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Nature functions to associate x with y

® A matrix of input variables x go in one side

® On the other side, response variable y comes out

y < nature +——X

Leo Breiman. Statistical modeling: The two cultures. Statistical Science (2001).

Two cultures



Two goals in analyzing the data

1. Prediction: To be able to predict what the responses are going to be
to future input variables

6/42



Two goals in analyzing the data

1. Prediction: To be able to predict what the responses are going to be
to future input variables

Two cultures 6/42.



Two goals in analyzing the data

2. Explanation: To extract some information about how nature is
associating the response variables to the input variables.
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Two goals in analyzing the data

2. Explanation: To extract some information about how nature is
associating the response variables to the input variables.

##

## Call:

## Im(formula = y.train ~ ., data = df)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.65540 -0.39856 0.02914 0.43816 1.81211

##

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) -0.91081 0.12694 -7.175 3.33e-12 *xx
## X1B5E1.2 0.28324 0.05369 5.275 2.14e-07 **x
## X2..PDE 0.25930 0.08366 3.099 0.00207 *x
## XTAS5 -0.07482 0.02419 -3.094 0.00211 **
## A1BG -0.13033 0.04920 -2.649 0.00838 **
## A2BP1 0.05182 0.05127 1.011 0.31271

## A2M -0.18041 0.03579 -5.040 6.95e-07 *xx
## A2ML1 -0.08147 0.04788 -1.701 0.08960 .
## A3GALT2 0.09927 0.09471 1.048 0.29519

## A4GALT 0.09667 0.04494 2.151 0.03204 *
## AAGNT 0.01535 0.06841 0.224 0.82252

## ——-

## Signif. codes: O 'x**' 0.001 's#*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.6503 on 417 degrees of freedom
## Multiple R-squared: 0.2052,7"IAdjusted R-squared: 0.1862

. \ ## F-statistic: 10.77 on 10 and 417 DF, p-value: 2.514e-16 e
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Two different approaches toward these goals
1. Data Modelling Culture

Ye—

linear regression
logistic regression
Cox model
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Two different approaches toward these goals
1. Data Modelling Culture

linear regression
Y4— Jogistic regression
Cox model

2. Algorithmic Modelling Culture

y €— unknown -« X

decision trees
N neural nets .



Statistics vs. Machine Learning

How statisticians see the world?

source: http://statweb.stanford.edu/ tibs/ftp/nips2015.pdf 9/42.
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How machine learners see the world?

source: http://statweb.stanford.edu/ tibs/ftp/nips2015.pdf
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The focus is different

°d={xy}
)
Y2
y3
Vux1 =
LVn]

Two cultures
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Surface plus noise models
® Traditional regression model:

;= + Bixi + -+ Bpxip+ € i=1,...,n
Y /80 Bl 1 ﬂp D Ny

noise

surface

x0+e

«
Il

Dt ) Efron B. Prediction, estimation, and attribution. International Statistical Review. 2020 Dec;88:528-59. 1374
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Surface plus noise models
® Traditional regression model:
P = + x,-—I—---—I— x,-+ Ei i:l,...,n
yi = Bo + Prxa BpXip

surface noise

y=x8+¢€

Efron B. Prediction, estimation, and attribution. International Statistical Review. 2020 Dec;88:528-59.
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CVD risk model

Table 2. Regression Coefficients and Hazard Ratios

Variable B* P Hazard Ratio 95% Cl

Women [So(10)=0.95012]
Log of age 2.32888 <0.0001 10.27 (5.65-18.64)
Log of total cholesterol 1.20904 <0.0001 3.35 (2.00-5.62)
Log of HDL cholesterol —0.70833 <0.0001 0.49 (0.35-0.69)
Log of SBP if not treated 276157 <0.0001 15.82 (7.86-31.87)
Log of SBP if treated 2.82263 <0.0001 16.82 (8.46-33.46)
Smoking 0.52873 <0.0001 1.70 (1.40-2.06)
Diabetes 0.69154 <0.0001 2.00 (1.49-2.67)

Men [So(10)=0.88936]
Log of age 3.06117 <0.0001 21.35 (14.03-32.48)
Log of total cholesterol 1.12370 <0.0001 3.08 (2.05-4.62)
Log of HDL cholesterol —0.93263 <0.0001 0.39 (0 30-0.52)
Log of SBP if not treated 1.93303 <0.0001 6.91 (3.91-12.20)
Log of SBP if treated 1.99881 <0.0001 7.38 (4 22-12.92)
Smoking 0.65451 <0.0001 1.92 (1.65-2.24)
Diabetes 0.57367 <0.0001 1.78 (1.43-2.20)

So(10) indicates 10-year baseline survival; SBP, systolic blood pressure.
*Estimated regression coefficient
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Log of SBP if treated 1.99881 <0.0001 7.38 (4 22-12.92)
Smoking 0.65451 <0.0001 1.92 (1.65-2.24)
Diabetes 0.57367 <0.0001 1.78 (1.43-2.20)

So(10) indicates 10-year baseline survival; SBP, systolic blood pressure.

