
High-dimensional data analysis using penalized
regression methods

Sahir Rai Bhatnagar

Department of Epidemiology, Biostatistics, and Occupational Health
Department of Diagnostic Radiology

https://sahirbhatnagar.com/

McGill Summer School in Health Data Analytics
June 1, 2021

1 / 116 .

https://sahirbhatnagar.com/

Motivating Example

Classical Methods

Betting on Sparsity

Lasso Regression

Optimality Conditions

Algorithms

Selecting the tuning parameter λ

Group Lasso

Generalizations of the Lasso
Motivating Example 2 / 116 .

Motivating Example

Classical Methods

Betting on Sparsity

Lasso Regression

Optimality Conditions

Algorithms

Selecting the tuning parameter λ

Group Lasso

Generalizations of the Lasso

Motivating Example 2 / 116

Setting

YY X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14
X15

X16
X17

X18X19X20X21X22X23X24
X25

X26

X27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X40

X41

X42

X43

X44

X45

X46

X47

X48
X49

X50 X51 X52 X53 X54 X55 X56
X57

X58
X59

X60

X61

X62

X63

X64

X65

X66

X67

X68

X69

X70

X71

X72

Motivating Example 3 / 116 .

Setting

• This lecture concerns the analysis of data in which we are attempting
to predict a vector outcome y ∈ Rn using a number of explanatory
factors X = (X1, X2, X3, . . .,Xp) ∈ Rn×p, some of which may not be
particularly useful

• Although the methods we will discuss can be used solely for
prediction (i.e., as a “black box”), I will adopt the perspective that we
would like the statistical methods to be interpretable and to explain
something about the relationship between the X and y

• Regression models are an attractive framework for approaching
problems of this type, and the focus today will be on extending
classical regression modeling to deal with high-dimensional data

Motivating Example 4 / 116 .

High-dimensional data (n << p)

Xn×p =

x11 x12 · x1p
...

...
...

...
...

...
...

...
...

...
xn1 x12 · xnp



Motivating Example 5 / 116 .

Motivating Example: The Cancer Genome Atlas (TCGA)

• The response variable in our analysis is expression of BRCA1, the first
gene identified to increase the risk of early onset breast cancer

• In the dataset, expression measurements of 17,322 additional genes
from 536 patients are available (and measured on the log scale)

• Because BRCA1 is likely to interact with many other genes, including
tumor suppressors and regulators of the cell division cycle, it is of
interest to find genes with expression levels related to that of BRCA1

Motivating Example 6 / 116 .

install.packages("pacman")
pacman::p_load_gh('sahirbhatnagar/mcgillHDA')
library(mcgillHDA)
data(TCGA)
help(TCGA)
str(TCGA)

List of 3
$ X : num [1:536, 1:17322] -1.45 -2.3 -1.94 -2.1 -1.28 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:17322] "15E1.2" "2'-PDE" "7A5" "A1BG" ...
$ y : num [1:536] -1.661 -1.388 -1.925 -1.656 -0.358 ...
$ fData:'data.frame':^^I17322 obs. of 2 variables:
..$ chromosome: chr [1:17322] NA NA NA "19" ...
..$ gene_name : chr [1:17322] NA NA NA "alpha-1-B glycoprotein" ...

hist(TCGA$y, col = 'lightblue', main = "Gene expression for BRCA1")

Gene expression for BRCA1

TCGA$y

F
re

qu
en

cy

−4 −3 −2 −1 0 1

0
50

10
0

15
0

Multivariable Linear Regression on Training Set
set.seed(101) # for reproducibility
sample <- sample.int(n = nrow(TCGA$X), size = floor(.80*nrow(TCGA$X)), replace = F) # 80% training / 20% testing
X.train <- TCGA$X[sample,] ; dim(X.train)

[1] 428 17322

X.test <- TCGA$X[-sample,] ; dim(X.test)

[1] 108 17322

y.train <- TCGA$y[sample]
y.test <- TCGA$y[-sample]

fit linear regression on training
fit.train <- lm.fit(x = X.train, y = y.train)
beta_hat_lm <- coef(fit.train)
table(is.na(beta_hat_lm))

##
FALSE TRUE
428 16894

all.equal(fitted(fit.train), y.train)

[1] TRUE

residuals(fit.train) # y_actual - y_predicted

[1] 0
[38] 0
[75] 0
[112] 0
[149] 0
[186] 0
[223] 0
[260] 0
[297] 0
[334] 0
[371] 0
[408] 0

Motivating Example 8 / 116 .

Multivariable Linear Regression on Testing Set
active_beta_ind <- which(!is.na(beta_hat_lm)) # which genes are active i.e. not NA
yhat.test <- X.test[,active_beta_ind] %*% beta_hat_lm[active_beta_ind] # predicted BRCA1 expression in test set
(mse.lm <- mean((yhat.test - y.test)^2)) # test set mean squared error

[1] 123.895

plot(yhat.test, y.test, ylab = "Actual BRCA1 expresion", xlab = "Predicted BRCA1 expression", pch = 19)
abline(a=0,b=1, col = "red", lwd = 3)

−30 −20 −10 0 10 20 30

−
3

−
2

−
1

0

Predicted BRCA1 expression

A
ct

ua
l B

R
C

A
1

ex
pr

es
io

n

Motivating Example 9 / 116 .

A fundamental picture for data science

ESL, Hastie et al. 2009
Motivating Example 10 / 116 .

Issue with Linear Regression on High-dimensional data?

Boulesteix et al., Human Genetics, 2019Motivating Example 11 / 116 .

High-dimensional data (n << p)

• Throughout the course, we will let
▶ n denote the number of independent sampling units (e.g., number of

patients)
▶ p denote the number of features recorded for each unit

• In high-dimensional data, p is large with respect to n
▶ This certainly includes the case where p > n
▶ However, the ideas we discuss in this course are also relevant to many

situations in which p < n; for example, if n = 100 and p = 80, we
probably don’t want to use ordinary least squares

Motivating Example 12 / 116 .

Motivating Example

Classical Methods

Betting on Sparsity

Lasso Regression

Optimality Conditions

Algorithms

Selecting the tuning parameter λ

Group Lasso

Generalizations of the Lasso

Classical Methods 13 / 116 .

Classical Methods

• A nice and powerful toolbox for analyzing the more traditional datasets where
the sample size (N) is far greater than the number of covariates (p):
▶ linear regression, logistic regression, LDA, QDA, glm,
▶ regression spline, smoothing spline, kernel smoothing, local smoothing,

GAM,
▶ Neural Network, SVM, Boosting, Random Forest, ...

Xn×p =



x11 x12 · · · x1p
x21 x12 · · · x1p
x31 x12 · · · x1p
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
xn1 x12 · · · xnp


Classical Methods 14 / 116 .

Classical Methods 15 / 116 .

Classical Linear Regression

Data: (x1, y1), . . . , (xn, yn) iid from

y = xTβ + ϵ

where E(ϵ|x) = 0, and dim(x) = p. To include an intercept, we can set
x1 ≡ 1. Using Matrix notation:

y = Xβ + ϵ

The least squares estimator

β̂LS = argmin
β

∥y− Xβ∥2

β̂LS = (XTX)−1XTy

• Question: How to find the important variables xj?

Classical Methods 16 / 116 .

Best-subset Selection (Beal et al. 1967, Biometrika)

Classical Methods 17 / 116 .

Which variables are important?

• An old Idea: try all possible subset models and pick the best one.
• Fit a subset of predictors to the linear regression model.
• Let S be the subset predictors, e.g., S = {x1, x3, x7}, and
RSS = (ŷ− y)2. Mallow’s Cp statistic is given by

Cp =
RSSS
σ2︸ ︷︷ ︸

model fit

+ 2|S|︸︷︷︸
model complexity

where |S| is the number of predictors in the set S
• We pick the model with the smallest Cp value.

