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ABSTRACT
This article provides an introduction to randomized response polling, a technique which was designed to
allow for questioning on sensitive issues while protecting the respondent’s privacy and avoiding social
desirability bias. It is described in terms that are suitable for presentation and use in any classroom environ-
ment. Instructions for plain users are included, along with the results of a small in-class implementation. The
underpinnings of the method, which are laid out for the statistically savvy, illustrate the tradeoff between
data acquisition and privacy protection. A few suitable references are also included for those who wish to
dig further into the subject. Supplementary materials for this article are available online.
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1. Introduction

As documented by the American social psychologist Leon Fes-
tinger (1919–1989) in his social comparison theory, human
beings have an innate drive to evaluate themselves and to com-
pare themselves with others. This is especially true of teenagers,
for whom measuring themselves up to others is an important
part of their identity formation. At the same time, however, they
are often reluctant to share personal information, as they dread
a negative evaluation, which could compromise their position
in a group and affect their well-being.

Schoolmates are a natural population to which students tend
to compare themselves, not only academically, but in matters of
preference, beliefs, and life habits. Polling in the classroom is a
tool that educators can use to open the dialogue and instructors
also resort to it for other pedagogical reasons, for example, to
ask participants about their personal opinions or experiences. In
general, however, respondents only feel comfortable participat-
ing in such activities and providing honest answers if anonymity
is preserved. This is especially so for sensitive topics such as sex,
drugs, or mental health.

In principle, anonymous online polls are one way to elicit
information in a class about sensitive topics, but given a growing
sense of distrust of technology in society, such an initiative is
likely to be met with skepticism and lukewarm participation.
Starting from the principle that there is no better way to instill
confidence in respondents than to give them the means to
protect their own privacy, a randomized response design seems
very well suited for the task. This method, due to Warner (1965),
consists of asking each participant to answer a question selected
individually using a personal randomization device.

CONTACT Christian Genest christian.genest@mcgill.ca Department of Mathematics and Statistics, McGill University, 805, rue Sherbrooke ouest, Montréal, Québec,
H3A 0B9, Canada.
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In a randomized response design, the pollster does not know
which question has been answered. Therefore, the respondent’s
privacy is protected and an honest answer can be freely con-
sented to a sensitive question such as “Did you cheat on the
exam?” While this polling technique makes it impossible to tell
whether any given individual cheated or not, it can be used to
derive an estimate of the number or proportion of respondents
who did.

For questions in which students themselves have a personal
interest, for example, the number or proportion of them who
had sex, took drugs or used ChatGPT to write an essay, this
approach may encourage participation in an in-class poll, espe-
cially if it is carried out live. In addition to satisfying their curios-
ity, such an experience could spark their interest in statistics and
show its practical use.

The purpose of this article is to describe the randomized
response design in terms that are suitable for presentation in
just about any class. The focus is on concepts and the simplest
possible analysis is presented, so that users without a statistical
background can implement the approach and make sense of
the results. Various teaching points for statistics instructors are
also highlighted along the way. A distinctive feature of the setup
is that the class is the population of interest, not a sample; the
poll is then a census with an element of randomness stemming
from the uncertainty as to which question each respondent
answered.

The randomized response design is introduced in Section 2
and a simple way of estimating the number of respondents
with the trait/behavior is described in Section 3. By necessity,
this design cannot provide an exact answer even if everyone
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co-operates and truthfully answers the question put to them.
Therefore, a way to compute a confidence interval reflecting the
estimation error is given in Section 4. It is further shown in
Section 5 how a number of independent repeats of the survey
can narrow the margin of error and improve precision. Section 6
reports a small class experience with the randomized response
design, and clues for further reading can be found in Sec-
tion 7. Additional material is provided in an Online Supplement,
including instructions for running an online poll, and R code for
the main figures.