*Estimated regression coefficient

10-year Risk:

1— 50(t)eXP(2-32'10g(age)+1.2‘log(chal)—0.708'10g(HDL)+"~+O.53~smuker+0.69~diabetic)

Data modeling
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Random forests

Labelled
training set

Bootstrap
sampling

Building the trees
on arandom set
of features
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Bootstrap Decision Tree-1 Decision Tree 2 Decision Tree 3 Decision Tree #
aggregation
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Majority voting

hypathetical
example of partition
representation of
classification tree
across levels
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Random Forest Algorithm

Algorithm 17.1 RANDOM FOREST.

I Given training data set d = (X, y). Fix m < p and the number of trees
B.
2 Forb=1,2,..., B, do the following.

(a) Create a bootstrap version of the training data d;*, by randomly sam-
pling the n rows with replacement n times. The sample can be repre-
sented by the bootstrap frequency vector wj.

(b) Grow a maximal-depth tree 7 (x) using the data in d;, sampling m
of the p features at random prior to making each split.

(c) Save the tree, as well as the bootstrap sampling frequencies for each
of the training observations.

3 Compute the random-forest fit at any prediction point x; as the average

B

. 1 .
I’,—f(XQ) = E Z Fb(](o).
b=1
4 Compute the OOB; error for each response observation y; in the training
data, by using the fit 7, obtained by averaging only those 7 (x;) for
which observation i was rot in the bootstrap sample. The overall OOB

error is the average of these OOB;.

Prediction models
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Example: Microarray study of prostate cancer

® The study involved n = 102 men, 52 cancer patients and 50 normal

controls. Each man’s genetic expression levels were measured on a

panel of p = 6033 genes

xll x12 e e e e e e e xlp
XnXp:

xnl x12 ... ... ... ... ... .. .. xnp

Prediction models

Efron B. Prediction, estimation, and attribution. International Statistical Review. 2020 Dec;88:528-59.
18/42



Example: Microarray study of prostate cancer

® The study involved n = 102 men, 52 cancer patients and 50 normal

controls. Each man’s genetic expression levels were measured on a

panel of p = 6033 genes

xll x12 PERE e e e e e e xlp
XnXp:

xnl x12 o e ... ... ... ... .. .. xnp

® Random forests was used to predict normal or cancer from a man’s

microarray measurements. The 102 men were randomly divided into
training and test sets of size 51 each having 25 normal controls and 26
cancer patients.

Prediction mode

Efron B. Prediction, estimation, and attribution. International Statistical Review. 2020 Dec;88:528-59.
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Background on Train-Test split

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Complete sample
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Background on Train-Test split
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Background on Train-Test split

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Complete sample l

ABCDEFGHIJKLMNOPQRSTUVWXY Z
Training set Test set

Years < 4.5
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Background on Train-Test split

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Complete sample l

ABCDEFGHIJKLMNOPQRSTIUVWXYZ

Training set Test set
i years Y, y pred)

Years < 4.5 U 5 373

— v 3 277

226 697

n=90 n=173 w 15 1456

X 4 455

Y 1 235
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Background on Train-Test split

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Complete sample l

ABCDEFGHIJKLMNOPQRSTIUVWXYZ

Training set Test set

i years Y, y pred)

[ves) Years <4. 5 [no) u 5 373 697

v 3 277 226

226 697

n= 90 n-173 w 15 1456 697

X 4 455 226

6 Y 1 235 226

Mt = 3 (4~ 47+ i)
=1
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Cross-validation

|ABCDEFGHIJKLMNOPQRSTUVWXYZ|
Complete sample l

1 |ABCDEFGHIJKLMNOPQRST|UVWXYZ|

|ABCDEFGHIJKLMN|OPQRST|UVWXYZ|

N

w

|ABCDEFGHIJKLMNOPQRSTUVWXYZ|

N

|ABCD|EFGH|IJKLMNOPQRSTUVWXYZ|
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a
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1
CV (o) = ¢ > MSE(e)
v=1
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Test set error rate for random forests

error rate

Prediction models
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Variable Importance
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Removing the most important variables

#removed 0O
1

10 20 40 80 160 348
# errors 1

15
0 3 1 2 2 2 0
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Split train/test by early/late ID number

ID genel gene2 .. gene 6033
1 . . . .

