been described previ-
ously [25]. Baseline and 1‐year follow up data from all 604
patients analyzed in the trial was included in the current study.

2.2 | Outcome of Interest

The outcome of interest for our predictive models was unplanned
additional surgeries within 1‐year following the original lower
extremity resection/reconstruction surgery. This outcome was
recorded as a secondary outcome of the PARITY trial.

2.3 | Feature Selection

Candidate features were first selected based on availability (≤ 30%
of missing data) and expert domain (see Supporting Information
S1: Table S2 for the list of candidate features). Dimension of the
feature set was further reduced using Least Absolute Shrinkage
and Selection Operator (LASSO) penalized logistic regression [26]
and Boruta [27]. A union of features selected by the two methods
was chosen as the final feature set (see Table 1) used for predictive
modeling. Given the “one in ten” rule commonly used in pre-
dictive modeling, which states that 10 events are needed for every
predictor included in the model [28, 29], we aimed to include
around 10 features following feature selection.

2.4 | Data Preprocessing

The PARITY data set was randomly split into an 80% derivation
and 20% internal validation cohort, stratified by outcome classifi-
cation. The derivation cohort was further split into different
training and testing subsets during cross‐validation for model
tuning and evaluation. A data preprocessing pipeline was con-
structed to identify and impute missing data, correct for class
imbalance, and improve compatibility with ML algorithms before
data is fed into the predictive models (Figure 1). These pre-
processing steps were applied after cross‐validation splits and after
the derivation‐validation split to avoid potential data leakage [30].

2.4.1 | Categorical Data Encoding

Ordinal categorical features, including tumor grade and the
amount of preoperative chemotherapy received, were encoded
as ordinal integer values. Categorical features with no clear
ordinality, including ethnicity and tumor type, were trans-
formed via one‐hot encoding [31].

2.4.2 | Missing Data Imputation

Amount of missing data for each feature column within the
PARITY data set is described as footnotes in Table 1 and
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Supporting Information S1: Table S3. Five feature columns had
missing data requiring imputation. Four of these columns have
less than 1% of missing data. Tumor stage has the highest
percentage of missing data, with 59 patients (9.8%) requiring
imputation.

Because the amount of missing data was low for a majority of
the feature columns, and because missing tumor stage can be
adequately inferred based on other features such as operation

time, tumor type, and the number of adjuvant chemotherapy
cycles, we assumed the data to be missing at random. Missing
data was imputed using multivariate imputation by chained
equations (MICE) over 10 iterations [32]. The training and
testing subsets were imputed separately to avoid data leakage
[30]. The use of MICE was treated as a hyperparameter when
tuning ML algorithms with native missing data handling
methods, and we trialed both MICE and the algorithms' native
approachesduring model tuning.

TABLE 1 | Summary of baseline patient features used for ML predictions.

Features
No additional

operations (N= 449)
Required additional
operations (N= 155) Total (N= 604) SMD (95% CI)

Age 41.07 (21.36) 41.60 (23.31) 41.21 (21.86) 0.02 (−0.16 to 0.21)

Ethnicitya

Asian 99 (22.1%) 14 (9.0%) 113 (18.8%) 0.37 (0.18 to 0.55)

Otherb 348 (77.9%) 141 (91.0%) 489 (81.2%) —

AJCC stagec 0.37 (0.18 to 0.56)

Grade I 56 (14.0%) 7 (4.8%) 63 (11.6%)

Grade II 89 (22.3%) 25 (17.1%) 114 (20.9%)

Grade III 175 (43.9%) 79 (54.1%) 254 (46.6%)

Grade IV 79 (19.8%) 35 (24.0%) 114 (20.9%)

Tumor type

Bone tumor 356 (79.3%) 130 (83.9%) 486 (80.5%) 0.12 (−0.06 to 0.30)

Oligometastatic bone disease 49 (10.9%) 7 (4.5%) 56 (9.3%) 0.24 (0.06 to 0.43)

Otherd 44 (9.8%) 18 (11.6%) 62 (10.3%) —

Malignant tumor 405 (90.2%) 151 (97.4%) 556 (92.1%) 0.30 (0.12 to 0.49)

Tumor located in femur 373 (83.1%) 125 (80.6%) 498 (82.5%) 0.06 (−0.12 to 0.25)

Tumor located in tibia 78 (17.4%) 31 (20.0%) 109 (18.0%) 0.07 (−0.12 to 0.25)

Preoperative chemotherapye 0.40 (0.21 to 0.58)

