
TECHNICAL DEVELOPMENT

Chronic obstructive pulmonary disease (COPD) is clini-
cally defined as airflow obstruction with respiratory 

symptoms as measured with spirometry (1,2). Traditional-
ly, radiologic evaluation has not played a central role in the 
diagnosis of COPD. However, due to known limitations 
of spirometry in sensitivity to early disease (3,4), and given 
that objectively measured imaging markers of disease are 
important elements of optimal decision-making in clinical 
practice, there is an increasing interest in quantitative CT 
assessment of the lungs for disease detection, stratification, 
and risk prediction (5–9).

In medical imaging, convolutional neural networks 
(CNNs) have gained popularity and widespread use in 
recent years, and in chest CT analysis, they have been ap-
plied to the detection of COPD and other lung diseases 
(8–11). While CNNs have been shown to outperform 

other image analysis algorithms in a large variety of ap-
plications, recent computational developments have 
demonstrated that CNN performance can be improved 
if certain types of image geometry information are com-
puted explicitly and input into the CNN, as this type of 
information is not readily available with standard convo-
lution operations (12,13).

In this work, we introduce an image transformation 
that computes geometric information from CT images, 
specifically, the mean curvature of isophotes (MCI). Im-
age isophotes (contours of equal luminance) and their 
properties have long been used in computer vision to 
capture geometric information important for image anal-
ysis and visual perception (14–16). To our knowledge, 
the application of MCI to chest CT scans has not pre-
viously been studied. Therefore, we investigate here the 
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Purpose: To determine if the mean curvature of isophotes (MCI), a standard computer vision technique, can be used to improve detec-
tion of chronic obstructive pulmonary disease (COPD) at chest CT.

Materials and Methods: In this retrospective study, chest CT scans were obtained in 243 patients with COPD and 31 controls (among all 
274: 151 women [mean age, 70 years; range, 44–90 years] and 123 men [mean age, 71 years; range, 29–90 years]) from two commu-
nity practices between 2006 and 2019. A convolutional neural network (CNN) architecture was trained on either CT images or CT 
images transformed through the MCI algorithm. Separately, a linear classification based on a single feature derived from the MCI com-
putation (called hMCI1) was also evaluated. All three models were evaluated with cross-validation, using precision-macro and recall-
macro metrics, that is, the mean of per-class precision and recall values, respectively (the latter being equivalent to balanced accuracy).

Results: Linear classification based on hMCI1 resulted in a higher recall-macro relative to the CNN trained and applied on CT images 
(0.85 [95% CI: 0.84, 0.86] vs 0.77 [95% CI: 0.75, 0.79]) but with a similar reduction in precision-macro (0.66 [95% CI: 0.65, 0.67] 
vs 0.77 [95% CI: 0.75, 0.79]). The CNN model trained and applied on MCI-transformed images had a higher recall-macro (0.85 
[95% CI: 0.83, 0.87] vs 0.77 [95% CI: 0.75, 0.79]) and precision-macro (0.85 [95% CI: 0.83, 0.87] vs 0.77 [95% CI: 0.75, 0.79]) 
relative to the CNN trained and applied on CT images.

Conclusion: The MCI algorithm may be valuable toward the automated detection and diagnosis of COPD on chest CT scans as part of 
a CNN-based pipeline or with stand-alone features.

Supplemental material is available for this article.
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FVC) ratio of less than 0.7 (GOLD COPD stages 1–4), or a 
maximal midexpiratory flow of less than 65% predicted or a 
residual volume of greater than 130% predicted (pre-COPD) 
(2,4,17). Controls were drawn from the same practices, had 
fewer than 10 pack-years of tobacco use history, and had been 
determined to be free of respiratory disease following clinical and 
physiologic assessment.

In total, 274 individuals (31 controls and 247 patients with 
COPD) with CT scans acquired at eight different institutions 
were included. This sample included 151 women (mean age, 70 
years; range, 44–90 years) and 123 men (mean age, 71 years; 
range, 29–90 years). CT scan data were imported into radiology 
software (OsiriX MD v.2.6; Primeo) for de-identification. Figure 
1 summarizes our patient selection procedure.