Classical Methods 18 / 116 .

Remarks on Best Subset Selection

• Computing all possible subset models is a combinatorial optimization
problem (NP hard)

• Instability in the selection process (Breiman, 1996)
• UPDATE: There has been recent work (2016 to present) in the

statistics literature looking at efficient ways to solve this best-subset
selection problem
▶ Best Subset Selection via a Modern Optimization Lens

(https://arxiv.org/pdf/1507.03133.pdf)
▶ Fast Best Subset Selection: Coordinate Descent and Local Combinatorial

Optimization Algorithms
(https://arxiv.org/pdf/1803.01454.pdf)

▶ R package: https://github.com/hazimehh/L0Learn

Classical Methods 19 / 116 .

https://arxiv.org/pdf/1507.03133.pdf
https://arxiv.org/pdf/1803.01454.pdf
https://github.com/hazimehh/L0Learn

Ridge Regression (Hoerl & Kennard 1970, Technometrics)

• β̂ = argminβ ||y− Xβ||2 + λ||β||22

• ||β||22 =
∑p

j=1 β
2
j

• β̂Ridge = (X⊤X+ λI)−1X⊤y→ exact solution

• β̂LS = (X⊤X)−1X⊤y

• Let X⊤X = Ip×p

β̂j(Ridge) =
β̂j(LS)

1 + λ

Classical Methods 20 / 116 .

Least squares vs. Ridge

Classical Methods 21 / 116 .

Ridge Regression on TCGA Training Set
set.seed(101) # for reproducibility
sample <- sample.int(n = nrow(TCGA$X), size = floor(.80*nrow(TCGA$X)), replace = F) # 80% training / 20% testing
X.train <- TCGA$X[sample,]
X.test <- TCGA$X[-sample,]
y.train <- TCGA$y[sample]
y.test <- TCGA$y[-sample]

fit ridge regression on training
library(glmnet)
fit.ridge <- cv.glmnet(x = X.train, y = y.train, alpha = 0, nfolds = 5, intercept = FALSE)
beta_hat_ridge <- coef(fit.ridge)
any(is.na(beta_hat_ridge))

[1] FALSE

plot(predict(fit.ridge, newx = X.train), y.train, ylab = "Actual BRCA1 expresion",
xlab = "Predicted BRCA1 expression", pch = 19)

abline(a=0,b=1, col = "red", lwd = 3)

−2.0 −1.5 −1.0 −0.5

−
4

−
3

−
2

−
1

0

Predicted BRCA1 expression

A
ct

ua
l B

R
C

A
1

ex
pr

es
io

n

Classical Methods 22 / 116 .

Ridge Regression on TCGA Testing Set

yhat.test <- predict(fit.ridge, newx = X.test)
(mse.ridge <- mean((yhat.test - y.test)^2)) # test set mean squared error

[1] 0.302211

mse.lm

[1] 123.895

plot(yhat.test, y.test, ylab = "Actual BRCA1 expresion", xlab = "Predicted BRCA1 expression", pch = 19)
abline(a=0,b=1, col = "red", lwd = 3)

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0

−
3

−
2

−
1

0

Predicted BRCA1 expression

A
ct

ua
l B

R
C

A
1

ex
pr

es
io

n

Classical Methods 23 / 116 .

Estimated Regression Coefficients β̂

plot(beta_hat_ridge, pch = 19, ylab = "Estimated beta coefficients by Ridge Regression", xlab = "beta index")

0 5000 10000 15000

−
0.

00
1

0.
00

0
0.

00
1

0.
00

2

beta index

E
st

im
at

ed
 b

et
a

co
ef

fic
ie

nt
s

by
 R

id
ge

 R
eg

re
ss

io
n

Classical Methods 24 / 116 .

Estimated Regression Coefficients β̂

plot(beta_hat_ridge, pch = 19, ylab = "Estimated beta coefficients", xlab = "beta index",
ylim = range(beta_hat_lm, na.rm = TRUE))

points(beta_hat_lm, pch = 19, col = "red")
legend("topright", legend = c("ridge","lm"), col = 1:2, pch = 19)

0 5000 10000 15000

−
6

−
4

−
2

0
2

4
6

beta index

E
st

im
at

ed
 b

et
a

co
ef

fic
ie

nt
s

ridge
lm

Classical Methods 25 / 116 .

Ridge Regression for Multi-Collinearity

set.seed(1234)
x1 <- rnorm(20)
x2 <- rnorm(20, mean=x1, sd=.01)
cor(x1,x2)

[1] 0.9999717

y <- rnorm(20, mean=3+x1+x2) # true betas are 3, 1 and 1
(fit <- lm(y ~ x1 + x2))

##
Call:
lm(formula = y ~ x1 + x2)
##
Coefficients:
(Intercept) x1 x2
2.169 50.386 -48.784

sum(coef(fit)[-1])

[1] 1.602687

• The strong correlation between results in extremely biased estimates
of the regression parameters when using linear regression

Classical Methods 26 / 116 .

Ridge Regression for Multi-Collinearity

set.seed(1234)
x1 <- rnorm(20)
x2 <- rnorm(20, mean=x1, sd=.01)
cor(x1,x2)

[1] 0.9999717

y <- rnorm(20, mean=3+x1+x2) # true betas are 3, 1 and 1
ridge.fit <- cv.glmnet(x = cbind(x1,x2), y = y, alpha = 0)
coef(ridge.fit)

3 x 1 sparse Matrix of class "dgCMatrix"
1
(Intercept) 2.3719161
x1 0.6390786
x2 0.6362313

• When we introduce the added assumption that small coefficients are
more likely than large ones by using a ridge penalty, however, this
uncertainty is resolved

Classical Methods 27 / 116 .

Correlations in High-Dimensional Data

https://arxiv.org/abs/0910.1122
Classical Methods 28 / 116 .

https://arxiv.org/abs/0910.1122

Remarks about Ridge Regression

• The major limitation of ridge regression is the fact that all of its
coefficients are nonzero

• This poses two considerable problems for high-dimensional
regression:
▶ Solutions become very difficult to interpret
▶ The computational burden becomes large

• It is desirable, then, to have models which allow for both shrinkage
and selection; in other words, to retain the benefits of ridge regression
while at the same time selecting a subset of important variables

Classical Methods 29 / 116 .

Motivating Example

Classical Methods

Betting on Sparsity

Lasso Regression

Optimality Conditions

Algorithms

Selecting the tuning parameter λ

Group Lasso

Generalizations of the Lasso

Betting on Sparsity 30 / 116 .

Bet on Sparsity Principle

YY X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14
X15

X16
X17

X18X19X20X21X22X23X24
X25

X26

X27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X40

X41

X42

X43

X44

X45

X46

X47

X48
X49

X50 X51 X52 X53 X54 X55 X56
X57

X58
X59

X60

X61

X62

X63

X64

X65

X66

X67

X68

X69

X70

X71

X72

Betting on Sparsity 31 / 116 .

Bet on Sparsity Principle

Use a procedure that does well in sparse problems, since
no procedure does well in dense problems.1

• We often don’t have enough data to estimate so many parameters

• Even when we do, we might want to identify a relatively small
number of predictors (k < N) that play an important role

• Faster computation, easier to understand, and stable predictions on
new datasets.

1The elements of statistical learning. Springer series in statistics, 2001.
Betting on Sparsity 32 / 116 .

How would you schedule a meeting of 20 people?

Betting on Sparsity 33 / 116 .

Doctors Bet on Sparsity Also

Betting on Sparsity 34 / 116 .

Motivating Example

Classical Methods

Betting on Sparsity

Lasso Regression

Optimality Conditions

Algorithms

Selecting the tuning parameter λ

Group Lasso

Generalizations of the Lasso

Lasso Regression 35 / 116 .

