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Setting

This lecture concerns the analysis of data in which we are attempting
to predict a vector outcome y € R" using a number of explanatory
factors X = (X, X, X3, .. .,X;,) € R™P?, some of which may not be
particularly useful

Although the methods we will discuss can be used solely for
prediction (i.e., as a “black box”), I will adopt the perspective that we
would like the statistical methods to be interpretable and to explain
something about the relationship between the X and y

Regression models are an attractive framework for approaching
problems of this type, and the focus today will be on extending
classical regression modeling to deal with high-dimensional data
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High-dimensional data (n << p)
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Motivating Example: The Cancer Genome Atlas (TCGA)

® The response variable in our analysis is expression of BRCA1, the first
gene identified to increase the risk of early onset breast cancer

® In the dataset, expression measurements of 17,322 additional genes
from 536 patients are available (and measured on the log scale)

® Because BRCAL is likely to interact with many other genes, including

tumor suppressors and regulators of the cell division cycle, it is of
interest to find genes with expression levels related to that of BRCA1
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# install.packages("pacman™)

pacman: :p_load_gh('sahirbhatnagar/mcgillHDA')
library(mcgillHDA)

data(TCGA)

str (TCGA)

## List of 3

## $ X : num [1:536, 1:17322] -1.45 -2.3 -1.94 -2.1 -1.28 ..

## ..— attr(*, "dimnames")=List of 2

## .. ..$ : NULL

## .. ..$ : chr [1:17322] "15E1.2" "2'-PDE" "7A5" "A1BG" ...

# $y : num [1:536] -1.661 -1.388 -1.925 -1.656 -0.358 ..

## ¢ fData:'data.frame':""I17322 obs. of 2 variables

## ..$ chromosome: chr [1:17322] NA NA NA "19"

## ..$ gene_name : chr [1:17322] NA NA NA "alpha-1-B glycoprotein"

hist(TCGA$y, col = 'lightblue', main = "Gene expression for BRCA1")

Gene expression for BRCAL
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Multivariable Linear Regression on Training Set

set.seed(101) # for reproducibility
sample <- sample.int(n = nrow(TCGA$X), size = floor(.80+nrow(TCGA$X)), replace = F) # 807 training / 20/ testing
X.train <- TCGA$X[sample, ] ; dim(X.train)

## [1] 428 17322
X.test <- TCGA$X[-sample, ] ; dim(X.test)
## [1] 108 17322

y.train <- TCGA$y[sample]
y.test <- TCGA$y[-sample]

# fit linear regression on training
fit.train <- lm.fit(x = X.train, y = y.train)
beta_hat_lm <- coef(fit.train)
table(is.na(beta_hat_lm))

##
## FALSE TRUE
## 428 16894

all.equal(fitted(fit.train), y.train)
## [1] TRUE
residuals(fit.train) # y_actual - y_predicted

#  [1]
## [38]
##  [75]
## [112]
## [149]
## [186]
## [223]
## [260]
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Multivariable Linear Regression on Testlng Set

active_beta_ind <- which(!is.na(beta_hat_1m))

genes

* 0

yhat.test <- X.test[,active_beta_ind] %
(mse.lm <- mean((yhat.test - y.test)"2))

## [1] 123.895

plot(yhat.test, y.test,
abline(a=0,b=1, col = "red", lwd = 3)

beta_hat_lm[active_beta :md]

ylab = "Actual BRCA1 expresion", xlab

"Predicted BRCA1l expression", pch
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Motivating Example

Predicted BRCAL expression
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A fundamental picture for data science

High Bias
Low Variance

Prediction Error

/

Training Sample

Low Bias
High Var

Test Sample

iance

Low

Model Complexity

ESL, Hastie et al. 2009

Motivating Example
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Issue with Linear Regression on High-dimensional data?

a
Training data: ID. weight - age S
1 30 40 0
(n=2)
2 60 20 1
Model to fit: ‘ weight = Gy + [ - age + o -sex + €
By=40, B=1, B=0
—> Solutions: ; with € =0
Bo=0, B=2 B=2
b
8
- Training data
o8
E A sex =0 (m)
£ <O sex =1 (f)
58
é Model prediction:
] = Bp=40, =1, =0
X = =0, B1=2, =20 with:
Q ,-" ---- forsex = 0w forsex =1
0 10 20 30 40 50 60 70

Age (in years)
Motivating ExampBoulesteix et al., Human Genetics, 2019
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High-dimensional data (n << p)

® Throughout the course, we will let
» n denote the number of independent sampling units (e.g., number of
patients)
» pdenote the number of features recorded for each unit

® In high-dimensional data, p is large with respect to n
» This certainly includes the case where p > n
» However, the ideas we discuss in this course are also relevant to many
situations in which p < n; for example, if n = 100 and p = 80, we
probably don’t want to use ordinary least squares

Motivating Example
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Classical Methods

Classical Methods
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Classical Methods

® A nice and powerful toolbox for analyzing the more traditional datasets where
the sample size (N) is far greater than the number of covariates (p):

> linear regression, logistic regression, LDA, QDA, glm,
> regression spline, smoothing spline, kernel smoothing, local smoothing,

GAM,

» Neural Network, SVM, Boosting, Random Forest, ...

Xn><p =

ssical Methods

X11
X21
X31

Xnl

X12
X12
X12

X12

X1p
xlp
X1p
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Sepal.Length Sepal . Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2  setecsa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 ER 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
B 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
11 5.4 3.7 1.5 0.2 setosa
12 4.8 3.4 1.6 0.2 setosa
13 4.8 3.0 1.4 0.1 setosa
14 4.3 3.0 1.1 0.1 setosa

15 5.8 4.0 1.2 0.2 setosa
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Classical Linear Regression

Data: (x1, 1), - -, (Xp, yn) iid from
y=x'B+e

where E(e|x) = 0, and dim(x) = p. To include an intercept, we can set
x; = 1. Using Matrix notation:

y=XB+e

The least squares estimator
Brs = arg mﬁin ly —X8|I?