CT Acquisition
A total of five different scanner models were used to image 
patients. Scanners and acquisition details are shown in Table 1.

Computational Methods Overview
An overview of the historical and mathematical background 
underlying the MCI algorithm is provided in Appendices E1–
E3 (supplement). To assess the benefit of the MCI transfor-
mation, we compared the diagnostic performance of a CNN 
architecture trained on CT images to the performance of the 
same CNN architecture trained on MCI images. Separately, 
we also defined a simple quantitative feature from the distri-
bution of voxel values in the MCI images (called hMCI1), 
and we used it to perform linear (threshold-based) classifica-
tion. Details on image preprocessing are described in Appen-
dix E4 (supplement). A description of the linear classifica-
tion based on hMCI1 is given in Appendix E5 (supplement). 
Finally, a description on the development of the two CNN 
models trained with CT or MCI images is given in Appendix 
E6 (supplement), and a schematic illustration is provided in 
Figure E1 (supplement).

Statistical Analysis
We report the performance of all our models in terms of 
the mean of per-class recall values, called the macro aver-
age of recall (recall-macro), as well as the per-class average 
of precision (precision-macro). Use of these metrics allows 
for comparison to previous studies (8,9) and also mitigates 
the imbalance in sample size between our two classes. In a 
binary classification, recall is equivalent to sensitivity, and 
precision is equivalent to positive predictive value. Further-
more, the mean of per-class recall (recall-macro) is equiva-
lent to the balanced accuracy (ie, to the mean of sensitivity 
and specificity).

The difference in classification performance between the CNN 
model trained and applied on CT images and the CNN model 
trained and applied on MCI images is assessed statistically via 
the McNemar test (18). The diagnostic performance of the two 
models was compared in four different contexts, each of which 
involves a binary discrimination: (a) the overall discrimination be-
tween controls and all patients with COPD; (b) between controls 

hypothesis that COPD changes in the lung parenchyma can be 
reflected in the geometric properties of the image. Specifically, 
in this exploratory study, we test the hypothesis that training a 
CNN architecture on MCI images would result in a higher di-
agnostic performance for discriminating patients with COPD 
from controls, as compared with training the same architecture 
on the original CT images. We also test in a linear classification 
framework the discriminatory power of a single histogram-
derived feature computed on the MCI images and compare its 
performance to that of the CNN.

Materials and Methods

Clinical Methods
This study was conducted with retrospective data acquired be-
tween 2006 and 2019 in patients with COPD and controls 
from two community-based pulmonology practices located in 
the West-Island suburbs of Montreal, Quebec, Canada (popu-
lation 349 849), and Cornwall, Ontario, Canada (population 
45 965). The study had institutional review board approval 
and patient informed consent was waived given the observa-
tional nature of the study. Using an initial database of 1160 
patients, patients were included if they had undergone a non–
contrast-enhanced CT scan and had pulmonary function test 
data available.

All patients with COPD had symptoms consistent with the 
disease, more than 10-pack-year tobacco use history, and satis-
fied the following Global Initiative for Chronic Obstructive 
Lung Disease (GOLD) spirometry criteria: either a forced ex-
piratory volume in 1 second–to–forced vital capacity (or FEV1/

Abbreviations
CNN = convolutional neural network, COPD = chronic obstruc-
tive pulmonary disease, GOLD = Global Initiative for Chronic 
Obstructive Lung Disease, hMCI1 = quantitative feature defined 
from distribution of voxel values in MCI images, MCI = mean 
curvature of isophotes, precision-macro = mean of per-class preci-
sion values, recall-macro = mean of per-class recall values, ROC = 
receiver operating characteristic

Summary
The mean curvature of isophotes is a classic computer vision tech-
nique that, when incorporated into a typical convolutional neural 
network pipeline or used on its own, may improve discrimination of 
chronic obstructive pulmonary disease at chest CT.