Lasso Regression on TCGA Training Set
set.seed(101) # for reproducibility
sample <- sample.int(n = nrow(TCGA$X), size = floor(.80*nrow(TCGA$X)), replace = F) # 80% training / 20% testing
X.train <- TCGA$X[sample,]
X.test <- TCGA$X[-sample,]
y.train <- TCGA$y[sample]
y.test <- TCGA$y[-sample]

fit ridge regression on training
library(glmnet)
fit.lasso <- cv.glmnet(x = X.train, y = y.train, alpha = 1, nfolds = 5, intercept = FALSE)
beta_hat_lasso <- coef(fit.lasso)
plot(predict(fit.lasso, newx = X.train), y.train, ylab = "Actual BRCA1 expresion",
xlab = "Predicted BRCA1 expression by lasso", pch = 19)
abline(a=0,b=1, col = "red", lwd = 3)

−2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6

−
4

−
3

−
2

−
1

0

Predicted BRCA1 expression by lasso

A
ct

ua
l B

R
C

A
1

ex
pr

es
io

n

Lasso Regression 36 / 116 .

Lasso Regression on TCGA Testing Set

yhat.test <- predict(fit.lasso, newx = X.test)
(mse.lasso <- mean((yhat.test - y.test)^2)) # test set mean squared error

[1] 0.3095205

mse.ridge ; mse.lm

[1] 0.302211
[1] 123.895

plot(yhat.test, y.test, ylab = "Actual BRCA1 expresion", xlab = "Predicted BRCA1 expression", pch = 19)
abline(a=0,b=1, col = "red", lwd = 3)

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0

−
3

−
2

−
1

0

Predicted BRCA1 expression

A
ct

ua
l B

R
C

A
1

ex
pr

es
io

n

Lasso Regression 37 / 116 .

Estimated Regression Coefficients β̂

plot(beta_hat_lasso, pch = 19, ylab = "Estimated beta coefficients by Lasso Regression", xlab = "beta index")

0 5000 10000 15000

0.
00

0.
05

0.
10

0.
15

0.
20

beta index

E
st

im
at

ed
 b

et
a

co
ef

fic
ie

nt
s

by
 L

as
so

 R
eg

re
ss

io
n

Lasso Regression 38 / 116 .

Estimated Regression Coefficients β̂

plot(beta_hat_lasso, pch = 19, ylab = "Estimated beta coefficients", xlab = "beta index",
ylim = range(beta_hat_lm, na.rm = TRUE), col = "blue")
points(beta_hat_ridge, pch = 19, col = "black")
points(beta_hat_lm, pch = 19, col = "red")
legend("topright", legend = c("lasso","ridge","lm"),

col = c("blue","black","red"), pch = 19)

0 5000 10000 15000

−
6

−
4

−
2

0
2

4
6

beta index

E
st

im
at

ed
 b

et
a

co
ef

fic
ie

nt
s

lasso
ridge
lm

Lasso Regression 39 / 116 .

laSSo: Shrinkage and Selection

• Its name captures the essence of what the lasso penalty accomplishes
▶ Shrinkage: Like ridge regression, the lasso penalizes large regression

coefficients and shrinks estimates towards zero
▶ Selection: Unlike ridge regression, the lasso produces sparse solutions:

some coefficient estimates are exactly zero, effectively removing those
predictors from the model

• Sparsity has two very attractive properties
▶ Speed: Algorithms which take advantage of sparsity can scale up very

efficiently, offering considerable computational advantages
▶ Interpretability: In models with hundreds or thousands of predictors,

sparsity offers a helpful simplification of the model by allowing us to
focus only on the predictors with nonzero coefficient estimates

Lasso Regression 40 / 116 .

Bridge regression (Frank and Friedman, 1993)

min
β

1

2
∥y− Xβ∥2 + λ∥β∥q 0 ≤ q ≤ 2.

Its constrained formulation

min
β

1

2
∥y− Xβ∥2

subject to ∥β∥q =
p∑

j=1

|βj|q ≤ s

Lasso Regression 41 / 116 .

Bridge regression (Frank and Friedman, 1993)

Contours of equal value for the Lq penalty for difference values of q. For
q < 1, the constraint region is nonconvex.

• q = 0, ∥β∥0 =
∑p

j=1 |βj|0 =
∑p

j=1 I(βj ̸= 0)

• q = 1, ∥β∥1 =
∑p

j=1 |βj| convex

Lasso Regression 42 / 116 .

Background on the Lasso

• Predictors xij, j = 1, . . . , p and outcome values yi for the ith
observation, i = 1, . . . , n

• Assume xij are standardized so that
∑

i xij/n = 0 and
∑

i x
2
ij = 1. The

lasso1 solves

β̂
lasso

= argmin
β

1

2

n∑
i=1

(
yi −

p∑
j=1

xijβj

)2

subject to
p∑

j=1

|βj| ≤ s, s > 0

• Equivalently, the Lagrange version of the problem, for λ > 0

β̂
lasso

= argmin
β

1

2

n∑
i=1

(
yi −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

|βj|

1Tibshirani. JRSSB (1996)
Lasso Regression 43 / 116 .

Inspection of the Lasso Solution

• Consider a single predictor setting based on the observed data
{(xi, yi)}ni=1. The problem then is to solve

β̂lasso = argmin
β

1

2

n∑
i=1

(yi − xiβ)
2
+ λ|β| (1)

• With a standardized predictor, the lasso solution (1) is a
soft-thresholded version of the least-squares (LS) estimate β̂LS

β̂lasso = Sλ
(
β̂LS
)
= sign

(
β̂LS
)(

|β̂LS| − λ
)
+

=


β̂LS − λ, β̂LS > λ

0 |β̂LS| ≤ λ

β̂LS + λ β̂LS ≤ −λ

Lasso Regression 44 / 116 .

Inspection of the Lasso Solution

• When the data are standardized, the lasso solution shrinks the LS
estimate toward zero by the amount λ

1Hastie et al. Statistical learning with sparsity: the lasso and generalizations
Lasso Regression 45 / 116 .

Why the ℓ1 norm?

• For q ≥ 0, evaluate the criteria

β̃ = argmin
β


n∑

i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

|βj|q


• Why do we use the ℓ1 and not q = 2 (Ridge) or any other norm ℓq?

• q = 1 is the smallest value which gives sparse solutions AND is
convex→ scales well to high-dimensions

• For q < 1 the constrained region is not-convex

Lasso Regression 46 / 116 .

Least-squares regression surface
• Consider the following model with two predictors (y is centered)

y = β1x1 + β2x2 + ε

β1

β2

− (Y−Xβ̂)2

−5000

−4000

−3000

−2000

−1000

0

Lasso Regression 47 / 116 .

code to generate previous plot

pacman::p_load(viridis,fields,lattice,latex2exp,plotrix)

set.seed(12345)
b0 <- 0
b1 <- 1
b2 <- 2
X <- cbind(1,replicate(2, rnorm(100)))
y <- X %*% matrix(c(b0,b1,b2)) + sqrt(2)*rnorm(100)

Define function for RSS
MyRss <- function(beta0, beta1) {
b <- c(0, beta0, beta1)
rss <- crossprod(y - X %*% b)
return(rss)
}

b0 <- seq(-3, 4, by=0.1)
b1 <- seq(-3, 4, by = 0.1)
z <- outer(b0, b1, function(x,y) mapply(MyRss, x, y))

wireframe(-z,drape = TRUE, colorkey = TRUE, screen = list(z = 20, x = -70, y = 3),
xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
zlab = TeX("$-(Y-X\\hat{\\beta})^2$"), col.regions = viridis::inferno(100))

Lasso Regression 48 / 116 .