2. The Notion of Randomized Response

The notion of a randomized response design was first proposed
by Stanley Warner (1965).1 His work was motivated by the
desire to allow respondents to provide an honest “Yes” or “No”
answer to a question about a sensitive issue while protect-
ing their privacy. In Warner’s original work, chance decided,
unknown to the interviewer, whether the interviewee would
answer the direct question or the same question in the negative.
This way, the meaning of a respondent’s “Yes” could not be
decoded.

Many variants and extensions of Warner’s approach were
developed over the years; see Blair, Imai, and Zhou (2015) for
a review. For simplicity, attention is restricted here to Warner’s
original design. In contrast to most applications of this design,
however, the respondents are regarded as the entire population,
rather than as a sample from a larger population of interest. For
simplicity also, the focus is limited at first to cheating on an
exam.

Thus, given a class attended by N students, the quantity of
interest to all present is the number n of them who cheated. The
question and its negative form are thus:

Question A: Did you cheat on the exam?
Question B: Were you honest on the exam?

Each respondent then determines privately whether they will
answer Question A or Question B. The determination is made
individually and at random in such a way that

Question A is selected with probability p;
Question B is selected with probability 1 − p.

The value of p ∈ [0, 1] is agreed in advance and the same for
all participants in the poll. If p = 3/4, say, the respondent could
report “Yes” or “No” in an anonymous in-class online poll after
executing the following R commands:

p = 0.75
question <- c("Did you cheat on the exam?",

"Were you honest on the exam?")
sample(question, 1, prob = c(p, 1 - p))

This procedure ensures complete anonymity of the responses
because, unless p is 0 or 1, nobody except the respondent knows

1For more information about the life and works of Stanley L. Warner (1928–
92), refer to vol. 21.1 (1995) of the bilingual journal Survey Methodol-
ogy/Techniques d’enquête published by Statistics Canada.

which question they answered. A “Yes” could mean that the
respondent answered Question A and cheated on the exam, or
that this respondent answered Question B and was honest on
the exam. A similar ambiguity exists in interpreting a “No.”

As will be seen, this procedure makes it possible to (i) esti-
mate very easily the proportion of participants who cheated
on the exam and (ii) control the precision of this estimate, so
long as the participants genuinely choose at random between
Question A and Question B with probabilities p and 1 − p,
respectively. For statistics instructors, this setting also offers an
opportunity to discuss and illustrate many statistical concepts,
as highlighted below.

3. Estimation

The data from a single online poll consist of a value X, namely
the number of “Yes” responses. The value of X (the statistic) is
to be distinguished from the unknown number n of participants
who cheated on the exam (the parameter). However, n can be
estimated easily from X using the method of moments (MoM),
as detailed next. Heuristics for students unfamiliar with this
method are provided in the Online Supplement.

Whatever the value of n ∈ {0, . . . , N}, one can write X =
X1 + · · · + XN as a sum of mutually independent Bernoulli
random variables, that is, variables taking the value 1 if a respon-
dent’s answer is “Yes” and 0 otherwise. However, the variable X is
not binomial unless p = 1−p = 1/2, because Pr(Xi = 1) varies
with i ∈ {1, . . . , N}. Indeed, Pr(Xi = 1) = p for a cheater while
Pr(Xi = 1) = 1 − p for an honest student. For this reason, the
variables X1, . . . , XN are called Poisson trials; see p. 130 of Feller
(1968).

One can write X as the sum of two independent binomial
random variables, viz.

X = Vn + WN−n,
Vn ∼ BIN (n, p),

WN−n ∼ BIN (N − n, 1 − p).

Thus, E(X) = E(Vn) + E(WN−n) = np + (N − n)(1 − p) or,
equivalently,

E(X) = n(2p − 1) + N(1 − p), (1)

from which an MoM estimate of n is obtained by replacing E(X)

by its observed value, X, and solving for n in (1). This yields

n̂ = X − N(1 − p)

2p − 1
, (2)

provided that p �= 1/2. The value 1/2 must be avoided because
X is then simply binomial with parameters N and p = 1/2, and
thus provides no information about n.