Key Points
 n The mean curvature of isophotes (MCI) computes a geometric 

transformation on the original CT images.
 n When trained on MCI images, a typical convolutional neural net-

work (CNN) architecture sees improvement in precision and recall 
relative to the same architecture trained on the original CT images 
(McNemar test, P , .001).

 n Simple threshold-based classification with a single histogram-
derived feature from the MCI images matched the improved recall 
value of the CNN model.

Keywords
Chronic Obstructive Pulmonary Disease, Quantification, Lung, CT
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Figure 1: Flowchart summarizing patient selection and analysis. CNN = convolutional neural network, COPD = chronic obstructive pulmonary disease, FEV1 = forced 
expiratory volume in 1 second, FVC = forced vital capacity, GOLD = Global Initiative for Chronic Obstructive Lung Disease, hMCI1 = quantitative feature defined from dis-
tribution of voxel values in MCI images, MCI = mean curvature of isophotes, MMEF = maximal midexpiratory flow, RV = residual volume.

Table 1: Technical Scan Parameters

Parameter

Scanner Model

Aquilion Discovery CT750 LightSpeed VCT Sensation 64
Somatom  
Definition Edge

Manufacturer Toshiba GE Medical Systems GE Medical Systems Siemens Siemens
No. of scans* 1 (0.4) 25 (9) 232 (85) 14 (5) 2 (1)
Institution A B C, D, E, F B G, H
Convolution kernel† FC08 (1) Lung (25) Lung (1)

Standard (231)
B70f (14) B70f (1)

I41f\3 (1)
Voltage (kV)‡ 120 120 120 120 110 (100–120)
Tube current (mA)‡ 234 103 (100–106) 266 (154–420) 248 (205–352) 125 (124–126)
Pixel spacing (mm)‡ 0.65 0.70 (0.64–0.74) 0.69 (0.64–0.74) 0.67 (0.64–0.71) 0.80 (0.72–0.87)
Section thickness (mm)‡ 1 2.5 1.25 3 2.50 (2.00–3.00)
Revolution time (sec)‡ NA 0.7 0.7 0.8 0.40 (0.30–0.50)
Spiral pitch factor‡ NA 0.98 1.38 1.38 0.78 (0.60–0.95)
Single collimation width (mm) NA 0.63 0.63 0.63 0.6
Total collimation width (mm) NA 40 40 40 38

Note.—NA = data not available.
*Data in parentheses are percentages.
†Data in parentheses are number of scans.
‡Data are presented as median with interquartile range in parentheses where values vary between CT scans.

and patients diagnosed as pre-COPD only; (c) between controls 
and patients diagnosed as GOLD stages 1–2 only; and (d) be-
tween controls and patients diagnosed as GOLD stages 3–4 only. 

In each of these four discrimination scenarios, the McNemar test 
was performed separately for each cross-validation fold, and we 
retained only the largest P value obtained over all folds. Given the 
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rated according to GOLD stage. In terms of racial characteris-
tics, all patients are White with the exception of one Black and 
two Asian male patients.

Discrimination between the Control Group and Patients with 
COPD
For the simple univariate classification based on hMCI1 
between controls and all patients with COPD, we report a 
receiver operating characteristic (ROC) curve analysis of clas-
sifier performance (Fig 2). The mean of area under the ROC 
curve across cross-validation folds was 0.87 6 0.01 (standard 
deviation). The diagnostic performance of the linear classifi-
cation based on hMCI1 was 0.85 (95% CI: 0.84, 0.86) for 
the recall-macro and 0.66 (95% CI: 0.65, 0.67) for precision-
macro over the 10 folds of the stratified cross-validation.

Table 3 reports the discrimination performance of the two 
CNN models trained and applied on CT and MCI images, 

four reported P values (one for each discrimination scenario), a 
Bonferroni-corrected threshold of significance was  set to .05/4 
= .0125. The McNemar test was computed with the “mcnemar” 
function implemented in Python in the statsmodels package ver-
sion 0.12.2 (https://www.statsmodels.org/stable/index.html). Further 
details are provided in Appendix E6 (supplement).