Contours of the least-squares regression surface

β1

β2

− (Y−Xβ̂)2

−5000

−4000

−3000

−2000

−1000

0

−3 −2 −1 0 1 2 3 4
−

3
−

2
−

1
0

1
2

3
4

β1

β 2

−5000

−4000

−3000

−2000

−1000

 −4500

 −4000
 −3500

 −3000 −3000
 −2500

 −2000

 −1500

 −1500

 −1000

 −500

Lasso Regression 49 / 116 .

code to generate previous plot

pacman::p_load(viridis,fields,lattice,latex2exp,plotrix)

set.seed(12345)
b0 <- 0
b1 <- 1
b2 <- 2
X <- cbind(1,replicate(2, rnorm(100)))
y <- X %*% matrix(c(b0,b1,b2)) + sqrt(2)*rnorm(100)

Define function for RSS
MyRss <- function(beta0, beta1) {
b <- c(0, beta0, beta1)
rss <- crossprod(y - X %*% b)
return(rss)
}

b0 <- seq(-3, 4, by=0.1)
b1 <- seq(-3, 4, by = 0.1)
z <- outer(b0, b1, function(x,y) mapply(MyRss, x, y))

fields::image.plot(x = b0, y = b1, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
col = viridis::inferno(100))
contour(x = b0, y = b1, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
nlevels = 10, add=TRUE)
abline(v = 0, lty=2)
abline(h = 0, lty=2)

Lasso Regression 50 / 116 .

Contours of the least-squares regression surface

β1

β2

− (Y−Xβ̂)2

−5000

−4000

−3000

−2000

−1000

0

−3 −2 −1 0 1 2 3 4
−

3
−

2
−

1
0

1
2

3
4

β1

β 2

−5000

−4000

−3000

−2000

−1000

 −4500

 −4000
 −3500

 −3000 −3000
 −2500

 −2000

 −1500

 −1500

 −1000

 −500

●

(β1
^ ,β2

^)MCO

Lasso Regression 51 / 116 .

Contours of the least-squares regression surface

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

4

β1

β 2

−5000

−4000

−3000

−2000

−1000

 −4500

 −4000
 −3500

 −3000 −3000
 −2500

 −2000

 −1500

 −1500

 −1000

 −500

●

(β1
^ ,β2

^)MCO

Lasso Regression 52 / 116 .

Constraint region of the lasso

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

4

β1

β 2

−5000

−4000

−3000

−2000

−1000

 −4500

 −4000
 −3500

 −3000 −3000
 −2500

 −2000

 −1500

 −1500

 −1000

 −500

●

(β1
^ ,β2

^)MCO

|β1|+|β2| ≤ 1

Lasso Regression 53 / 116 .

code to generate previous plot

fields::image.plot(x = b0, y = b1, z = -z,xlab = TeX("$\\beta_1$"),
ylab = TeX("$\\beta_2$"),
col = viridis::inferno(100))
contour(x = b0, y = b1, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
nlevels = 10, add=TRUE)
points(x = lm.fit(x = X, y = y)$coef[2], y = lm.fit(x = X, y = y)$coef[3],
pch = 19, cex=2, col = "red")
text(x = lm.fit(x = X, y = y)$coef[2]*1.2,
y = lm.fit(x = X, y = y)$coef[3]*0.80,
labels = TeX("$(\\hat{\\beta_1},\\hat{\\beta_2})_{LS}$"),
cex = 2)
abline(v = 0)
abline(h = 0)

conditions <- function(x,y) {
c1 <- (abs(x) + abs(y)) <= 1
return(c1)}

zz <- expand.grid(x=b0,y=b1)
zz <- zz[conditions(zzx,zzy),]

polygon(c(zz$x[which.min(zz$x)],zz$x[which.max(zz$y)],
zz$x[which.max(zz$x)], zz$x[which.min(zz$y)]),
c(zz$y[which.min(zz$x)],zz$y[which.max(zz$y)],
zz$y[which.max(zz$x)], zz$y[which.min(zz$y)]),
col = "grey")
text(x = 0, y= 0,
labels = TeX("$|\\beta_1|+|\\beta_2| \\leq 1$"), cex = 2)

Lasso Regression 54 / 116 .

Constraint region of the ridge

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

4

β1

β 2

−5000

−4000

−3000

−2000

−1000

 −4500

 −4000
 −3500

 −3000 −3000
 −2500

 −2000

 −1500

 −1500

 −1000

 −500

●

(β1
^ ,β2

^)MCO

β1
2 + β2

2 ≤ 12

Lasso Regression 55 / 116 .

code to generate previous plot

fields::image.plot(x = b0, y = b1, z = -z,xlab = TeX("$\\beta_1$"),
ylab = TeX("$\\beta_2$"),
col = viridis::inferno(100))
contour(x = b0, y = b1, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
nlevels = 10, add=TRUE)
points(x = lm.fit(x = X, y = y)$coef[2], y = lm.fit(x = X, y = y)$coef[3],
pch = 19, cex=2, col = "red")
text(x = lm.fit(x = X, y = y)$coef[2]*1.2,
y = lm.fit(x = X, y = y)$coef[3]*0.80,
labels = TeX("$(\\hat{\\beta_1},\\hat{\\beta_2})_{LS}$"), cex = 2)
abline(v = 0)
abline(h = 0)

beta2 <- function(x,r=1) {
y <- sqrt(r^2 - x^2)
return(y)}

xseq <- seq(-1,1, length.out = 100)
polygon(cbind(c(xseq, rev(xseq)),c(beta2(x=xseq), -beta2(x=xseq))), col = "grey")
text(x = 0, y= 0,
labels = TeX("$\\beta_1^2+\\beta_2^2 \\leq 1^2$"), cex = 2)

Lasso Regression 56 / 116 .

Lasso vs. ridge

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

4

β1

β 2

−5000

−4000

−3000

−2000

−1000

 −4500

 −4000
 −3500

 −3000 −3000
 −2500

 −2000

 −1500

 −1500

 −1000

 −500

●

(β1
^ ,β2

^)MCO

|β1|+|β2| ≤ 1

Figure: lasso

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

4

β1
β 2

−5000

−4000

−3000

−2000

−1000

 −4500

 −4000
 −3500

 −3000 −3000
 −2500

 −2000

 −1500

 −1500

 −1000

 −500

●

(β1
^ ,β2

^)MCO

β1
2 + β2

2 ≤ 12

Figure: ridge

Lasso Regression 57 / 116 .

Classic version of the previous figure

Elements of Statistical Learning
Lasso Regression 58 / 116 .

Motivating Example

Classical Methods

Betting on Sparsity

Lasso Regression

Optimality Conditions

Algorithms

Selecting the tuning parameter λ

Group Lasso

Generalizations of the Lasso

Optimality Conditions 59 / 116 .

Score functions and penalized score functions

• In classical statistical theory, the derivative of the log-likelihood
function L(θ) is called the score function, and maximum likelihood
estimators are found by setting this derivative equal to zero, thus
yielding the likelihood equations (or score equations):

0 =
∂

∂θ
L(θ)

• Extending this idea to penalized likelihoods involves taking the
derivatives of objective functions of the form:

Q(θ) = L(θ)︸︷︷︸
likelihood

+ P(θ)︸︷︷︸
penalty

yielding the penalized score function

Optimality Conditions 60 / 116 .

Ridge vs. Lasso penalty

β

P
(β

)

Lasso Ridge

Optimality Conditions 61 / 116 .

Penalized likelihood equations

• For ridge regression, the penalized likelihood is everywhere differentiable,
and the extension to penalized score equations is straightforward

β̂
ridge

= argmin
β

1

2
||y− Xβ||22 + λ||β||22

• For the lasso, the penalized likelihood is not differentiable - specifically, not
differentiable at zero - and subdifferentials are needed to characterize them

β̂
lasso

= argmin
β

Q(θ) = argmin
β

1

2
||y− Xβ||22 + λ||β||1

• Letting ∂Q(θ) denote the subdifferential of Q, penalized likelihood equations
are:

0 ∈ ∂Q(θ)

http://myweb.uiowa.edu/pbreheny/7240/s19/notes/2-13.pdf
Optimality Conditions 62 / 116 .

http://myweb.uiowa.edu/pbreheny/7240/s19/notes/2-13.pdf

Karush-Kuhn-Tucker (KKT) Conditions

• In the optimization literature, the resulting equations are known as
the Karush-Kuhn-Tucker (KKT) conditions

• For convex optimization problems such as the lasso, the KKT
conditions are both necessary and sufficient to characterize the
solution

• The idea is simple: to solve for β̂
lasso

, we simply replace the derivative
with the subderivative and the likelihood with the penalized likelihood

Optimality Conditions 63 / 116 .