Summary for the plain user: Explain the procedure involving
two questions, one of which is selected at random by each respon-
dent. Agree with the group on a value of p other than 0, 1/2 or
1. Run the survey and count the number, X, of “Yes” responses.
Compute n̂ using (2). This is your estimate of the number of
cheaters in the group.
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Discussion points that could be brought up at this stage
include curtailing the MoM estimate to ensure that n̂ is an inte-
ger from 0 to N. However, the gain in interpretability involves
more complex variance expressions.

In an advanced statistics class, students could be asked to
determine the maximum likelihood estimator of n. As the
parameter space is discrete, they often find this task difficult,
and there is no algebraic expression for the solution. In contrast,
a numerical search is relatively easy and R code to this end is
provided in the Online Supplement. It could be used to explore
how much more efficient this estimator would be than (2). For
simplicity, however, the rest of this article concentrates on the
MoM estimator, for which explicit calculations illustrate the
determinants of the margin of error.

4. Margin of Error

While the poll yields an estimate of the number of cheaters in
the group, it is crucial to understand that this estimate is not
the value of n itself. Indeed, if the poll were rerun, one would
likely get another estimate, simply because every participant
would proceed to choose Question A or Question B through
randomization and may not necessarily end up answering the
same question as in the first poll.

This variability can be quantified by looking at the variance
of X, the number of “Yes” responses in the poll. Given that the
variables Vn and WN−n are binomial and independent,

var(X) = var(Vn) + var(WN−n)

= np(1 − p) + (N − n)p(1 − p)

= Np(1 − p),

which is the same as the variance of a single binomial random
variable with N trials and success probability p. Therefore,

var(n̂) = 1
(2p − 1)2 var(X) = Np(1 − p)

(2p − 1)2 . (3)

It is noteworthy that this expression does not depend on the
parameter of interest, n, but that it is only a function of known
quantities, namely the class size, N, and the constant p. The
expression is also symmetric about p = 1/2.

In a calculus-based statistics course, questions for discussion
might include:

a) For what value(s) of p is the variance the smallest?
b) Is this value or are these values feasible? If not, what might be

a good compromise?

The answer to the first question is p = 0 or 1 but in both
cases the randomization would be removed; values near 0 or 1
mean that there is a high probability that nearly everyone taking
the survey will be asked the same question. The graph of the
map p �→ p(1 − p)/(2p − 1)2 sketched in Figure 1 suggests that
while var(n̂) is decreasing in p ∈ (1/2, 1), what would be gained
past p = 3/4 might be offset by increasing reluctance to par-
ticipate, or the temptation to be dishonest in responding to the
question.

Figure 1. Graph of var(n̂)/N, given in (3), as a function of p ∈ (1/2, 1).

Approximate 95% confidence intervals for the number, n, of
cheaters and their proportion, n/N, in the group can be found.
Their endpoints are respectively given by the point estimate plus
or minus the corresponding margin of error, viz.

n̂ ± 2 ×
√

Np(1 − p)

(2p − 1)2 ,
n̂
N

± 2
N

×
√

Np(1 − p)

(2p − 1)2 , (4)

where the multiplicative factor 2 in front of the square root is a
rounded-up value of the familiar 97.5th quantile of the N (0, 1)

Gaussian distribution, that is, z = 1.95996 . . .

One can check that if p = 0.75 is used, the margin of error for
the estimate of n simplifies to 1.73 ×√

N. It would be reduced
to 1.33 × √

N if p = 0.8, but such a high value would likely be
considered to provide insufficient privacy protection.

Summary for the plain user: For the value of p ∈ (0, 1)

used in the poll, which is such that p �= 1/2, compute ME =
2
√

Np(1 − p)/(2p − 1)2. Just as in election polls, one can then
assert that the margin of error is ± ME individuals at the 95%
confidence level.