Code
The code for our experiments is available at https://github.com/
petersv2/MCI_RadAI.

Results

Clinical Characteristics
Demographic and clinical characteristics, as well as spirometry 
data, are provided in Table 2, with patients with COPD sepa-

Table 2: Patient Characteristics and Spirometry

Parameter Controls Pre-COPD GOLD 1 GOLD 2 GOLD 3 GOLD 4 P Value

Patient characteristic
 No. of patients 31 29 48 110 44 12
 Median age (y) 61 (51–71) 70 (65–79) 73 (67–78) 74 (69–78) 70 (64–78) 64 (58–73) ,.001
 No. of women* 18 (58) 15 (52) 32 (67) 60 (54.5) 22 (50) 4 (33) .35
 No. of men* 13 (42) 14 (48) 16 (33) 50 (45.4) 22 (50) 8 (67)
 Tobacco use his-

tory (pack-years)
4.0 (0.0–13.5) 38.0 (29.0–

44.0)
39.0 (27.8–

47.5)
44.0 (33.2–

53.0)
45.0 (34.0–

54.2)
41.0 (36.2–

66.5)
,.001

 Height (cm) 166 (160–170) 164 (160–172) 159 (155–168) 164 (158–170) 164 (159–170) 166 (164–170) .075
 Weight (kg) 79 (70–88) 83 (66–99) 76 (65–86) 76 (67–88) 75 (58–87) 70 (64–87) .66
 BMI (kg/m2) 28 (25–34) 30 (24–34) 28 (25–33) 28 (26–32) 26 (23–32) 26 (23–29) .34
Spirometry
 No. of tests per-

formed
29 29 48 110 44 12

 FEV1 (L) 2.55 (2.19–
3.47)

2.14 (1.58–
2.49)

1.79 (1.54–
2.41)

1.38 (1.16–
1.73)

0.89 (0.76–
1.10)

0.64 (0.51–
0.68)

,.001

 FEV1 (% pre-
dicted)†

109 (97–115) 87 (80–106) 88 (85–95) 66 (59–73) 41 (37–46) 25 (20–27) ,.001

 FVC (L) 3.19 (2.79–
4.25)

2.81 (2.20–
3.48)

2.88 (2.38–
3.89)

2.61 (2.20–
3.22)

2.38 (1.75–
2.79)

1.96 (1.61–
2.12)

,.001

 FVC (% pre-
dicted)

107 (97–117) 100 (83–115) 116 (109–126) 96 (87–106) 78 (72–89) 59 (52–71) ,.001

 FEV1/FVC (%) 80 (78–84) 72 (71–73) 63 (61–66) 54 (49–59) 40 (36–46) 35 (30–38) ,.001
 MMEF (L/sec) 2.78 (1.71–

3.64)
1.36 (1.01–

1.67)
0.87 (0.66–

1.10)
0.51 (0.38–

0.65)
0.29 (0.23–

0.37)
0.23 (0.20–

0.27)
,.001

 MMEF (% pre-
dicted)

84 (65–107) 49 (43–60) 34 (27–39) 20 (15–25) 10 (9–13) 8 (7–9) ,.001

Note.—Except where otherwise noted, data are shown as median with interquartile range in parentheses. In each row, a P value result-
ing from a Kruskal-Wallis test indicates whether the groups differ in terms of the specified characteristic or spirometry variable. While the 
groups did not differ in terms of sex distribution, height, weight, and BMI, the individuals in the control group were younger than the 
patients classified as pre-COPD to GOLD stage 3 (post hoc Dunn test, P , .005) and GOLD stage 4 were younger than those classified 
as GOLD stage 2 (post hoc Dunn test, P , .01). By definition, forced spirometry differed between groups. BMI = body mass index, FEV1 
= forced expiratory volume in 1 second, FVC = forced vital capacity, GOLD = Global Initiative for Chronic Obstructive Lung Disease, 
MMEF = maximal midexpiratory flow.
*Data in parentheses are percentages.
†European Community for Steel and Coal–predicted values (19).
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Additional results are presented in Appendix E7 and Figures 
E2–E4 (supplement), including visualization of MCI images 
and comparisons to quantitative CT metrics commonly used 
in the COPD literature.