None received 233 (52.0%) 81 (52.3%) 314 (52.1%)

1 cycle 3 (0.7%) 5 (3.2%) 8 (1.3%)

2 cycles 55 (12.3%) 30 (19.4%) 85 (14.1%)

3 cycles 46 (10.3%) 14 (9.0%) 60 (10.0%)

4 cycles 34 (7.6%) 7 (4.5%) 41 (6.8%)

5 cycles 24 (5.4%) 3 (1.9%) 27 (4.5%)

6 cycles 26 (5.8%) 8 (5.2%) 34 (5.6%)

7 cycles 8 (1.8%) 0 (0.0%) 8 (1.3%)

> 7 cycles 19 (4.2%) 7 (4.5%) 26 (4.3%)

Total operative time (hours) 4.78 (2.14) 5.97 (2.77) 5.09 (2.37) 0.48 (0.30 to 0.66)

Use of negative pressure wound
therapyf

49 (10.9%) 34 (22.1%) 83 (13.8%) 0.30 (0.12 to 0.49)

Surgical drain duration (days)g 3.49 (2.98) 4.67 (7.12) 3.79 (4.45) 0.22 (0.03 to 0.40)

Abbreviations: AJCC, American Joint Committee on Cancer; CI, confidence interval; SMD, standardized mean difference.
a2 (0.4%) patients have missing ethnicity data in the no additional operations group.
bAdditional ethnicity categories were reported, but they are omitted here because they were not selected by statistical feature selection methods following one‐hot
encoding.
c50 (11.1%) patients have missing AJCC stage data in the no additional operations group, and 9 (5.8%) patients have missing AJCC stage data in the required additional
operations group.
dAdditional tumor type categories (i.e., soft tissue sarcoma) were reported, but they are omitted here because they were not selected by statistical feature selection methods
following one‐hot encoding.
e1 (0.2%) patients have missing preoperative chemotherapy data in the no additional operations group.
f1 (0.6%) patients have missing negative pressure wound therapy data in the required additional operations group.
g4 (0.9%) patients have missing surgical drain duration data in the no additional operations group, and 2 (1.3%) patients have missing surgical drain duration data in the
required additional operations group.
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2.4.3 | Addressing Multicollinearity

As assessments for potential multicollinearity using variance
inflation factors (VIFs) [33] conducted before model develop-
ment identified potential multicollinearity within features
selected via expert domain, we trialed the use of principal
component analysis [34] as a hyperparameter in the data
preprocessing pipeline.

2.4.4 | Resampling

Given that the data set was imbalanced, resampling was trialed
using a combination of Synthetic Minority Oversampling
Technique (SMOTE) [35] and Tomek Links [36] as well as
random undersampling. ML algorithms' sample weight scaling
factors were also tuned to correct for the imbalance during
model tuning.

2.4.5 | Scaling

Each feature within the data set was scaled according to its
variance, and the data distribution was re‐centered around the
mean [37].

2.5 | Hyperparameter Tuning

We fitted and tuned six commonly‐used ML classification al-
gorithms on the data set to select for the best‐performing model:
(1) Penalized Logistic Regression, (2) Support Vector Machine
(SVM), (3) Random Forest, (4) Light Gradient‐Boosting
Machines (LightGBM) [38], (5) eXtreme Gradient‐Boosting
(XGBoost) [39], and (6) Neural Networks.

Each algorithm was tuned to minimize cross‐entropy loss across
stratified fivefold cross‐validation. The optimal hyperpara-
meters were selected using Bayesian Optimization [40]. Bayes-
ian Optimization starts with random parameter searches to
gather data points for building a probabilistic model that pre-
dicts the performance of different hyperparameter settings. An
acquisition function then uses this model to identify the most
promising parameters for the next round of evaluations. The
results are used to update the performance model, and the
process is repeated until a pre‐established performance budget
is exhausted [41]. Bayesian Optimization is empirically con-
sidered to be superior compared to traditional random search
techniques, and both are generally more effective than grid‐
search methods [42]. As random search, which is a worse‐
performing hyperparameter tuning method, can reliably iden-
tify hyperparameters from the top 5% of the most performant

FIGURE 1 | Schematic diagram showing the layout of the ML pipeline used in this study. The arrows show the flow of data within the pipeline

during model fitting and predictions. Dimension reduction and resampling techniques cannot be used if there is missing data in the data set, thus

they are always skipped if the imputation step is set to passthrough. This is shown by arrows with the dotted line. LASSO, Least Absolute Shrinkage

and Selection Operator (Penalized Logistic Regression); MCC, Matthew's correlation coefficient; ML, machine learning; PCA, principal component

analysis; SMOTE, Synthetic Minority Oversampling Technique.
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combinations with 60 iterations [40], we aimed to perform
Bayesian Optimization at or beyond this performance budget.
Ultimately, we set the budget for Bayesian Optimization to at
least 500 iterations per model (Supporting Information S1:
Table S3).