As described in the Online Supplement, one might explain
to statistics students that the Normal approximation is based on
the Central Limit Theorem. In more advanced classes, this could
also be checked. When the class size, N, is small, an argument
of the type N → ∞ is not compelling. One may then wonder
how good the approximation is, and this is yet another issue that
could be investigated numerically in class.

As an illustration, Figure 2 shows how the distribution of X
varies when p = 3/4 and either n/N = 0.75 (left) or n/N =
0.95 (right) when N ∈ {20, 40, 80, 160}. In spite of a slight
asymmetry, the Normal approximation is quite serviceable. The
figure makes it clear that the Central Limit Theorem kicks in
very quickly. For alternative approximations and algorithms,
including R code, to improve on the Normal approximation, see,
for example, Butler and Stephens (2017) and Liu and Querter-
mous (2018).

While it may be suboptimal, the approximate margin of error
appearing in (4) has the merit of simplicity. It is also instructive
on at least two counts:

a) The interval has the same width whatever the value of n,
although one could choose, to enhance interpretability, to
curtail it when the estimate is close to 0 or N to avoid it
extending beyond the interval [0, N].

b) Given that the length of the interval is a function of constants
that are known in advance, the compromise that must be
struck between privacy protection and precision of the esti-
mate is easy to see.
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Figure 2. Frequency distribution of X for N ∈ {20, 40, 80, 160} when p = 3/4 and either n/N = 0.75 (left) or n/N = 0.95 (right).

Point a) is clearly illustrated by Figure 3, called a nomogram,
in which the black curve shows how the estimated proportion,
n̂/N, of cheaters varies as a function of the observed fraction,
X/N, of respondents who answered “Yes.” As seen from (2), this
relationship depends only on p, and the slope of the non-flat part
of the black curve is 1/(2p − 1), which equals 2 when p = 3/4,
as in the figure.

While the black curve in Figure 3 does not depend on the
population size, N, it is clear from (4) that the approximate 95%
margin of error associated with n̂/N is proportional to 1/

√
N.

The lower and upper limits of the corresponding confidence
interval are shown in red and blue, respectively. For example, if
N = 160, and 100 X/N = 65% of participants answered “Yes,”
the estimated proportion of cheaters is 0.8 or 80%. With this
sample size, the lower and upper limits of the confidence interval
are approximately 66% and 94%, respectively, so the margin of
error is ±14 percentage points.

To illustrate point b), suppose that it is desired to have a
margin of error, k, for n̂, that is, one would like to state (with
95% assurance) that the number of cheaters is n̂ ± k. Because
the same value of k has different implications for different values
of N, one might recast the planning exercise as one where the
desired margin of error for n̂ is some specified fraction, f , of N.
Denote by z the multiple (1.96 or 2) of the standard error that is

typically used. Given that N is fixed, one must thus choose p in
advance so that

z
√

N

√
p(1 − p)

(2p − 1)2 = f × N.

High-school students could be asked to check that the only
solution of this quadratic equation in p in the interval (1/2, 1) is

pN,f = 1
2

+ 1
2

√
1

1 + 4Nf 2/z2 . (5)

Summary for the plain user: For a class of size N, the constant
pN,f gives the value of p that produces a margin of error that is a
specified fraction, f , of N. By computing p for different values of f ,
one can get a sense of how a specific demand on the precision of the
estimated count of cheaters in the class affects the level of privacy
protection provided to the individual respondents. The smaller f
is, the closer p is to 1, the less privacy there is, because a larger and
larger proportion of individuals will answer Question A.

Even with a proper introduction to the notion of randomized
response, most participants in the poll would likely not perceive
their response as confidential if p is too close to 1. For various
class sizes, Figure 4 shows the tradeoffs between feasibility and
precision.
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Figure 3. Nomogram showing, for various class sizes N ∈ {20, 40, 80, 160}, how
the estimated proportion, n̂/N, of cheaters (vertical axis) varies as a function of the
observed proportion, X/N, of “Yes” (horizontal axis) responses to an anonymous
online poll. It is based on Warner’s version of the randomized response design, in
which the probability of being asked “Did you cheat on the exam?” is p = 0.75. The
lower and upper limits of the large-sample 95% confidence intervals are shown in
red and blue, respectively.