Discussion
In standard clinical practice, COPD (and the subdivision of 
its severity into GOLD stages) is a diagnosis determined from 
clinical and physiologic tests, such as spirometry. The lack of 
a well-defined relationship between spirometry-based ground 
truth staging and radiologic appearance makes the automated 
image-based detection and staging of COPD challenging, even 
for powerful algorithms such as CNNs. In this study, we ap-
proached this challenge through the use of an image transfor-
mation that computes geometric information from CT images, 
specifically, MCI. Our results show that a CNN architecture 
trained on MCI images had higher diagnostic performance 
compared with the same CNN architecture trained on the 
original CT images; this trend was observed across all disease 
severity groups, including patients classified as pre-COPD. 
These findings support that CNNs do not always extract, on 
their own, all of the important information from an image, 
and may benefit from being provided geometric information 
relevant to tissue characteristics in a precomputed fashion, as 
shown in a small but growing body of literature (12,13).

It is likely that optimization of the CNN architecture and pa-
rameter tuning may have led to improved results with the CNN 

as well as the statistical significance of the difference in their 
classification performance. All four P values obtained via the 
McNemar test were lower than the Bonferroni-corrected sig-
nificance threshold of .0125.

Table 3: Diagnostic Performance of the CNN Models Trained and Applied on CT or 
MCI Images

Comparison CT Images MCI Images P Value*

Control group vs all COPD ,.001
 Recall-macro 0.77 (0.75, 0.79) 0.85 (0.83, 0.87)
 Precision-macro 0.77 (0.75, 0.79) 0.85 (0.83, 0.87)
Control group vs pre-COPD ,.001
 Recall-macro 0.75 (0.72, 0.78) 0.84 (0.80, 0.88)
 Precision-macro 0.62 (0.60, 0.64) 0.68 (0.65, 0.71)
Control group vs GOLD stages 1–2 ,.001
 Recall-macro 0.77 (0.74, 0.80) 0.85 (0.82, 0.88)
 Precision-macro 0.76 (0.73, 0.79) 0.84 (0.81, 0.87)
Control group vs GOLD stages 3–4 ,.001
 Recall-macro 0.77 (0.75, 0.79) 0.85 (0.82, 0.88)
 Precision-macro 0.69 (0.66, 0.72) 0.76 (0.73, 0.79)

Note.—Diagnostic metrics, with 95% CIs in parentheses, computed over the cross-validation 
folds. For each of the four comparisons reported in the table, a P value was computed with the 
McNemar test to assess the significance of the difference in classification performance between the 
CNN trained and applied to CT images and the CNN trained and applied to MCI images. For 
each comparison, the McNemar test was performed separately for each cross-validation fold, and 
we report the largest P value obtained over all folds. Given the four reported P values, a Bonferroni-
corrected threshold of significance is set to .05/4 = .0125. All the reported P values were below this 
threshold. CNN = convolutional neural network, COPD = chronic obstructive pulmonary disease, 
GOLD = Global Initiative for Chronic Obstructive Disease, MCI = mean curvature of isophotes, 
precision-macro = per-class average of precision, recall-macro = mean of per-class recall values. 
*P value shown for comparison between model trained with CT or MCI images performed with 
the McNemar test.

Figure 2: Classification between controls and all patients with chronic 
obstructive pulmonary disease using hMCI1 as a single feature in a linear clas-
sification model. Mean receiver operating characteristic (ROC) curve (green) 
computed over the 10 folds of stratified cross-validation. Black line shows ± 1 
standard deviation (std. dev.) from the mean ROC curve. AUC = area under the 
ROC curve, hMCI1 = quantitative feature defined from distribution of voxel values 
in MCI images.