Brs = (XX)"'XTy

® Question: How to find the important variables x;?

ssical Methods 16/116 .



Best-subset Selection (Beal et al. 1967, Biometrika)

Predictor set model

None of x1x2x3 x4 E(Y) = o

x E(Y) = o+ fux

Xz E(Y) = Bo + Paxa

X3 E(Y) = Po + Paxs

x3 E(Y) = Bo + Paxa

X1 X2 E(Y) = o+ Prxr+ Paxz

X1 X3 E(Y) = o+ Pix1+ Paxz

X1 x4 E(Y) = Po+ frxi+ Paxs

X2 X3 E(Y) = Po + Paxat faxs

X3 X34 E(Y) = Po + Paxzt Paxs

x3 x4 E(Y) = Bo + Paxs+ Paxs
X1X2X3 E(Y) = o+ Buxr+ Poxzt faxs
X1 X2 X4 E(Y) = fo+ P+ Poxzt Paxs
X1 X3 X4 E(Y) = o+ Pixi+ Paxat Paxs
X2 X3 X4 E(Y) = o+ Baxat Paxat faxs
X1 X2 X3 X4 E(Y) = fo+ Prxr+ Bexzt Paxs+t Paxs
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Which variables are important?

An old Idea: try all possible subset models and pick the best one.

Fit a subset of predictors to the linear regression model.

Let S be the subset predictors, e.g., S = {x1, x3, x7 }, and
RSS = (3 — y)*. Mallow’s C, statistic is given by

RSSs

C,= Pon + 2|5
~—— .
model fit model complexity

where |S| is the number of predictors in the set S

We pick the model with the smallest C, value.

Classical Methods 18/116 .



Remarks on Best Subset Selection

® Computing all possible subset models is a combinatorial optimization
problem (NP hard)

® Instability in the selection process (Breiman, 1996)

® UPDATE: There has been recent work (2016 to present) in the
statistics literature looking at efficient ways to solve this best-subset
selection problem
> Best Subset Selection via a Modern Optimization Lens
(https://arxiv.org/pdf/1507.03133.pdf)
> Fast Best Subset Selection: Coordinate Descent and Local Combinatorial
Optimization Algorithms
(https://arxiv.org/pdf/1803.01454.pdf)
> R package: https://github.com/hazimehh/LOLearn

assical Methods
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Ridge Regression (Hoerl & Kennard 1970, Technometrics)

* 3 =argming|ly — X8||* + /|83

° 1813 = X7, 57

. ,@Ridge = (XTX + A\I)~'X Ty — exact solution
* Bs=(X"X)"XTy

° LetX'X =1,

B B /BJ(LS)
J(Ridge) — 14\

Classical Methods
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Least squares vs. Ridge

Ridge

Classical Methods

21/116 .



Ridge Regression on TCGA Training Set

set.seed(101) # fc ducibi y

sample <- sample.int(n = nrow(TCGA$X), size = floor(.80*nrow(TCGA$X)), replace = F) # 80/ trai
X.train <- TCGA$X[sample, ]

X.test <- TCGA$X[-sample, ]

y.train <- TCGA$y[sample

y.test <- TCGA$y[-sample

B
library(glmnet)

fit.ridge <- cv.glmnet(x = X.train, y = y.train, alpha = 0, nfolds = 5, intercept = FALSE)
beta_hat_ridge <- coef(fit.ridge)

any(is.na(beta_hat_ridge))

## [1] FALSE

plot(predict(fit.ridge, newx = X.train), y.train, ylab = "Actual BRCA1 expresion",
xlab = "Predicted BRCA1 expression", pch = 19)
abline(a=0,b=1, col = "red", lwd = 3)

Actual BRCAL expresion

-20 15 -10 -05

Predicied BRCAL expression
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Ridge Regression on TCGA Testing Set

yhat.test <- predict(fit.ridge, newx = X.test)
(mse.ridge <- mean((yhat.test - y.test)"2)) #

## [1] 0.302211
mse.lm
## [1] 123.895

plot(yhat.test, y.test, ylab = "Actual BRCA1 expresion", xlab = "Predicted BRCAl expression", pch = 19)
abline(a=0,b=1, col = "red", lwd = 3)

Actual BRCAL expresion

22 20  -18 -1  -14  -12  -10

Predicted BRCAL expression
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Estimated Regression Coefficients 3

plot(beta_hat_ridge, = 19, = "Estimated beta coefficients by Ridge Regression", = "beta index")
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Estimated Regression Coeflicients B

plot(beta_hat_ridge, pch = 19, ylab = "Estimated beta coefficients", xlab = "beta index",
ylim = range(beta_hat_lm, na.rm = TRUE))

points(beta_hat_lm, pch = 19, col = "red")

legend("topright", legend = c("ridge","lm"), col = 1:2, pch = 19

. ridge
) Im

Estimated beta coefficients
-2 0 2
L L L
L % UM NS ¢

T T
5000 10000 15000

beta index

Classical Methods 25/116 .



Ridge Regression for Multi-Collinearity

set.seed(1234)

x1 <- rnorm(20)

x2 <- rnorm(20, mean=x1, sd=.01)
cor(x1,x2)

## [1] 0.9999717

y <= rnorm(20, mean=3+x1+x2)

(fit <- Im(y ~ x1 + x2))

## Call:

## Im(formula = y ~ x1 + x2)

## Coefficients:

## (Intercept) x1 x2
## 2.169 50.386 -48.784

sum(coef (fit) [-1]1)

## [1] 1.602687

® The strong correlation between results in extremely biased estimates
of the regression parameters when using linear regression

Classical Methods 26/116 .