Subdifferential for |x|

The subdifferential for f(x) = |x| is:

∂|x| =

 −1 if x < 0
[−1, 1] if x = 0
1 if x > 0

Optimality Conditions 64 / 116 .

KKT conditions for the lasso
•

β̂
lasso

= argmin
β

Q(θ) = argmin
β

1

2
||y− Xβ||22 + λ||β||1

• Result: β̂
lasso

minimizes the lasso objective function if and only if it
satisfies the KKT conditions:

1

n
x⊤j (y− Xβ̂) = λsign(β̂j) β̂j ̸= 0

1

n
|x⊤j (y− Xβ̂)| ≤ λ β̂j = 0

• In other words, the correlation between a predictor and the residuals,
x⊤j (y− Xβ̂)/n, must exceed a certain minimum threshold λ before it
is included in the model

• When this correlation is below λ, β̂j = 0

Optimality Conditions 65 / 116 .

Some remarks

• If we set
λ = λmax ≡ max

1≤j≤p

∣∣xTj y∣∣ /n
then β̂ = 0 satisfies the KKT conditions

• That is, for any λ ≥ λmax, we have β̂(λ) = 0

• On the other hand, if we set λ = 0, the KKT conditions are simple the
normal equations for OLS

1

n
x⊤j (y− Xβ̂) = 0 · sign(β̂j) β̂j ̸= 0

• Thus, the coefficient path for the lasso starts at λmax and continues
until λ = 0 if X is full rank; otherwise the solution will fail to be
unique for λ values below some point λmin

Optimality Conditions 66 / 116 .

Recall the Lasso Solution in the Orthonormal Design

• When the design matrix X is orthonormal, i.e., n−1X⊤X = I, the lasso
estimate is a soft-thresholded version of the least-squares (LS)
estimate β̂LS

β̂lasso = Sλ
(
β̂LS
)
= sign

(
β̂LS
)(

|β̂LS| − λ
)
+

=


β̂LS − λ, β̂LS > λ

0 |β̂LS| ≤ λ

β̂LS + λ β̂LS ≤ −λ

• where β̂LS = x⊤j y/n

Optimality Conditions 67 / 116 .

Probability that β̂j = 0

• With soft thresholding, it is clear that the lasso has a positive
probability of yielding an estimate of exactly 0 - in other words, of
producing a sparse solution

• Specifically, the probability of dropping xj from the model is
P
(∣∣βLS

j

∣∣ ≤ λ
)

• Under the assumption that ϵi
⊥⊥∼ N

(
0, σ2

)
, we have βLS

j ∼ N (β, σ2/n)
and

P
(
β̂j(λ) = 0

)
= Φ

(
λ− β

σ/
√
n

)
− Φ

(
−λ− β

σ/
√
n

)
where Φ is the Gaussian CDF

Optimality Conditions 68 / 116 .

Sampling Distribution
For σ = 1, n = 10, and λ = 1/2:

−2 −1 0 1 2

0.0

0.5

1.0

1.5

β̂

D
en

si
ty

β0 = 0

−2 −1 0 1 2

β̂

0

0.5

1

P
ro

ba
bi

lit
y

β0 = 1

Optimality Conditions 69 / 116 .

Why standard inference is invalid?

• This sampling distribution is very different from that of a classical
MLE:
▶ The distribution is mixed: a portion is continuously distributed, but

there is also a point mass at zero

▶ The continuous portion is not normally distributed

▶ The distribution is asymmetric (unless β = 0)

▶ The distribution is not centered at the true value of β

Optimality Conditions 70 / 116 .

Motivating Example

Classical Methods

Betting on Sparsity

Lasso Regression

Optimality Conditions

Algorithms

Selecting the tuning parameter λ

Group Lasso

Generalizations of the Lasso

Algorithms 71 / 116 .

Algorithms for the lasso

• The KKT conditions only allow us to check a solution

• They do not necessarily help us to find the solution in the first place

Algorithms 72 / 116 .

Coordinate descent1

• The idea behind coordinate descent is, simply, to optimize a target
function with respect to a single parameter at a time, iteratively
cycling through all parameters until convergence is reached

• Coordinate descent is particularly suitable for problems, like the lasso,
that have a simple closed form solution in a single dimension but lack
one in higher dimensions

1Fu (1998), Friedman et al. (2007), Wu and Lange (2008)
Algorithms 73 / 116 .

Coordinate descent

• Let us consider minimizing Q with respect to βj, while temporarily treating
the other regression coefficients β−j as fixed:

Q(βj|β−j) =
1

2n

n∑
i=1

yi −
∑
k̸=j

xijβk − xijβj

2

+ λ|βj|+ λ
∑
k ̸=j

|βk|

β̃j = argmin
βj

Q(βj|β−j) = Sλ(z̃j) =


z̃j − λ, z̃j > λ

0 |z̃j| ≤ λ

z̃j + λ z̃j < −λ

• r̃ij = yi −
∑

k̸=j xikβ̃k z̃j = n−1 ∑n
i=1 xij r̃ij

• {̃rij}ni=1 are the partial residuals with respect to the jth predictor, and z̃j OLS
estimator based on {̃rij, xij}ni=1

Algorithms 74 / 116 .

Convergence

• Numerical analysis of optimization problems of the form

Q(θ) = L(θ) + P(θ)

has shown that coordinate descent algorithms converge to a solution
of the penalized likelihood equations provided that:
▶ the function L(β) is differentiable and

▶ the penalty function Pλ(β) is separable→ Pλ(β) =
∑

j Pλ(βj)

• Lasso-penalized linear regression satisfies both of these criteria

Algorithms 75 / 116 .

Convergence

• Furthermore, because the lasso objective is a convex function, the

sequence of the objective functions
{
Q
(
β̃
(s)
)}

converges to the

global minimum

• However, because the lasso objective is not strictly convex, there may
be multiple solutions

• In such situations, coordinate descent will converge to one of those
solutions, but which solution it converges to is essentially arbitrary, as
it depends on the order of the features

Algorithms 76 / 116 .

Coordinate descent, pathwise optimization, warm starts

• We are typically interested in determining β̂
Lasso

for a range of values
of λ, thereby obtaining the coefficient path

• In applying the coordinate descent algorithm to determine the lasso
path, an efficient strategy is to compute solutions for decreasing
values of λ, starting at λmax = max1≤j≤p

∣∣xTj y∣∣ /n, the point at which
all coefficients are 0

• Warm starts → By continuing along a decreasing grid of λ values, we
can use the solutions β̂ (λk) as initial values when solving for β̂ (λk+1)

Algorithms 77 / 116 .

Motivating Example

Classical Methods

Betting on Sparsity

Lasso Regression

Optimality Conditions

Algorithms

Selecting the tuning parameter λ

Group Lasso

Generalizations of the Lasso

Selecting the tuning parameter λ 78 / 116 .

Sample Splitting

• As we have discussed, using the observed agreement between fitted
values and the data is too optimistic; we require independent data to
test predictive accuracy

• One solution we showed earlier, known as sample splitting, is to split
the data set into two fractions, a training set and test set, using one
portion to estimate β̂ (i.e., train the model) and the other to evaluate
how well Xtestβ̂ predicts the observations in the second portion (i.e.,
test the model)

• The problem with this solution is that we rarely have so much data
that we can freely part with half of it solely for the purpose of
choosing λ

Selecting the tuning parameter λ 79 / 116 .