For neural networks, the maximum number of layers in the
network was capped at 3. Dropout was used to prevent over-
fitting [43], and performance‐based learning rate decay was
trialed to improve network performance.

2.6 | Calibration

After hyperparameter tuning, all models underwent calibration.
Three calibration approaches were trialed: (1) Platt/sigmoidal
scaling [44, 45], (2) isotonic regression [44] and (3) spline‐based
calibration [46]. Results from the different calibration ap-
proaches (including no additional calibration) were compared,
and the calibration approach with the lowest average cross‐
entropy loss on fivefold cross‐validation was selected.

2.7 | Threshold Selection

Following calibration, each model underwent threshold tuning
to maximize their classification performance. Matthew's corre-
lation coefficient (MCC) [47] was calculated for every classifi-
cation threshold between 0.01 and 0.99 at an interval of 0.01,
and the threshold with the highest average MCC across fivefold
cross‐validation was selected as the optimal threshold. This
approach creates a threshold that finds a balance between all
four quadrants of the confusion matrix.

Given that clinicians may prefer more conservative risk classi-
fications with higher sensitivities during patient counseling or
treatment planning, we also created a high‐sensitivity thresh-
old. To create the high‐sensitivity threshold, we calculated the
sensitivity for every classification threshold between 0.01 and
0.99 at an interval of 0.01, and the threshold that produces an
average sensitivity that is the nearest and higher than 0.70
during fivefold cross‐validation was selected as the high‐
sensitivity threshold.

2.8 | Model Evaluation

To select the most optimal ML model, we followed a previously
published framework proposed for the evaluation of clinical
prediction models [48]. The classification performance of each
tuned and calibrated model was assessed using area under the
receiver operating characteristic curve (AUC‐ROC), MCC,
sensitivity, and specificity. MCC ranges from −1 to 1 (with
higher values indicating better classification performance) and
serves as a good representation of all four categories within the
confusion matrix (true positives, false negatives, true negatives,
and false positives). It is generally considered to be a more
informative and robust measure of classification performance
compared to raw accuracy or F1 scores [47]. Calibration per-
formance was assessed using Brier score, calibration curve slope

and calibration curve intercept. All metrics were averaged
across fivefold cross‐validation, and 95% confidence intervals
(CIs) were used to assess performance variance between folds.

2.9 | Internal Validation

The best performing model was internally validated using the
internal validation cohort based on the same classification and
calibration metrics assessed during model evaluation and
selection. Feature importance for the best‐performing model
was assessed using the permutation importance method [49].

2.10 | Statistical Analysis and Software

Continuous baseline patient features used for ML predictions
were summarized as mean and standard deviation. Categorical
baseline patient features were summarized as frequency and
percentages. Distribution of feature data between the control
patients and patients who required additional operations was
compared using standardized mean differences with corre-
sponding 95% CIs. Descriptive statistics were generated using
arsenal and stddiff in R.

LASSO‐based feature selection was conducted using scikit‐learn
in Python, and Boruta‐based feature selection was conducted
using boruta in R. Data preprocessing was conducted using
scikit‐learn and imbalanced‐learn in Python. ML models were
fitted, tuned, and calibrated using scikit‐learn, lightgbm, xgboost,
tensorflow, keras, scikit‐optimize, and ml‐insights in Python.
Feature importance was assessed using eli5 in Python.

3 | Results

The total PARITY data set included 604 patients, 449 (74.3%) of
whom did not require additional operations and 155 (25.7%)
patients who required additional unplanned operations. Patient
characteristics, summarized based on the final feature set cho-
sen, are tabulated in Table 1. Data from all trial participants
were included. The final feature set included in ML modeling is
also tabulated in Supporting Information S1: Table S3.