Ridge Regression for Multi-Collinearity

set.seed(1234)

x1 <- rnorm(20)

x2 <- rnorm(20, mean=x1, sd=.01)
cor(x1,x2)

## [1] 0.9999717
y <= rnorm(20, mean=3+x1+x2)
ridge.fit <- cv.glmnet(x = cbind(x1,x2), y = y, alpha = 0)

coef (ridge.fit)

## 3 x 1 sparse Matrix of class "dgCMatrix"

# 1
## (Intercept) 2.3719161
## x1 0.6390786
## x2 0.6362313

® When we introduce the added assumption that small coefficients are
more likely than large ones by using a ridge penalty, however, this
uncertainty is resolved

Classical Methods 27/116 .



Correlations in High-Dimensional Data

14 35
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Figure 1. Distributions (left panel) of the maximum absolute sample cor-
relation coefficient maxa< ;<) [corr(Zy, Z;)|, and distributions (right panel)
of the maximum absolute multiple correlation coefficient of Z; with 5 other
variables (max|g—5 [corr(Z1, ZLBs)|, where B is the regression coefficient
of Z; regressed on Zg, a subset of variables indexed by S and excluding Z7),
computed by the stepwise addition algorithm (the actual values are larger
than what are presented here), when n = 50, p = 1,000 (solid curve) and
p = 10,000 (dashed), based on 1,000 simulations.

https://arxiv.org/abs/0910.1122
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Remarks about Ridge Regression

® The major limitation of ridge regression is the fact that all of its
coefficients are nonzero
® This poses two considerable problems for high-dimensional
regression:
> Solutions become very difficult to interpret
» The computational burden becomes large
e It is desirable, then, to have models which allow for both shrinkage
and selection; in other words, to retain the benefits of ridge regression
while at the same time selecting a subset of important variables

assical Methods
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Betting on Sparsity
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Bet on Sparsity Principle

Use a procedure that does well in sparse problems, since
no procedure does well in dense problems.!
® We often don’t have enough data to estimate so many parameters

¢ Even when we do, we might want to identify a relatively small
number of predictors (k < N) that play an important role

® Faster computation, easier to understand, and stable predictions on
new datasets.

I The elements of statistical learning. Springer series in statistics, 2001.
Betting on Sparsity 32/116.



How would you schedule a meeting of 20 people?

GOOFM-  GOOFM-  BOOAM-  DOFM-  TOOFM-  TDOFM-  LDOFM- 100

M- 1DDFEN - 100 Fi-
11 participants B00FM B00FM 0FPM D0 PM D PM S0EPM «0EPW 00PN a00EN 800 P
JayZ v v J J v
Evan o
Crmar v v v v v
Caitln o v ¥, v
. v
v v 4 7
v v v v v v
o v v o o v v )
o o o o o
7 7
v v < v v
GO0 FM - GO0 FM - BOOAM - F00PM - 00PN - 100 PM- 100 PM -
BOOFM BOOFM 300FM Sl PN 0P 00 PM H0XPM
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Doctors Bet on Sparsity Also




Lasso Regression

Lasso Regression

116



Lasso Regression on TCGA Training Set

set.seed(101) roducibility

sample <- sample.int(n = nrow(TCGA$X), size = floor(.80*nrow(TCGA$X)), replace = F) # 80/
X.train <- TCGA$X[sample, ]

X.test <- TCGA$X[-sample, ]

y.train <- TCGA$y[sample

y.test <- TCGA$y[-sample

# fit ridge T

library(glmnet

fit.lasso <- cv.glmnet(x = X.train, y = y.train, alpha = 1, nfolds = 5, intercept = FALSE)
beta_hat_lasso <- coef(fit.lasso)

plot(predict(fit.lasso, newx = X.train), y.train, ylab = "Actual BRCA1 expresion",

xlab = "Predicted BRCA1 expression by lasso", pch = 19)

abline(a=0,b=1, col = "red", lwd = 3)

Actual BRCAL expresion

T T T T T T T T
20 <18 -16 -14 -12  -10 -08 -0

Predicted BRCAL expression by lasso
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Lasso Regression on TCGA Testing Set

yhat.test <- predict(fit.lasso, newx = X.test)
(mse.lasso <- mean((yhat.test - y.test)"2)) #

v squared error
## [1] 0.3095205
mse.ridge ; mse.lm

## [1] 0.302211
## [1] 123.895

plot(yhat.test, y.test, ylab = "Actual BRCA1 expresion", xlab = "Predicted BRCA1 expression", pch = 19)
abline(a=0,b=1, col = "red", lwd = 3)

Actual BRCAL expresion

22  -20 <18 16  -14  -12  -10

Predicted BRCAL expression
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Estimated Regression Coefficients 3

plot(beta_hat_lasso, pch = 19, ylab = "Estimated beta coefficients by Lasso Regression", xlab = "beta index")
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Estimated Regression Coeflicients B

plot(beta_hat_lasso, pch = 19, ylab = "Estimated beta coefficients", xlab
ylim = range(beta_hat_lm, na.rm = TRUE), col = "blue")

points(beta_hat_ridge, pch = 19, col = "black")
points(beta_hat_lm, pch = 19, col = "red")

legend("topright", legend =
col = c("blue","black","red"), pch = 19)

Lasso Regression

Estimated beta coefficients

c("lasso","ridge","1m"),

"beta index",

-2 0 2
| | |
IR UV

3 o lasso
. o ridge
® Im
2
.
T T T T
0 5000 10000 15000
beta index
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laSSo: Shrinkage and Selection

® Jts name captures the essence of what the lasso penalty accomplishes

> Shrinkage: Like ridge regression, the lasso penalizes large regression
coefficients and shrinks estimates towards zero

» Selection: Unlike ridge regression, the lasso produces sparse solutions:
some coefficient estimates are exactly zero, effectively removing those
predictors from the model

® Sparsity has two very attractive properties
> Speed: Algorithms which take advantage of sparsity can scale up very
efficiently, offering considerable computational advantages
> Interpretability: In models with hundreds or thousands of predictors,
sparsity offers a helpful simplification of the model by allowing us to
focus only on the predictors with nonzero coefficient estimates

40/116 .+



Bridge regression (Frank and Friedman, 1993)

1
min ofly - XB|° +Al8ll,  0<g<2

Its constrained formulation
in - ly — XB|”
min = ||y —
5 2l

4
subject to [|Bllg =Y 87 <'s
j=1
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Bridge regression (Frank and Friedman, 1993)

F
-

Contours of equal value for the L, penalty for difference values of q. For
g < 1, the constraint region is nonconvex.