Cross-Validation
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

l’échantillion complet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

O P Q R S T

E F G H

A B C D E F G H I J K L M N O P Q R S T U V W X Y ZA B C D

1

2

3

4

5

apprentissage

test

Selecting the tuning parameter λ 80 / 116 .

Cross-validation: Details

1. Specify a grid of regularization parameter values Λ = {λ1, . . . , λK}
2. Divide the data into V roughly equal parts D1, . . . ,DV

3. For each v = 1, . . . ,V, compute the lasso solution path using the
observations in {Du, u ̸= v}

4. For each λ ∈ Λ, compute the mean squared prediction error

MSPEv(λ) =
1

nv

∑
i∈Dv

{
yi − xTi β̂−v(λ)

}2

where nv is the number of observations in Dv, β̂−v are the estimated
regression coefficients trained on the observations in {Du, u ̸= v}, as
well as

CV(λ) =
1

V

V∑
v=1

MSPEv(λ)

Selecting the tuning parameter λ 81 / 116 .

Cross-validation: Details

1. λ̂ is taken to be the value that minimizes CV(λ) and β̂ ≡ β̂(λ̂) the
estimator of the regression coefficients

2. Note that
▶ MSPEv(λ) is the mean squared prediction error for the model based on

the training data {Du, u ̸= v} in predicting the response variables in Dv
▶ CV(λ) is an estimate of the expected mean squared prediction error

3. Regardless of the number of cross-validation folds, each observation
in the data appears exactly once in a test set

Selecting the tuning parameter λ 82 / 116 .

Lasso Solution Path on TCGA
set.seed(101) # for reproducibility
sample <- sample.int(n = nrow(TCGA$X), size = floor(.80*nrow(TCGA$X)), replace = F) # 80% training / 20% testing
X.train <- TCGA$X[sample,]
X.test <- TCGA$X[-sample,]
y.train <- TCGA$y[sample]
y.test <- TCGA$y[-sample]

fit ridge regression on training
library(glmnet)
cvfit <- cv.glmnet(x = X.train, y = y.train, alpha = 1, nfolds = 5, intercept = FALSE)
fit <- cvfit$glmnet.fit
plot(fit, xvar = "lambda", label = TRUE)
abline(v = log(cvfit$lambda.min), lty = 2)

−1 0 1 2 3

−
0.

1
0.

0
0.

1
0.

2

Log Lambda

C
oe

ffi
ci

en
ts

7 3 2 1 0

713

1743

2725

3105

3360

3756

4543

5407

6009

6614

6674

7719

9941

12726

134731368014296

15900

15953

16315

Selecting the tuning parameter λ 83 / 116 .

Lasso Cross-Validation on TCGA
plot(cvfit)

−1 0 1 2 3

0.
5

1.
0

1.
5

2.
0

2.
5

Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

16 12 9 5 6 4 4 3 3 2 2 3 2 1 1 1 1 1 1 1

Selecting the tuning parameter λ 84 / 116 .

Motivating Example

Classical Methods

Betting on Sparsity

Lasso Regression

Optimality Conditions

Algorithms

Selecting the tuning parameter λ

Group Lasso

Generalizations of the Lasso

Group Lasso 85 / 116 .

Motivating Dataset

ID

26107811

Response

41143472

Gene1

43999303

Gene2

20813194

Gene3

13473805

Gene4

32624496

Gene5

48700637

Gene6

11412128

29979549

580521810

−1.255

−0.339

−0.6

0.809

0.279

−0.421

−0.454

1.383

−2.29

2.289

1

1

1

1

2

2

2

2

1

1

2

2

2

2

2

2

2

2

2

2

0

0

1

0

0

0

0

1

0

0

0

2

1

1

0

1

0

1

0

1

0

0

0

0

0

0

0

1

0

1

1

1

1

2

0

1

2

0

1

1

Group Lasso 86 / 116 .

Groups of Predictors Affect the Response

ID

26107811

Response

41143472

Gene1

43999303

Gene2

20813194

Gene3

13473805

Gene4

32624496

Gene5

48700637

Gene6

11412128

29979549

580521810

−1.255

−0.339

−0.6

0.809

0.279

−0.421

−0.454

1.383

−2.29

2.289

1

1

1

1

2

2

2

2

1

1

2

2

2

2

2

2

2

2

2

2

0

0

1

0

0

0

0

1

0

0

0

2

1

1

0

1

0

1

0

1

0

0

0

0

0

0

0

1

0

1

1

1

1

2

0

1

2

0

1

1
Powered by TCPDF (www.tcpdf.org)

Group Lasso 87 / 116 .

Group lasso for Categorical variables and Basis expansions
Useful for groups of variables (factor with > 2 categories, Age, Age2).
Group lasso estimator is:

min
(β0,β)

1

2
∥y− β0 − Xβ∥22 + λ

K∑
k=1

√
pk∥β(k)∥2 pk − taille de group

linéaire

quadratique

solde d’une carte de crédit

age

poids

(a) Lasso

linéaire

quadratique

solde d’une carte de crédit

age

poids

(b) Groupe lasso

Group Lasso 88 / 116 .

Motivating Dataset: Gene Expression in Ovarian Cancer

• We now turn our attention to a second case study, involving gene
expression changes in ovarian cancer, which brings up some issues we
have not encountered previously

• The current standard treatment for ovarian cancer consists of surgery,
followed by either carboplatin and paclitaxel or carboplatin alone

• This approach, however, is not effective for all patients
• The goal of this study was to identify genes and pathways associated

with drug response
• To identify such genes, the investigators implanted ovarian cell lines

into adult mice and allowed the tumors to grow for 2 months, at
which point one of three treatments (carboplatin, carboplatin +
paclitaxel, or control) was administered to each mouse

• At various time points ranging from 0 to 14 days following the
initiation of treatment, the mice were sacrificed, at which point the
investigators measured the size of the tumor as well as gene
expression in the cancerous tissue

Group Lasso 89 / 116 .

Group Lasso on Ovarian Cancer Dataset
library(mcgillHDA)
library(grpreg)
data("ovarian") #help(ovarian)
dim(ovarian$X)

[1] 101 34694

X <- ovarian$X[,1:100] # take a subset of genes for compuational ease
groups <- rep(1:20,each=5) # put predictors into 20 non-overlapping groups
cvfit <- cv.grpreg(X=X,y=ovarian$y,group=groups, penalty = "grLasso", family = "gaussian")
plot(cvfit)

−3 −4 −5 −6 −7 −8

0.5

1.0

1.5

log(λ)

C
ro

ss
−

va
lid

at
io

n
er

ro
r

0 3 7 12 15 17 19 19 20 20 20 20 20 20 20 20 20
Groups selected

Group Lasso 90 / 116 .

Group Lasso on Ovarian Cancer Dataset

plot(cvfit$fit)

0.08 0.06 0.04 0.02 0.00

−4

−3

−2

−1

0

1

2

λ

β̂

summary(cvfit)

grLasso-penalized linear regression with n=101, p=100
At minimum cross-validation error (lambda=0.0286):

Nonzero coefficients: 65
Nonzero groups: 13
Cross-validation error of 0.16
Maximum R-squared: 0.04
Maximum signal-to-noise ratio: 0.04
Scale estimate (sigma) at lambda.min: 0.402

Group Lasso 91 / 116 .