Figure 4. The probability p defined in (5) as a function of N, when the margin
of error for n̂ is a specified fraction, f , of N. The absolute magnitudes of selected
margins of error are displayed as the integers 1, 2, 3, and so on.

5. Repeating the Poll

The wide margin of error is the price paid for introducing an
additional level of privacy protection through the randomized
response mechanism. However, if respondents are willing to
repeat the poll, the effect of the “noise” stemming from the
randomization process can be reduced without compromising
confidentiality. With online polling facilities available, most
groups would likely be willing to go through the exercise a few
times.

Suppose that R repeats are considered. In the present context,
repeated polls also provide a unique opportunity to witness the
effect of random sampling because the values X1, . . . , XR are
mutually independent by virtue of the randomized response
mechanism, and this even though they involve the very same
respondents. Let n̄ = (n̂1 + · · · + n̂R)/R be the mean estimate

of the number of cheaters over the R trials. It is important here
to use the raw estimates, not corrected estimates modified to be
between 0 and N. Invoking the mutual independence between
the estimates n̂1, . . . , n̂R, one finds that

var(n̄) = N
R

p(1 − p)

(2p − 1)2 . (6)

If, for example, the participants were willing to take part in R =
4 independent polls, one could halve the margin of error because
1/

√
R = 1/2 in that case.

Given the interest in knowing the answer with a reasonable
margin of error, ±k, while ensuring a high degree of privacy,
one could illustrate the compromise that must be struck between
the two objectives in yet another way using the number, R, of
repeats.

Specifically, given a population size, N, one could ask the
group to fix two parameters among p, k, and R, and then discuss
the effect on the third, knowing that for an approximate 95%
confidence interval, one has

2
√

N
R

√
p(1 − p)

(2p − 1)2 = k.

A more ambitious statistics instructor could also bring in
the effect of the degree of confidence 1 − α, here taken to be
95% throughout, by replacing the factor 2 by zα/2, where zα =
�−1(1−α) is the αth upper quantile of theN (0, 1) distribution.

6. A Classroom Experience

Warner’s polling mechanism was tested over two sessions with
a class of N = 12 first-year graduate students in biostatistics
at McGill University, Montréal (Québec), Canada. In the first
session, a motivation was presented for Warner’s introduction of
the randomized response device for face-to-face interviews, and
why it can add an extra layer of protection to today’s anonymous
live online polls.

Class discussion then moved to how large a value of p stu-
dents would be comfortable with, and the tradeoffs between
precision and privacy. It was shown, using several Bernoulli
draws in R, what p = 0.75 means in practice. After discussing
some possibly embarrassing attributes (related, e.g., to illegal
or morally reprehensible behavior), an innocuous question was
settled on: ownership of an Apple phone.

The fact that all students had a smart phone and that there
is only one major competitor meant that the reverse question
could simply be about ownership of an Android phone. All
but one had their laptops with them, and the 12th was able to
run RStudio cloud on a tablet, so each student used the
following sample function in R:

sample(c( "Do you have an iPhone?",
"Do you have an Android phone?"),

size = 1, prob = c(0.75, 0.25))

Students were asked to report their “Yes/No” answers via the
Vevox platform, which allows those directed to its website to
use an instructor-prepared template to respond in real time.
Respondents do not log in or identify themselves, and the
instructor and all classmates only see the tally of the responses,
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never individual ones. Refer to the Online Supplement for
details. So that

√
R was a readily computed quantity, the survey

was run R = 9 times using p = 0.75 and the successive values
of X were 9, 9, 8, 8, 8, 10, 7, 8, and 6, yielding X̄ = 73/9 = 8.1.