@
)

* q=0.[Bllo = 7 181° = X7 108 # 0)

* g=1,|BL = }1'7:1 |3 convex

42/116 .+



Background on the Lasso

® Predictors x;, j = 1, ..., p and outcome values y; for the ith
observation, i=1,...,n
* Assume x; are standardized so that ), x;/n = 0 and ), x; = 1. The

lasso! solves

Blusso . argﬁrnln 1 Z (yl Z xvﬂ]>

subject to Z 1Bi] <s, s>0

=1

® Equivalently, the Lagrange version of the problem, for A > 0

2

~lasso . 1 z P P

B g3~ (5 Yoma) 130
i=1 j=1 =1

I Tibshirani. JRSSB (1996)

asso Regression 43/116 .



Inspection of the Lasso Solution

® Consider a single predictor setting based on the observed data
{(xi, ¥)}7_;. The problem then is to solve

n

~ 1
lasso __ : 2
B = arggmn 3 i:E 1 (yi — x8)” + Al 1)

® With a standardized predictor, the lasso solution (1) is a
soft-thresholded version of the least-squares (LS) estimate 3%°

B\lasso =S, (BLS> = sign (BLS> (|BLS‘ - >\)+
BIS X\, BYS >\
=0 5] < A
B\LS + A\ B\LS < —A
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Lasso

Inspection of the Lasso Solution

® When the data are standardized, the lasso solution shrinks the LS
estimate toward zero by the amount A

B(lasso)

7 /100 Blols)

Hastie et al. Statistical learning with sparsity: the lasso and generalizations

Regression
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Why the /1 norm?

® For g > 0, evaluate the criteria

n

) 2 P
ﬂ:argﬁmin Z (yi—ﬁo —injﬁj) +)\Z|Bj|q
=1 =1

i=1

® Why do we use the /1 and not g = 2 (Ridge) or any other norm £,?

q= ¢=01

DO+ +

® g =1 is the smallest value which gives sparse solutions AND is
convex — scales well to high-dimensions

® For g < 1 the constrained region is not-convex

asso Regression 46/116 .



Least-squares regression surface

® Consider the following model with two predictors (y is centered)

y = Bix1 + Boxa2 + €

- (r-xpy

Lasso Regression
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code to generate previous plot

pacman: :p_load(viridis,fields,lattice,latex2exp,plotrix)

set.seed(12345)

b0 <- 0

bl <~ 1

b2 <- 2

X <- cbind(1,replicate(2, rnorm(100)))

y <= X %*% matrix(c(b0,b1,b2)) + sqrt(2)*rnorm(100)

# Define function for RSS

MyRss <- function(betal, betal) {
b <- c(0, beta0, betal)

rss <- crossprod(y - X %*% b)
return(rss)

b0 <- seq(-3, 4, by=0.1)
bl <- seq(-3, 4, by = 0.1)
z <- outer(b0, b1, function(x,y) mapply(MyRss, x, y))

wireframe(-z,drape = TRUE, colorkey = TRUE, screen = list(z = 20, x = =70, y = 3),

xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2§"),
zlab = TeX("$-(Y-X\\hat{\\beta})"2$"), col.regions = viridis::inferno(100))

Lasso Regression 48/116.



Contours of the least-squares regression surface
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code to generate previous plot

pacman: :p_load(viridis,fields,lattice,latex2exp,plotrix)

set.seed(12345)

b0 <- 0

bl <- 1

b2 <- 2

X <- cbind(1,replicate(2, rnorm(100)))

y <- X %*% matrix(c(b0,b1,b2)) + sqrt(2)*rnorm(100)

# Define function for RSS

MyRss <- function(betal, betal) {
b <- c(0, betal, betal)

rss <- crossprod(y - X %*% b)
return(rss)

b0 <- seq(-3, 4, by=0.1)
bl <- seq(-3, 4, by = 0.1)
z <- outer(b0, bl, function(x,y) mapply(MyRss, x, y))

fields::image.plot(x = b0, y = bl, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
col = viridis::inferno(100))

contour(x = b0, y = bl, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2§"),

nlevels = 10, add=TRUE)

abline(v = 0, 1lty=2)

abline(h = 0, 1lty=2)
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Contours of the least-squares regression surface
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Contours of the least-squares regression surface
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Constraint region of the lasso
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code to generate previous plot

fields::image.plot(x = b0, y = bl, z = -z,xlab = TeX("$\\beta_1$"),

ylab = TeX("$\\beta_2§"),

col = viridis::inferno(100))

contour(x = b0, y = b1, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_2$"),
nlevels = 10, add=TRUE)

points(x = Im.fit(x = X, y = y)$coef[2], y = Im.fit(x = X, y = y)$coef[3],

pch = 19, cex=2, col = "red")

text(x = 1m.fit(x = X, y = y)$coef[2]*1.2,

y = 1m.fit(x = X, y = y)$coef [3]%0.80,

labels = TeX("$(\\hat{\\beta_1},\\hat{\\beta_2})_{LS}$"),

cex = 2)