Group Lasso on Ovarian Cancer Dataset
coef(cvfit)

(Intercept) 1-Dec 1-Mar 10-Mar 11-Mar
4.7150488015 -0.2364852512 -0.0240206564 0.0564242574 0.0515562538
2-Mar 3-Mar 4-Mar 5-Mar 6-Mar
0.2733450991 -0.0036730532 0.0373591631 0.0260141786 -0.0166263015
7-Mar 7A5 8-Mar 9-Mar A1BG
-0.0176897785 0.0085055976 -0.1608452850 0.0008361223 0.0569335160
A1CF A26C3 A2BP1 A2LD1 A2M
-0.1786026712 0.0000000000 0.0000000000 0.0000000000 0.0000000000
A2ML1 A3GALT2 A4GALT A4GNT AAA1
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
AAAS AACS AACSL AADAC AADACL1
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
AADACL2 AADACL3 AADACL4 AADAT AAGAB
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
AAK1 AAMP AANAT AARS AARS2
0.0000000000 0.1616359373 0.0522873498 -0.0926770214 0.1114519063
AARSD1 AASDH AASDHPPT AASS AATF
-0.0670354661 0.0000000000 0.0000000000 0.0000000000 0.0000000000
AATK ABAT ABCA1 ABCA10 ABCA11
0.0000000000 0.0250005051 -0.0014849154 0.0079381718 -0.0217100878
ABCA12 ABCA13 ABCA2 ABCA3 ABCA4
0.0078423325 0.0000000000 0.0000000000 0.0000000000 0.0000000000
ABCA5 ABCA6 ABCA7 ABCA8 ABCA9
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
ABCB1 ABCB10 ABCB11 ABCB4 ABCB5
0.0000000000 -0.0474704267 -0.1918117104 -0.0598936858 0.1235449097
ABCB6 ABCB7 ABCB8 ABCB9 ABCC1
0.0754368749 -0.0007046247 -0.0021167986 -0.0046599570 -0.0012858981
ABCC10 ABCC11 ABCC12 ABCC13 ABCC2
0.0030977484 -0.0064286966 -0.0174967520 -0.0176222671 0.0158219190
ABCC3 ABCC4 ABCC5 ABCC6 ABCC6P1
0.0012623373 -0.0302924552 -0.0238386431 0.4515607326 -0.1293526014
ABCC6P2 ABCC8 ABCC9 ABCD1 ABCD2
-0.0035310168 -0.0990251765 0.0171818366 -0.1404601554 -0.4270296644
ABCD3 ABCD4 ABCE1 ABCF1 ABCF2
-0.0028367857 -0.2881639310 -0.0853203051 0.0224865614 -0.2651333438
ABCF3 ABCG1 ABCG2 ABCG4 ABCG5
0.0559535546 -0.0620337993 -0.0320294920 0.1346346248 0.1698735868
ABCG8 ABHD1 ABHD10 ABHD11 ABHD12
0.0957806879 -0.0345494290 0.0145407777 0.0392470853 0.0018484127
ABHD12B
-0.1253246239

Group Lasso 92 / 116 .

Group Lasso Model

• Assume the predictors in X ∈ Rn×p belong to K non-overlapping groups
with pre-defined group membership and cardinality pk

• Let β(k) to denote the segment of β corresponding to group k
• We consider the group lasso penalized estimator

min
β

L(β|D) + λ
K∑

k=1

wk∥β(k)∥2, (2)

• where
L(β | D) = 1

2

[
Y− Ŷ

]⊤
W

[
Y− Ŷ

]
(3)

Ŷ =
∑p

j=1 βjXj, D is the working data {Y,X}, and Wn×n is an observation
weight matrix

Group Lasso 93 / 116 .

Groupwise Descent: Exploiting Sparsity Structure

Minimize the objective function

1

2

[
Y− Ŷ

]⊤
W

[
Y− Ŷ

]
+ λ

K∑
k=1

wk∥β(k)∥2

During each sub-iteration only optimize β(k). Set β(k′) = β̃
(k′)

for k′ ̸= k at their
current value.

1. Initialization: β̃

2. Cyclic groupwise descent: for k = 1, 2, . . . ,K, update β(k) by minimizing the
objective function

β̃
(k)

(new)← argmin
β(k)

L(β | D) + λwk∥β(k)∥2

3. Repeat (2) till convergence.

Group Lasso 94 / 116 .

Quadratic Majorization Condition

argmin
β(k)

1

2

[
Y− Ŷ

]⊤
W
[
Y− Ŷ

]
+ λ

K∑
k=1

wk∥β(k)∥2 (4)

• Unfortunately, there is no closed form solution to (4)
• However, the loss function L(β|D) satisfies the quadratic majorization

(QM) condition1, since there exists
▶ a p× p matrix H = X⊤WX, and
▶ ∇L(β|D) = −

(
Y− Ŷ

)⊤ WX
which may only depend on the data D, such that for all β,β∗,

L(β | D) ≤ L(β∗ | D) + (β − β∗)⊺∇L(β∗|D) + 1

2
(β − β∗)⊺H(β − β∗)

1Yang and Zou. Statistical Computing (2014)
Group Lasso 95 / 116 .

Generalized Coordinate Descent (GCD)

−3 −2 −1 0 1 2

7.
5

8.
0

8.
5

9.
0

9.
5

10
.0

10
.5

ob
je

ct
iv

e
fu

nc
tio

n

βj
(k)βj

(k+1)

F
Q1

Q2

Group Lasso 96 / 116 .

Groupwise Majorization Descent
• Update β in a groupwise fashion

β − β̃ = (0, . . . , 0︸ ︷︷ ︸
k−1

,β(k) − β̃
(k)

, 0, . . . , 0︸ ︷︷ ︸
K−k

)

• Only need to compute the majorization function on group level

L(β | D) ≤ L(β̃ | D)− (β(k) − β̃
(k)

)⊺U(k) +
1

2
γk(β

(k) − β̃
(k)

)⊺(β(k) − β̃
(k)

)

U(k) =
∂

∂β(k)
L(β | D) = −

(
Y− Ŷ

)⊤ WX(k)

H(k) =
∂2

∂β(k)∂β
⊤
(k)

L(β | D) = X⊤
(k)WX(k)

• γk = eigenmax(H(k))

• Update β̃
(k)

with a fast operation:

β̃
(k)

(new) =
1

γk

(
U(k) + γkβ̃

(k))(
1−

λwk

∥U(k) + γkβ̃
(k)∥2

)
+

Group Lasso 97 / 116 .

Lasso vs. Group Lasso
• Logistic regression with group lasso: n = 50, p = 6.
• Group lasso: specify (β1, β2, β3), (β4, β5, β6). Variable selection at the group level.
• Solution path: view β as function of λ.

-3.5 -3.0 -2.5 -2.0

-0
.4

-0
.2

0.
0

0.
2

Lasso

Log Lambda

C
oe
ffi
ci
en
ts

6 5 2 1

-3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

Group Lasso

Log Lambda

C
oe
ffi
ci
en
ts

Group Lasso 98 / 116 .

Motivating Example

Classical Methods

Betting on Sparsity

Lasso Regression

Optimality Conditions

Algorithms

Selecting the tuning parameter λ

Group Lasso

Generalizations of the Lasso

Generalizations of the Lasso 99 / 116 .

Generalizations of the Lasso Penalty

Generalized penalties arise in a wide variety of settings:
• Adaptive lasso: a lasso with the Oracle property.
• Elastic net: handle highly correlated features. e.g. genes.
• SCAD and MCP: non-convex penalties with the Oracle property.
• Multitask lasso: handle between-tasks sparsity while allowing

within-task sparsity.

Generalizations of the Lasso 100 / 116 .

Adaptive Lasso

The adaptive lasso estimator

β̂
alasso

= argmin
β

1

2
∥y− Xβ∥2 + λn

p∑
j=1

ŵj|βj|, (5)

where ŵj =
1

|β̂j|γ
for some γ > 0 and a

√
n-consistent estimator β̂j of βj.

• For Lasso, if an irrelevant variable is highly correlated with variables
in the true model, the lasso may fail to distinguish it from the true
variables even with large n.

• As n → ∞, the weights corresponding to insignificant variables tend
to infinity, while the weights corresponding to significant variables
converge to a finite constant.