The remainder of the hour was devoted to deriving the MoM
estimator n̂. It was then applied to all values of X, yielding the
following values of n̂: 12, 12, 10, 10, 10, 14, 8, 10, and 6. Note
that one of the estimates, namely 14, exceeded the class size; it
was used “as is” in computing n̄ = 92/9 = 10.2.

Next, it was found using (6) that var(n̄) = 1 and hence that an
approximate 95% confidence interval for n has endpoints n̄ ± 2,
that is, 8.2 and 12.2. The actual number of Apple phones turned
out to be 9, which is well within these limits.

In the second session, the attribute of interest was having
been fully vaccinated against COVID-19 or not. To avoid double
negatives, the two alternatives were stated as follows:

I AM fully vaccinated against COVID-19;
I AM NOT fully vaccinated against COVID-19

The students were then asked to respond “True” or “False” to
whichever version their randomization device selected. As each
round took less than a minute, the poll was again run R = 9
times using p = 0.75. The observed values of X were 10, 8, 8, 8, 9,
9, 7, 8, and 11, so that X̄ = 78/9 = 8.67 and n̂ = 2×(8.67−3) =
11.3. As the margin of error is 1.73×√

12/
√

9 ≈ 2, the estimate

11.3 is compatible with 9 or more of the 12 students having been
fully vaccinated. Considering the sensitive nature of vaccination
status, however, a non-randomized census was not run to check
the true value of n.

The opportunity was taken to explore how many rounds it
would have taken to narrow the margin of error to 1. That it
would take 36 rounds (rather than 18) surprised some students
even though, unlike Newton (Stigler 2016, chap. 2), they were
all aware of the “

√
n law.” Another question that could generate

discussion is: With only N = 1 person in the class, after how
many rounds would one be confident to know the vaccinated
status of that individual?

7. Concluding Remarks

By describing how a simple randomized response scheme can
be presented in class to investigate an interesting but sensitive
issue, we hope to have shown the relevance of this technique
and, at the same time, rekindled statisticians’ interest in using
it to illustrate several basic statistical concepts involved in its
implementation. Table 1 lists the concepts covered and pro-
poses questions in increasing level of difficulty to spark class
discussion.

In this article, we focused for simplicity on the first ver-
sion proposed by Warner (1965), where a dichotomous issue

Table 1. Concepts and discussion.

Mathematical concepts Prompts and discussion

Section 3: Estimation
Random variable (RV) X is the number of individuals who responded “Yes.”
Sums of independent RVs X = Vn + WN−n , where Vn ∼ BIN (n, p) and WN−n ∼ BIN (N − n, 1 − p) are independent.
Model parameters Which of the quantities n, N, x, p is fixed in advance, observable, or to be estimated?
Expected value What are the expected values of Vn , WN−n , and X?
Method of moments (MoM) Derive the MoM estimate n̂ of n.

Is p = 1/2 a valid selection probability? Provide a non-algebraic reasoning.
Intrinsic estimator Is n̂ intrinsic, that is, is it always an integer between 0 and N?

What are the advantages and disadvantages of making n̂ intrinsic?

Conditioning For any x ∈ {0, . . . , N}, Pr(X = x) = ∑min(x,n)
y=max(0,x+n−N)

Pr(Vn = y) Pr(WN−n = x − y).
Likelihood Write down the likelihood expression as a function of n, N, x, p.
Maximum likelihood Assume p = 0.7 and that a count of X = 120 positive responses was observed in a class of N = 200. Compute the

maximum likelihood estimate n̂ML .

Section 4: Margin of error
Central limit theorem The variance of the MoM estimator n̂ is given by var(n̂) = 1

(2p−1)2 var(X) = Np(1−p)

(2p−1)2 .

Proof by simulation For what values of p is the variance the smallest?
Quadratic equations Is this value or are these values feasible? If not, what might be a good compromise?