abline(v = 0)
abline(h = 0)

conditions <- function(x,y) {
cl <- (abs(x) + abs(y)) <=1
return(ci)}

2z <- expand.grid(x=b0,y=b1)
zz <- zz[conditions(zz$x,zz$y),]

polygon(c(zz$x [which.min(zz$x)],zz$x [which.max(zz$y)],
zz$x [which.max (zz$x)], zz$x[which.min(zz$y)]1),

c(zz$y [which.min(zz$x)],zz$y [wvhich.max(zz$y)],

zz$y [which.max(zz$x)], zz$y[which.min(zz$y)1),

col = "grey")

text(x = 0, y= 0,

labels = TeX("$|\\beta_1|+|\\beta_2| \\leq 1$"), cex = 2)
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Constraint region of the ridge
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code to generate previous plot

fields::image.plot(x = b0, y = bl, z = -z,xlab = TeX("$\\beta_1$"),

ylab = TeX("$\\beta_2§"),

col = viridis::inferno(100))

contour(x = b0, y = b1, z = -z,xlab = TeX("$\\beta_1$"), ylab = TeX("$\\beta_28"),
nlevels = 10, add=TRUE)

points(x = lm.fit(x = X, y = y)$coef[2], y = Im.fit(x = X, y = y)$coef[3],
pch = 19, cex=2, col = "red")

text(x = Im.fit(x = X, y = y)$coef[2]*1.2,

y = 1m.fit(x = X, y = y)$coef[3]1%0.80,

labels = TeX("$(\\hat{\\beta_1},\\hat{\\beta_2})_{LS}$"), cex = 2)
abline(v = 0)

abline(h = 0)

beta2 <- function(x,r=1) {
y <= sqrt(r"2 - x72)
return(y)}

xseq <- seq(-1,1, length.out = 100)

polygon(cbind(c(xseq, rev(xseq)),c(beta2(x=xseq), -beta2(x=xseq))), col = "grey")
text(x = 0, y= 0,

labels = TeX("$\\beta_1"2+\\beta_272 \\leq 1°2$"), cex = 2)
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Lasso vs. ridge
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Classic version of the previous figure

Elements of Statistical Learning
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Optimality Conditions
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Score functions and penalized score functions

In classical statistical theory, the derivative of the log-likelihood
function £(0) is called the score function, and maximum likelihood
estimators are found by setting this derivative equal to zero, thus
yielding the likelihood equations (or score equations):

0

O:%

L(0)

Extending this idea to penalized likelihoods involves taking the
derivatives of objective functions of the form:

Q(0) = L(6) + PO
~—~
likelihood  penalty

yielding the penalized score function

Optimality Condition:
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Ridge vs. Lasso penalty

—— Lasso —— Ridge

P(B)

Optimality Conditions
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Penalized likelihood equations

® For ridge regression, the penalized likelihood is everywhere differentiable,
and the extension to penalized score equations is straightforward

~ridge

1
B :arg,;nlngﬂy—xﬁﬂg+>\||f5||g

® For the lasso, the penalized likelihood is not differentiable - specifically, not
differentiable at zero - and subdifferentials are needed to characterize them

- lasso

. 1
B = arg;an(@) = arg min Slly = X8Iz + MBIl

® Letting Q(0) denote the subdifferential of Q, penalized likelihood equations
are:

0 € 9Q(6)

http://myweb.uiowa.edu/pbreheny/7240/s19/notes/2-13.pdf
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Karush-Kuhn-Tucker (KKT) Conditions

Optimality

In the optimization literature, the resulting equations are known as
the Karush-Kuhn-Tucker (KKT) conditions

For convex optimization problems such as the lasso, the KKT
conditions are both necessary and sufficient to characterize the
solution

~lasso
The idea is simple: to solve for 3, we simply replace the derivative
with the subderivative and the likelihood with the penalized likelihood
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Subdifferential for |x|

The subdifferential for f{x) = || is:

-1 ifx<O
x| = [-1,1] ifx=0
1 ifx>0
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KKT conditions for the lasso

~lasso

. 1
B = arg;an(H) = arg min Slly = X8Iz + Al1BIh

~lasso
® Result: 3  minimizes the lasso objective function if and only if it
satisfies the KKT conditions:

%Xj (y — XB) = Asign(B) Bi#0

1 ~
~[x/ (y = XB)| < A Bi=0

® In other words, the correlation between a predictor and the residuals,
X]T (y — XB3)/n, must exceed a certain minimum threshold X before it
is included in the model

® When this correlation is below A, B] =0

Optimality Condition:
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Some remarks

If we set
_ _ T
A= A = 1r2flg)(p‘xjy‘ /n

then E = 0 satisfies the KKT conditions
That is, for any A > Apax, we have 3()\) =0

On the other hand, if we set A\ = 0, the KKT conditions are simple the
normal equations for OLS

“xl ty —XB) = 0 sign(3) Bi#0

Thus, the coefficient path for the lasso starts at Ay, and continues
until A = 0 if X is full rank; otherwise the solution will fail to be
unique for A values below some point Ap,
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Recall the Lasso Solution in the Orthonormal Design

® When the design matrix X is orthonormal, i.e., n~1XTX =1, the lasso
estimate is a soft-thresholded version of the least-squares (LS)
estimate 315

* where 85 = x'y/n
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Probability that Bj =0

® With soft thresholding, it is clear that the lasso has a positive
probability of yielding an estimate of exactly 0 - in other words, of
producing a sparse solution

® Specifically, the probability of dropping x; from the model is
P (|95 <)

® Under the assumption that ; XN (0,0?), we have f* ~ N(8,0%/n)

-9+ () (GF)

where ® is the Gaussian CDF

Optimality Condition:
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Sampling Distribution
Foroc =1,n=10,and A = 1/2:
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Why standard inference is invalid?