3.1 | Model Performance on Cross‐Validation

Classification performance and calibration metrics of the tuned
and calibrated models during fivefold cross‐validation are listed
in Table 2. Average AUC‐ROC ranged from 0.65 to 0.69.
Average Brier score was 0.18 for all models. Average calibration
curve slope ranged from 0.68 to 1.54 and average calibration
curve intercept ranged from −0.12 to 0.07. Using the optimal
threshold derived from maximizing MCC during cross‐
validation, the average MCC ranged from 0.25 to 0.28, the
average sensitivity ranged from 0.33 to 0.60, and the average
specificity ranged from 0.70 to 0.88. Using the high‐sensitivity
threshold which aimed to keep sensitivity above 0.70 during
cross‐validation, the average MCC ranged from 0.14 to 0.23, the
average sensitivity ranged from 0.70 to 0.74, and the average
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specificity ranged from 0.41 to 0.54. The optimal hyperpara-
meter combinations identified during cross‐validation for each
model are tabulated in Supporting Information S1: Table S4.

Overall, the cross‐validation performances of different models
using the optimal threshold were very similar. However, both
the Random Forest and polynomial SVM model exhibited better
classification performances compared to the remaining models.
The Random Forest model yielded an average AUC‐ROC of
0.69 (95% CI: 0.62 to 0.76), while the polynomial SVM model
yielded an average AUC‐ROC of 0.68 (95% CI: 0.60 to 0.76).
Both models also had the highest MCCs under both the optimal
threshold and the high‐sensitivity threshold, and both models
exhibited similar sensitivity and specificity under the optimal
threshold and the high‐sensitivity threshold (see Table 2). The
polynomial SVM was designated as the best performing model
overall because it exhibited better calibration metrics during
cross‐validation as measured by the average calibration curve
slope and intercept compared to the Random Forest model
(calibration curve slope, 0.92 [95% CI: 0.62 to 1.22] vs. 1.50 [95%
CI: 0.88 to 2.13]; calibration curve intercept, −0.01 [95% CI:
−0.07 to 0.06] vs. −0.12 [95% CI: −0.25 to 0.00]).

3.2 | Model Performance During Internal
Validation

On internal validation with the validation cohort, the polyno-
mial SVM model exhibited an AUC‐ROC of 0.73 (Figure 2),
Brier score of 0.17, calibration slope of 0.75, and calibration
intercept of 0.04 (the calibration plot is appended as Supporting
Information S1: Figure S1). Using the optimal threshold iden-
tified during cross‐validation, the MCC was 0.26, the sensitivity
was 0.45, and the specificity was 0.81. Using the high‐sensitivity
threshold identified during cross‐validation, the MCC was 0.31,
the sensitivity was 0.68, and the specificity was 0.68. The per-
formance metrics of the SVM model on the internal validation
cohort are similar if not better than metrics observed during
cross‐validation, with the exception of a worse calibration slope
observed during internal validation (Figure 3).

3.3 | Feature Importance and Model Deployment

The polynomial SVM model pipeline was re‐trained on the
entire PARITY data set and incorporated into an online re-
operation risk calculator. The feature importance of the pro-
duction model is shown in Figure 4. Total operative time was
the most important feature. Other ML algorithms were also
retrained and incorporated into the calculator for demonstra-
tion purposes. The calculator is available at https://parity-ml.
shinyapps.io/reop-estimator/.

4 | Discussions

Need for additional unplanned operations is a common dispo-
sition for patients undergoing oncological resection and en-
doprosthetic reconstruction of the lower limbs [50]. In this
study, we developed ML models to predict the risk of reopera-
tions in this patient population based on easily accessible
patient characteristics and operative parameters. The developed
models have the potential to enable early postoperative risk
stratification, which allows patients at higher risks for re-
operation to receive prophylactic measures and to be followed
more closely. Orthopedic surgeons can also test the impact of
changing potential surgical parameters in the ML model to help
inform treatment decisions and provide their patients with
individualized reoperation risk predictions.

An important consideration for the clinical deployment of
our ML model is the selection of decision thresholds. In our
study, we produced both an optimal threshold aimed at max-
imizing the model's MCC metrics as well as a high‐sensitivity
threshold aimed at increasing the model's true positive rate. The
use of decision thresholds will always represent a trade‐off
between sensitivity and specificity [51]. In many clinical sce-
narios, such as deciding when to implement vigilant monitoring
and early postoperative ambulation protocols or providing
surgical counseling to patients, the high‐sensitivity threshold
may be preferred to ensure that high‐risk patients receive
proper prophylactic measures and conservative prognoses. In
scenarios where the model is used to make drastic changes to
surgical planning, such as converting a limb‐salvage surgery
into an amputation, the optimal threshold may be preferred to
ensure that both specificity and sensitivity are accounted for.
Clinicians should tailor the threshold selection to the specific
clinical context and balance the need for accuracy with the
potential consequences of misclassifying false positive and
negative cases.