O 00 N QN U A WD

—_
(=]
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Split train/test by early/late ID number

error rate
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Google Flu Trends

® A machine-learning algorithm for predicting influenza outbreaks

® Four years later, however, the algorithm failed, badly overestimating

Prediction models

introduced in 2008 based on counts of internet search terms,

outperformed traditional medical surveys in terms of speed and

predictive accuracy.

what turned out to be a nonexistent flu epidemic.
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Should prediction models be
interpretable?



The search for interpretable prediction models

Input
Chest x-ray image

CheXNet
121-layer CNN

Output
Pneumonia positive (85%)

Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current app hes to explainable artificial intelli in health care. The Lancet
Digital Health. 2021 Nov 1;3(11):e745-50.

Prediction models
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Gradient Grad*Input GuidedBP IntegratedGrad SmoothGrad LRP GradCAM Guided
GradCAM

Clean
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Gu ], Tresp V. Saliency methods for explaining adversarial attacks. arXiv 2019; published online Aug 22. http://arxiv.org/ abs/1908.08413.




Acetaminophen

ANALGESICS

New clues in the
acetaminophen mystery

Although acetaminophen (para-
cetamol) has been used clinically
for more than a century, its mode
of action is still not clear. Writing in
the Journal of Biological Chemistry,
Zygmunt and colleagues have now
provided evidence for a new and
unexpected mechanism through
which acetaminophen could exert
its analgesic effects.
Acetaminophen differs signifi-
cantly from aspirin and other non-
steroidal anti-inflammatory drugs
(NSAIDs), with which it is often

was this path of investigation that was
followed by Zygmunt and colleagues.
The stimulus for their studies was
the striking relationship between the
structures of acetaminophen and the
N-acyl phenolamine AM404, which
is both a potent activator of the ion
channel TRPV, and has effects on
cannabinoid CB, receptors. Both
TRPV and CB, receptors are involved
in pain and thermoregulatory path-
ways and are viewed as promising
targets for the treatment of pain and
inflammation.

synthesize AM404 from p-aminophe-
nol and arachidonic acid in vitro. In
addition, no formation of AM404 was

Kirkpatrick P. New clues in the acetaminophen mystery. Nature Reviews Drug Discovery. 2005 Nov;4(11):883-.

Prediction models
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Comparison

Traditional regressions methods

Pure prediction algorithms

Surface plus noise models
(continuous, smooth)

Scientific truth
(long-term)

Parametric modeling
(causality )

Parsimonious modeling
(researchers choose covariates)

X pxmwithp <n
(homogeneous data)

Theory of optimal inference
(mle, Neyman—-Pearson)

Direct prediction
(possibly discrete, jagged)

Empirical prediction accuracy
(possibly short-term)

Nonparametric
(black box)

Anti-parsimony
(algorithm chooses predictors)

p >> n, both possibly enormous
(mixed data)

Training/test paradigm
(Common Task Framework)

Efron B. Prediction, estimation, and attribution. International Statistical Review. 2020 Dec;88:528-59.
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Message # 1

Explanatory power # Predictive power

Shmueli G. To explain or to predict?. Statistical science. 2010 Aug;25(3):289-310.
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Message # 1

Explanatory power # Predictive power

Best explanatory model # Best predictive model

Shmueli G. To explain or to predict?. Statistical science. 2010 Aug;25(3):289-310.
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Message # 2: Explain vs. Predict

In-sample vs. Out-of-sample

Shmueli G. To explain or to predict?. Statistical science. 2010 Aug;25(3):289-310.
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Message # 2: Explain vs. Predict

In-sample vs. Out-of-sample

® Interpretation
® Statistical Significance ® Prediction accuracy

® Goodness of fit

Shmueli G. To explain or to predict?. Statistical science. 2010 Aug;25(3):289-310.
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Message # 2: Explain vs. Predict

In-sample vs. Out-of-sample

® Interpretation

Statistical Significance ® Prediction accuracy
Goodness of fit

Type I, Il errors ® Over-fitting

Shmueli G. To explain or to predict?. Statistical science. 2010 Aug;25(3):289-310.
Take hom, ves
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Message # 3

Explaining is harder than Predicting

Eternal vs. Ephemeral
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