® This sampling distribution is very different from that of a classical
MLE:

» The distribution is mixed: a portion is continuously distributed, but
there is also a point mass at zero

» The continuous portion is not normally distributed
» The distribution is asymmetric (unless 8 = 0)

» The distribution is not centered at the true value of (3
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Algorithms

Algorithms
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Algorithms for the lasso

® The KKT conditions only allow us to check a solution

® They do not necessarily help us to find the solution in the first place
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Coordinate descent?

® The idea behind coordinate descent is, simply, to optimize a target
function with respect to a single parameter at a time, iteratively
cycling through all parameters until convergence is reached

® Coordinate descent is particularly suitable for problems, like the lasso,
that have a simple closed form solution in a single dimension but lack
one in higher dimensions

1Fy (1998), Friedman et al. (2007), Wu and Lange (2008)
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Coordinate descent

® Let us consider minimizing Q with respect to /3;, while temporarily treating
the other regression coefficients 3_; as fixed:

2
n

Q(Bi1B_;) 12 Yi— Y xiBe— x| +ABI+AD B

T 2n¢ , .
i=1 k#j k#j

zZi— A > A

B =argminQ(B|B_)) = Sx(z) = { 0 7 < A
Pi Ej + A Ej < =X
® T = Yi— Dk X B L=n"t YL Xty

o {#;}1, are the partial residuals with respect to the j™ predictor, and z; OLS
estimator based on {Fy, x;} 11
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Convergence

® Numerical analysis of optimization problems of the form
Q(0) = L(6) + (0)

has shown that coordinate descent algorithms converge to a solution
of the penalized likelihood equations provided that:

» the function £(3) is differentiable and

> the penalty function Px () is separable — Px(83) = >_, Px(5))

® Lasso-penalized linear regression satisfies both of these criteria
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Convergence

® Furthermore, because the lasso objective is a convex function, the

sequence of the objective functions {Q (,3(5)> } converges to the

global minimum

® However, because the lasso objective is not strictly convex, there may
be multiple solutions

® In such situations, coordinate descent will converge to one of those

solutions, but which solution it converges to is essentially arbitrary, as
it depends on the order of the features
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Coordinate descent, pathwise optimization, warm starts

~L
® We are typically interested in determining 3 “ fora range of values

of )\, thereby obtaining the coefficient path

® In applying the coordinate descent algorithm to determine the lasso
path, an efficient strategy is to compute solutions for decreasing
values of A, starting at Apa = max;<j<p |ijy‘ /n, the point at which
all coefficients are 0

® Warm starts — By continuing along a decreasing grid of A values, we
can use the solutions 3 () as initial values when solving for 8 (A¢41)
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Selecting the tuning parameter A
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Sample Splitting

® As we have discussed, using the observed agreement between fitted
values and the data is too optimistic; we require independent data to
test predictive accuracy

® One solution we showed earlier, known as sample splitting, is to split
the data set into two fractions, a training set and test set, using one
portion to estimate @ (i.e., train the model) and the other to evaluate
how well Xtest,a predicts the observations in the second portion (i.e.,
test the model)

® The problem with this solution is that we rarely have so much data

that we can freely part with half of it solely for the purpose of
choosing A
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Cross-Validation

|ABCDEFGHIJKLMNOPQRSTUVWXYZ|
I’échantillion complet l

1 |ABCDEFGHIJKLMNOPQRST|UVWXYZ|

|ABCDEFGHIJKLMN|OPQRST|UVWXYZ|

N

w

|ABCDEFGHIJKLMNOPQRSTUVWXYZ|

N

|ABCD|EFGH|IJKLMNOPQRSTUVWXYZ|

|ABCD|EFGHIJKLMNOPQRSTUVWXYZ|

a

5
1
CV (o) = ¢ > MSE(e)
v=1
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Cross-validation: Details

1. Specify a grid of regularization parameter values A = {\1,..., Ag}
2. Divide the data into Vroughly equal parts Dy, ..., Dy

3. Foreach v=1,...,V, compute the lasso solution path using the
observations in {D,, u # v}

4. For each A € A, compute the mean squared prediction error

MSPE,(\) = ni > {yi - X?f?_v(k)}z

v ieD,

where n, is the number of observations in D,, 3_, are the estimated
regression coefficients trained on the observations in {D,, u # v}, as
well as

CV(\) = ‘l/ > MSPE,())
v=1

ing the tuning parameter A 81/116.



Cross-validation: Details

1. ) is taken to be the value that minimizes CV()\) and B= ,AB(S\) the
estimator of the regression coefficients

2. Note that
» MSPE, () is the mean squared prediction error for the model based on
the training data {Dy, u # v} in predicting the response variables in D,
> CV(]) is an estimate of the expected mean squared prediction error

3. Regardless of the number of cross-validation folds, each observation
in the data appears exactly once in a test set
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Lasso Solution Path on TCGA

set.seed(101) # for reproducibility

sample <- sample.int(n = nrow(TCGA$X), size = floor(.80*nrow(TCGA$X)), replace = F) # 807 training / 20} testing
X.train <- TCGA$X[sample, ]

X.test <- TCGA$X[-sample, ]

y.train <- TCGA$y[sample

y.test <- TCGA$y[-sample

# fit ridge regression on training
library(glmnet)

cvfit <- cv.glmnet(x = X.train, y = y.train, alpha = 1, nfolds = 5, intercept = FALSE)
fit <- cvfit$glmnet.fit

plot(fit, xvar = "lambda", label = TRUE)

abline(v = log(cvfit$lambda.min), 1ty = 2)

7 3 2 1 0
N
o
e
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- 3
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3 ]
g
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o
-
3
7

Log Lambda
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Lasso Cross-Validation on TCGA

plot(cvfit)

Selecting the tuning
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Motivating Dataset
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Groups of Predictors Affect the Response
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Group lasso for Categorical variables and Basis expansions

Useful for groups of variables (factor with > 2 categories, Age, Age?).