This study has several notable strengths. First, the PARITY data
set is relatively complete with low amounts of missing data.
Combined with multiple imputation techniques, we were able
to train the models on credible data that do not rely heavily on
missingness assumptions [52]. The data set also originated from
an international, multicenter trial, which enables the models to
be generalizable across most, if not all, oncological patients
undergoing lower extremity resections with endoprosthetic re-
constructions. Secondly, we tested a wide range of ML algo-
rithms, data preprocessing techniques, and calibration methods.
We also used Bayesian Optimization with high numbers of
iterations for hyper parameter tuning, which allowed us to

FIGURE 2 | ROC curves for cross‐validation and internal validation

of the polynomial support vector machine model. The area under the

curve was 0.73. ROC, receiver operating characteristic (curve).
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identify the most optimal ML model configurations for our data
set. Lastly, we employed fivefold cross‐validation during our
hyperparameter tuning process, which reduces the potential for
the models to overfit [53]. Based on our assessment of feature
importance, the features prioritized by the ML models generally
correspond with previous investigations using more traditional
statistical approaches. For instance, operative time was the most
important predictor of reoperation risk in both our best
performing ML model and also in previous PARITY publica-
tions using univariate and multivariate analyses [54]. Con-
versely, while tumor type was shown to be a top three predictor
of reoperations risk in the previous multivariate analysis, our

SVM model placed one‐hot encoded tumor type features behind
other features that were considered to be less important by
previous analyses such as ethnicity and tumor stage [54]. Prior
work has indeed shown that variable importance can differ
when both regression and ML techniques, or both linear and
nonlinear models, are used to analyze the same data set. Our
findings highlight the value of using different methods to fully
understand which factors truly influence clinical outcomes [55].

A key limitation of the current study is that our feature selec-
tion process relied on data availability in the PARITY data set.
With this approach, our model may not have captured all the
relevant information needed to predict reoperation risks accu-
rately, such as surgeon experience or surgeon age. Another
limitation of the study is its small sample size due to the rarity
of relevant patient cases. Soft tissue sarcomas, for instance,
account for only 1% of all adult malignancies [56]. Osteo-
sarcoma, which is the most common type of primary bone
tumor, has an incidence rate of 4–5 per year per million persons
[57]. The PARITY trial generated one of the largest and most
comprehensive prospective data set on malignant bone tumors
and soft tissue sarcomas [58]; however, our sample size was still
lower than the 50+ events per feature threshold needed to
obtain optimal predictions from modern ML algorithms and
deep‐learning neural networks, as demonstrated in previous
simulation studies [59].

A potential solution to this study's limitations is incorporating
multimodal data, which is readily available in the preoperative
setting. For instance, magnetic resonance imaging (MRI) of the
tumor is routinely acquired in this patient population [60].
Incorporating imaging data could potentially allow ML models
to identify additional features associated with reoperation, such
as the presence of critical neurovascular structures or extensive
perilesional edema. These may entail close or positive margins,
which are known to be associated with higher local recurrence

FIGURE 3 | Line plot showing the MCC of the polynomial support vector machine model at every possible decision threshold values for cross‐
validation and internal validation. MCC, Matthew's correlation coefficient.

FIGURE 4 | Feature importance plot for the finalized polynomial

support vector machine model, showing the change in the model's

AUC‐ROC when individual features are replaced with noise. AJCC,

American Joint Committee on Cancer; AUC‐ROC, area under the

receiver operating characteristic curve; NPWT, negative‐pressure
wound therapy; MBD, metastatic bone disease.
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rates and reoperation rates [61]. Similarly, contextual informa-
tion about the tissues near the tumor, the predicted dead space
following the resection, and other factors related to infection
risk, may be extracted from the MRI by multimodal models.
Similar multimodal approaches in other clinical investigations
have yielded increased ML model performance. For instance, a
prior systematic review found that multimodal ML models
generally yielded higher accuracy and AUC‐ROC metrics
compared to single modality models when applied to clinical
diagnostic and prognostic tasks [62].

5 | Conclusion

Predicting postsurgical outcomes in orthopedic oncology is
complex. This current study serves as a proof‐of‐concept for
using ML models to predict risk of reoperation in patients
with lower extremity bone tumors and soft tissue sarcomas
that require oncological resection and endoprosthetic
reconstruction. External validation and incorporation of
multimodal data will improve the generalizability and accu-
racy of the predictions.
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