• Zou (2006) showed that, under certain regularity conditions, the
adaptive lasso has the oracle property.

Generalizations of the Lasso 101 / 116 .

Adaptive Lasso: Gene Expression in Ovarian Cancer

• Our goal is to assess the relationship between gene expression and
tumor growth

• However, it is important to adjust for treatment group and time of
collection in analyzing these data, both of which have significant
effects on tumor size

• The lasso model is easily extended to allow for such an analysis

Generalizations of the Lasso 102 / 116 .

Coefficient-specific λ values

• Up to this point, we have kept λ the same across all variables, but all
of our derivations can be easily modified to allow variable j to have its
own regularization parameter, λj

• This is achieved via the penalty.factor argument in glmnet or
ncvreg

• This argument allows one to modify the penalty applied to individual
covariates through the use of a weighting factor: λj = λwj, where wj
is the multiplicative factor applied to term j

• The idea here is that wj scales the baseline regularization factor λ up
or down for certain covariates

• By assigning wj = 0 for the treatment group and time of collection
variables, we can include them in the model as unpenalized covariates

• The rationale for penalizing the gene expression variables is that we
expect most genes to have no effect on relative tumor volume, but it
does not make sense to extend that assumption to treatment group
and time of collection

Generalizations of the Lasso 103 / 116 .

Adaptive Lasso on Ovarian Cancer Dataset

library(mcgillHDA); library(ncvreg); library(splines)
data("ovarian")
sDay <- ns(ovarian$sData$Day, df=2)
X0 <- model.matrix(~ Treatment*sDay, ovarian$sData)[,-1]
multiplier <- rep(0:1, c(ncol(X0), ncol(ovarian$X)))
XX <- cbind(X0, ovarian$X)
cvfit <- cv.ncvreg(XX, ovarian$y, penalty.factor=multiplier, penalty='lasso')
plot(cvfit, type='rsq')

−2.0 −2.5 −3.0 −3.5 −4.0 −4.5 −5.0

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

log(λ)

 R
2

9 13 17 30 37 46 57 58 65 71 74 76 79 81 89
Variables selected

Generalizations of the Lasso 104 / 116 .

Adaptive Lasso on Ovarian Cancer Dataset

fit <- cvfit$fit
plot(fit, log=TRUE)

−2.0 −2.5 −3.0 −3.5 −4.0 −4.5 −5.0

−0.2

0.0

0.2

0.4

0.6

log(λ)

β̂

Generalizations of the Lasso 105 / 116 .

Unpenalized Covariates are always non-zero

matplot(t(coef(fit)[2:8,]), type="l")
abline(h=0)

0 20 40 60 80 100

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t(
co

ef
(f

it)
[2

:8
,]

)

Generalizations of the Lasso 106 / 116 .

Elastic Net

The elastic net (Zou and Hastie, 2005) solves the convex program

min
β

1

2
∥y− Xβ∥2 + λ

[
1

2
(1− α)∥β∥22 + α∥β∥1

]
where α ∈ [0, 1] is a parameter. The penalty applied to an individual
coefficient (disregarding the regularization weight λ > 0) is given by

1

2
(1− α)β2

j + α|βj|.

• The coefficients are selected approximately together in their groups.
• The coefficients approximately share their values equally.

Generalizations of the Lasso 107 / 116 .

An simulated example

• Two independent “hidden” factors z1 and z2

z1 ∼ U(0, 20), z2 ∼ U(0, 20)

• Generate the response vector y = z1 + 0.1 · z2 + N(0, 1)
• Suppose only observe predictors

x1 = z1 + ϵ1, x2 = z1 + ϵ2, x3 = z1 + ϵ3

x4 = z2 + ϵ4, x5 = z2 + ϵ5, x6 = z2 + ϵ6

• Fit the model on (X,y)
• An “oracle” would identify x1, x2 and x3 (the z1 group) as the most

important variables.

Generalizations of the Lasso 108 / 116 .

Simulation 1

Generalizations of the Lasso 109 / 116 .

Simulation 2

Generalizations of the Lasso 110 / 116 .

Hierarchical Group Lasso

(Jenatton, Mairal, Obozinski, and Bach 2010)

Generalizations of the Lasso 111 / 116 .

Multitask Lasso

Suppose that we have K regression tasks

Y(k) = X(k)β(k) + ϵ(k), k = 1, . . . ,K.

• The k-th task has nk observations for k = 1, . . . ,K

• Y(k) = (y(k)1 , . . . , y(k)nk)⊺, X(k)
j = (x(k)1j , . . . , x

(k)
nk j

)⊤

• X(k) = (X(k)
1 , . . . ,X(k)

p) be the nk × p design matrix for task k

• β(k) = (β
(k)
1 , · · · , β(k)

p)⊤ and βj = (β
(1)
j , · · · , β(K)

j)⊤

• find commonly shared relevant covariates and retains the ability to recover covariates
unique to individual data sources.

min
β

1

2

K∑
k=1

∥∥∥Y(k) − X(k)β(k)
∥∥∥2 + λPα(β),

Pα(β) =
p∑

j=1

wj
[
(1− α)||βj||q + α||βj||1

]

Generalizations of the Lasso 112 / 116 .

SCAD (Fan et Li, JASA, 2001), MCP (Zhang, Ann. Stat.,
2010)

Generalizations of the Lasso 113 / 116 .

Discussion

• Variable selection is an active area of research

• Few inference tools exist

• Robust software has been developed, but more scalable algorithms and
implementations are needed

Generalizations of the Lasso 114 / 116 .

References

• Fan, J. and Li, R., 2001. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American statistical Association, 96(456), pp.1348-1360.

• Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1), pp.267-288.

• Friedman, J., Hastie, T., Höfling, H. and Tibshirani, R., 2007. Pathwise coordinate optimization. The
annals of applied statistics, 1(2), pp.302-332.

• Buhlmann, P. & van de Geer, S. (2011), Statistics for High-Dimensional Data, Springer.
• Breheny, P. BIOS 7240 class notes (accessed March 15, 2019).
• Tibshirani, R. A Closer Look at Sparse Regression (accessed March 15, 2019).
• Gaillard, P. and Rudi, A. Introduction to Machine Learning (accessed March 15, 2019).
• Hastie, T., Tibshirani, R. & Friedman, J. (2009), The Elements of Statistical Learning; Data Mining,

Inference and Prediction, Springer. Second edition.
• Hastie, T., Tibshirani, R. & Wainwright, M. (2015), Statistical Learning with Sparsity: the Lasso and

Generalizations, Chapman & Hall.

Generalizations of the Lasso 115 / 116 .

http://myweb.uiowa.edu/pbreheny/7240/s19/notes.html
http://www.stat.cmu.edu/~larry/=sml/sparsity.pdf
https://www.di.ens.fr/appstat/spring-2019/

Session Info

R version 4.0.2 (2020-06-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Pop!_OS 20.10

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.10.so

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] mcgillHDA_0.1.0 hdrm_0.3.7 ncvreg_3.13.0 glmnet_4.1-1
[5] Matrix_1.2-18 knitr_1.33

loaded via a namespace (and not attached):
[1] lattice_0.20-41 codetools_0.2-16 gglasso_1.5 digest_0.6.27
[5] foreach_1.5.1 grid_4.0.2 pacman_0.5.1 magrittr_2.0.1
[9] evaluate_0.14 highr_0.9 stringi_1.6.2 grpreg_3.3.1

[13] splines_4.0.2 iterators_1.0.13 tools_4.0.2 stringr_1.4.0
[17] xfun_0.24 survival_3.2-3 compiler_4.0.2 shape_1.4.6

Generalizations of the Lasso 116 / 116 .

	Motivating Example
	Classical Methods
	Betting on Sparsity
	Lasso Regression
	Optimality Conditions
	Algorithms
	Selecting the tuning parameter
	Group Lasso
	Generalizations of the Lasso