Group lasso estimator is:

(Bos) 2 purt

solde d’une carte de crédit

linéaire

quadratique

(a) Lasso

Group Lasso

||Y Bo —XB|5 + A Z VAlBYllz  pi— taille de group

solde d’une carte de crédit

linéaire

quadratique

(b) Groupe lasso
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Motivating Dataset: Gene Expression in Ovarian Cancer

We now turn our attention to a second case study, involving gene
expression changes in ovarian cancer, which brings up some issues we
have not encountered previously

The current standard treatment for ovarian cancer consists of surgery,
followed by either carboplatin and paclitaxel or carboplatin alone

This approach, however, is not effective for all patients

The goal of this study was to identify genes and pathways associated
with drug response

To identify such genes, the investigators implanted ovarian cell lines
into adult mice and allowed the tumors to grow for 2 months, at
which point one of three treatments (carboplatin, carboplatin +
paclitaxel, or control) was administered to each mouse

At various time points ranging from 0 to 14 days following the
initiation of treatment, the mice were sacrificed, at which point the
investigators measured the size of the tumor as well as gene
expression in the cancerous tissue
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Group Lasso on Ovarian Cancer Dataset

library (mcgillHDA)
library(grpreg)
data("ovarian") #help(ovarian)

dim(ovarian$X)

## [1] 101 34694

X <- ovarian$X[,1:100] # take a subset of gen.
groups <- rep(1:20,each=5) # put predictors into 20 non-overlapping groups
cvfit <- cv.grpreg(X=X,y=ovarian$y,group=groups, penalty = "grLasso", family = "gaussian")
plot(cvit)

Group Lasso
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Group Lasso on Ovarian Cancer Dataset

plot(cvfit$fit)

008 005 004 002 000

summary (cvfit)

## grlLasso-penalized linear regression with n=101, p=100

## At minimum cross-validation error (lambda=0.0286):

##
##
##
##
##
##
##

Group Lasso

Nonzero coefficients: 65

Nonzero groups: 13

Cross-validation error of 0.16

Maximum R-squared: 0.04

Maximum signal-to-noise ratio: 0.04

Scale estimate (sigma) at lambda.min: 0.402
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Group Lasso on Ovarian Cancer Dataset

coef (cvfit)
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Group Lasso Model

Assume the predictors in X € R"*? belong to K non-overlapping groups
with pre-defined group membership and cardinality px

Let By, to denote the segment of 3 corresponding to group k

We consider the group lasso penalized estimator

K
ngnL(,B|D) +/\Zwk||,3(k)||2v )
k=1
where 1 T
Up D)= [Y-¥] wv-¥] @

Y= >, B;X;, D is the working data {Y, X}, and W, is an observation
weight matrix
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Groupwise Descent: Exploiting Sparsity Structure

Minimize the objective function

_§]" _g - ()
[Y Y] W[Y Y]—f—)\;wkuﬂ ll2

1
2
’ ~ (K
During each sub-iteration only optimize 8. Set 3¥) = ,3< ) for k' # k at their
current value.

1. Initialization: ,B

2. Cyclic groupwise descent: for k= 1,2, ..., K, update 8 by minimizing the
objective function

=(k)

B (new) ¢ argmin L(3 | D) + Al |89 2
B

3. Repeat (2) till convergence.

Group Lasso
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Quadratic Majorization Condition

1 7 - X
argmin = [Y = Y| W[Y = Y] + A3 will 87 (4)
a2 k=1

® Unfortunately, there is no closed form solution to (4)

® However, the loss function L(3|D) satisfies the quadratic majorization
(OM) condition', since there exists

> apx pmatrix H= X' WX, and
> VL(BD) = — (Y- V) WX
which may only depend on the data D, such that for all 3, 3",

LB |D) < L(B" | D)+ (8- 8")VL(E'D) + 58— B)H(B - B")

Yang and Zou. Statistical Computing (2014)
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Generalized Coordinate Descent (GCD)

1 1 1 1

1

objective function
75 80 85 9.0 95 10.0 10t

1

L
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Groupwise Majorization Descent

® Update 3 in a groupwise fashion

/G_B:(O’vo’ﬁ(k)_é(k
N——r

® Only need to compute the majorization function on group level

LB |D) < L<B D)~ (8% — B TU0 4 (8 — 578"
U = 8 L(,B|D — (Y= 1) WX
H(k>—87L(ﬁ|D) Xy WX (i)

9B 1 9By

* i = eigenm (H®)

~(k
® Update B< ) with a fast operation:

,B(k) (new) = L (U(k) +7kﬁ(k)) (1 — >‘Wk~(k)>
. U0 + 487 |2

Group Lasso

-8

(k))
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Lasso vs. Group Lasso

® Togistic regression with group lasso: n = 50, p = 6.
® Group lasso: specify (81, 82, 33), (B4, Bs,B6). Variable selection at the group level.

® Solution path: view 3 as function of A.

5 5 Lasso 2 4 Group Lasso
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Generalizations of the Lasso Penalty

Generalized penalties arise in a wide variety of settings:
® Adaptive lasso: a lasso with the Oracle property.
¢ Elastic net: handle highly correlated features. e.g. genes.

® SCAD and MCP: non-convex penalties with the Oracle property.

Multitask lasso: handle between-tasks sparsity while allowing
within-task sparsity.
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Adaptive Lasso

The adaptive lasso estimator

~alasso 1 u

= argmin; ly — X0 +An;wjlﬂj\, (%)

1

EIE

® For Lasso, if an irrelevant variable is highly correlated with variables
in the true model, the lasso may fail to distinguish it from the true
variables even with large n.

where w; = for some v > 0 and a y/n-consistent estimator 3; of 3;.