Derive a 95% confidence interval for the proportion n/N. State your assumptions.
Variance of the sum of independent RVs Prove that when a series of mutually independent Bernoulli trials X1, X2, . . . with possibly different success

probabilities p1, p2, . . . is performed, the distribution of the proportion X̄N of successes, properly standardized, is
asymptotically Gaussian whenever limN→∞

∑N
i=1 pi(1 − pi) = ∞.

For p = 0.75, n/N = 0.75, and N ∈ {20, 40, 80, 160} use simulations to show when the Normal approximation is
appropriate.
Derive an expression for p, as a function of N, such that the desired margin of error is k, that is, one would like to state
(with 95% assurance) that the number of vaccinated respondents is n̂ ± k.
Derive an expression for p, as a function of a given fraction f of N, such that the desired margin of error is k.

Section 5: Repeating the poll
The curse of

√
n Assume the poll is repeated R times to obtain X1, . . . , XR . Let n̄ = (n̂1 + · · · + n̂R)/R be the average estimate of the

number of vaccinated individuals over the R trials.
Variance calculation Derive the variance of n̄.

What happens to the margin of error if the number of repeats is raised from R = 4 to R = 16?
Can you describe the pattern more generally?
Would one get the same conclusion if the one-sample analysis were applied to X∗ = X1 + · · · + XR and n∗ = nR and
n∗ were divided by R at the end?

NOTE: For each topic, questions are ordered in increasing level of difficulty.
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is investigated through a mirrored question design in which,
unbeknownst to the interviewer, the respondent answers hon-
estly the sensitive question or its inverse. One limitation that
was identified early is that respondents sometimes find this
confusing and may fail to comply because of lack of confidence
in the actual level of privacy guaranteed by this approach, even
when they understand the instructions.

A simple variant of Warner’s method was proposed
by Horvitz, Shah, and Simmons (1967) and Greenberg et al.
(1969) in which randomization determines whether the
respondent should answer a sensitive question with probability
p or an unrelated dichotomous question with probability 1 − p.
As shown by Moors (1971), this design can lead to increased
efficiency if the success probability of the unrelated question is
known. Such a question might be “Is your birthdate in the first
half of the year?” The proportion of students in the class who
were born in the first half of the year could be determined in a
standard anonymous poll (i.e., without randomization), given
that this is not a sensitive issue.

Other variants such as the forced response design and the
disguised response design are described, for example, in the
review paper by Blair, Imai, and Zhou (2015), where estima-
tion procedures are detailed and their performance is com-
pared in theoretical and numerical terms. Readers can also refer
to Blair, Imai, and Zhou (2015) for strategies that can be applied
when the randomization distribution is unknown or when, in
spite of all guarantees of anonymity provided by the random-
ized response design, respondents still exhibit a noncompliant
behavior.

By relying on the method of moments and a standard Normal
approximation for the computation of the margin of error, it is
possible to make the material accessible to a broad audience.
Refinements involving the method of maximum likelihood or
exact confidence intervals as discussed, for example, in Frey
and Pérez (2012), could be envisaged in more advanced courses
for statistical trainees. Moreover, one could consider Bayesian
approaches to this problem. One particularly elegant solution
which is sufficiently simple to be discussed in an elemen-
tary class is described by O’Hagan (1987) using Bayes linear
estimators.

Supplementary Materials

The Supplementary Materials consist of five parts, all cast in the context
of the vaccination issue described in Section 6 of the main text. Section 1
gives an arithmetic-only description of the method of moments. Section 2
describes ways in which the estimator n̂ of the number of vaccinated

individuals can be constrained to produce an integer result. Section 3
provides a justification for the Gaussian approximation used in the con-
struction of confidence intervals for n and the corresponding proportion,
n/N, of vaccinated individuals in the population class. Section 4 contains a
brief user’s guide for conducting a live online poll that uses the randomized
response technique to estimate anonymously, and with an added layer
of privacy, how many people in a group have been vaccinated. Finally,
Section 5 provides the R code for maximum likelihood estimation and the
two key figures in the main text.
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