® As n — oo, the weights corresponding to insignificant variables tend
to infinity, while the weights corresponding to significant variables
converge to a finite constant.

® Zou (2006) showed that, under certain regularity conditions, the
adaptive lasso has the oracle property.
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Adaptive Lasso: Gene Expression in Ovarian Cancer

® QOur goal is to assess the relationship between gene expression and
tumor growth

® However, it is important to adjust for treatment group and time of
collection in analyzing these data, both of which have significant
effects on tumor size

® The lasso model is easily extended to allow for such an analysis

neralizations of the Lasso
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Coeflicient-specific A values

Up to this point, we have kept ) the same across all variables, but all
of our derivations can be easily modified to allow variable j to have its
own regularization parameter, \;

This is achieved via the penalty.factor argument in glmnet or
ncvreg

This argument allows one to modify the penalty applied to individual
covariates through the use of a weighting factor: A\; = Aw;, where w;
is the multiplicative factor applied to term j

The idea here is that w; scales the baseline regularization factor A up
or down for certain covariates

By assigning w; = 0 for the treatment group and time of collection
variables, we can include them in the model as unpenalized covariates

The rationale for penalizing the gene expression variables is that we
expect most genes to have no effect on relative tumor volume, but it
does not make sense to extend that assumption to treatment group
and time of collection

ations of the Lassc
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Adaptive Lasso on Ovarian Cancer Dataset

library(mcgillHDA); library(ncvreg); library(splines)

data("ovarian")

sDay <- ns(ovarian$sData$Day, df=2)

X0 <- model.matrix(~ Treatment*sDay, ovarian$sData)[,-1]

multiplier <- rep(0:1, c(ncol(X0), ncol(ovarian$X)))

XX <- cbind(X0, ovarian$X)

cvfit <- cv.ncvreg(XX, ovarian$y, penalty.factor=multiplier, penalty='lasso')
plot(cvfit, type='rsq')

Variables selected
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Adaptive Lasso on Ovarian Cancer Dataset

fit <- cvfit$fit
plot(fit, log=TRUE)
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Unpenalized Covariates are always non-zero

matplot (t(coef (fit) [2:8,]), type="1")
abline (h=0)

t(coef(fit)[2:8, ])
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Elastic Net

The elastic net (Zou and Hastie, 2005) solves the convex program

1 1
méniHy —XB|% + A 5(1 —a)|B13 + «l8lh

where « € [0, 1] is a parameter. The penalty applied to an individual
coefficient (disregarding the regularization weight A > 0) is given by

20— +alf)|

® The coefficients are selected approximately together in their groups.

® The coefficients approximately share their values equally.
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An simulated example

® Two independent “hidden” factors z; and z»
z; ~ U(0, 20), 2o ~ U(0,20)

® Generate the response vectory = z; + 0.1 - zo + N(0, 1)

® Suppose only observe predictors
X1 =71 +€1, Xp=121+€, X3=127+¢€3

X4 =1Zo+ €4, X5=1Z2+ €5, Xg=12Z2+ €
e Fit the model on (X, y)

® An “oracle” would identify x1, x5 and x3 (the z; group) as the most
important variables.
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Simulation 1

Lasso

Elastic Net lambda = 0.5

nts

Standardized Coeffic

Standardized Coefficients
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Simulation 2

Lasso Elastic Net lambda = 0.5
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Hierarchical Group Lasso

.y
AL L L L L LTIy

.

-~

-y

A node can be active only if its ancestors are active.

The selected patterns are rooted subtrees.

)

Optimization via efficient proximal methods (same cost as ¢;

(Jenatton, Mairal, Obozinski, and Bach 2010)
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Multitask Lasso

Suppose that we have K regression tasks
YO =x0a0 LB k=1, K

® The k-th task has ny observations for k = 1, .
o vy — (ygk)7 . (k) X(k) = (x (k)y' (k))

X
o x(h) = (ng), e ,X(k)) be the nj X p design matrix for task k

© 8% =B 5T and g = (5", )T

® find commonly shared relevant covariates and retains the ability to recover covariates

unique to individual data sources.

1y ¥ _x® gm|°
n,gn2z_:H Xe H +APa(B),

P
Pa(B) = w [(1—a)l|B)llq + allB)ll1]
=

1

neralizations of the Lasso
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SCAD (Fan et Li, JASA, 2001), MCP (Zhang, Ann. Stat.,
2010)

SCAD
4 —
2 - MCP

Lasso
< 0 —
-2 -
_4 —

[ I I I |

-4 -2 0 2 4
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Discussion

® Variable selection is an active area of research
® Few inference tools exist

® Robust software has been developed, but more scalable algorithms and
implementations are needed
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Session Info

R version 4.0.2 (2020-06-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Pop!_0S 20.10

Matrix products: default
BLAS: /usr/1ib/x86_64-1inux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/1ib/x86_64-1inux-gnu/openblas-pthread/libopenblasp-r0.3.10.s0

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] mcgillHDA_0.1.0 hdrm_0.3.7 ncvreg_3.13.0  glmnet_4.1-1
[5] Matrix_1.2-18 knitr_1.33

loaded via a namespace (and not attached):

[1] lattice_0.20-41 codetools_0.2-16 gglasso_1.5 digest_0.6.27
[5] foreach_1.5.1  grid_4.0.2 pacman_0.5.1 magrittr_2.0.1
[9] evaluate_0.14  highr_ 0.9 stringi_1.6.2  grpreg.3.3.1
[13] splines_4.0.2  iterators_1.0.13 tools_4.0.2 stringr_1.4.0
[17] xfun_0.24 survival_3.2-3 compiler_4.0.2 shape_1.4.6
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