http://radiology-ai.rsna.org
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trained on CT images. In fact, one might argue that because of 
this lack of optimization, our CNN experiment on the original 
CT images may not be a good point of comparison to the CNN 
trained on the MCI images. To counter this argument, we note 
that the objective of this study was not to determine the most 
optimal CNN model for this specific clinical problem. Rather, it 
was to showcase the relative improvement in performance for the 
same CNN architecture and the same training algorithm when 
provided MCI images as input, as opposed to original CT im-
ages. In addition, our results were similar to those reported in 
previous studies. To our knowledge, there are only two recent 
studies on COPD detection using CNN-based analysis of CT 
images (8,9). Tang et al (9) used the ResNet CNN architecture. 
We used ResNet with 50 layers, whereas they experimented 
with 50, 101, and 152 layers. González et al (8) used a shal-
lower network. Both studies used more complex preprocessing 
than ours, involving a selection of canonical sections or spatially 
corresponding regions to be compared across patients. Despite 
larger training sets, more advanced preprocessing steps, con-
trolled acquisition protocols in all of the datasets involved, and 
a paucity of patients with early disease in some datasets (which 
should make discrimination easier), our results with a CNN on 
CT images were similar to their results. Depending on parame-
ters (such as the number of layers in the ResNet architecture or a 
specific region of interest), the precision-macro and recall-macro 
values obtained by Tang et al (9) ranged from 0.69 to 0.76 and 
from 0.70 to 0.80, respectively. We obtained a value of 0.77 for 
both precision-macro and recall-macro (controls vs all COPD), 
toward the upper end of the range reported in Tang el al. The 
approach from González et al (8) results in recall-macro and 
precision-macro values of 0.77 for both measures (deduced from 
the confusion matrix in their figure 2A), which was very similar 
to our own results. We conclude that the diagnostic performance 
of our CNN architecture on CT images appears comparable to 
the current state of the art in the literature.

Our experiment with univariate classification based on the 
hMCI1 measure achieved the same recall-macro value of 0.85 
as the CNN applied to MCI images, in a much simpler fash-
ion. However, the precision-macro was lower at a value of 0.66. 
Nevertheless, this high recall value comparable to that of a CNN 
suggests this approach might be a viable and simple alternative 
to a CNN model in the context of screening for COPD. In such 
an application where recall is more important than precision, 
suspected COPD cases could be flagged, and those deemed un-
certain can be flagged for further review by an expert to exclude 
potential false-positive findings. Screening for COPD is impor-
tant for a variety of clinical reasons, including the initiation of 
tobacco use cessation, vaccination, and the prescription of medi-
cation to both relieve symptoms and treat exacerbations. Such 
strategies prolong lives and reduce health care costs (2).

Our study had limitations. As this was an exploratory study, 
our methods were not fully optimized, neither at the deep learn-
ing level, nor at the univariate classification level. For instance, 
we chose a threshold in the definition of hMCI1 in a somewhat 
arbitrary fashion, and we picked a fixed value of s. In future 
work, instead of picking a threshold, we will work with the en-
tire histogram data in combination with statistical techniques 

tailored to probability density estimates. We will also extend the 
approach to a range of spatial scales akin to classic scale-space 
approaches (14–16). Another limitation consisted of our small 
dataset, compared with other studies that worked with large 
prospectively acquired datasets (20–22). In future work, we will 
assess the performance of the MCI technique on large public 
prospective datasets (20–22). In the present study, we felt it was 
informative to present results on a retrospective sample derived 
from a community practice, as it emulates real-world clinical 
practice where data and conditions are less standardized com-
pared with research cohorts. Another limitation stems from the 
lack of racial diversity among our patient population, with only 
three patients (1%) being non-White. In future work, this limi-
tation will be addressed with validation on the above-mentioned 
prospective datasets (20–22), which are not only larger but also 
more racially and ethnically diverse.

As MCI has not previously been used in the context of 
disease prediction at chest CT, we performed a comparison 
between training the CNN on CT images alone versus MCI 
images alone, to evaluate the performance gain achieved by us-
ing MCI images compared with original CT images. In future 
work, a CNN could also be trained on both types of images 
simultaneously.

Whereas we have showcased the use of MCI in a dis-
crimination context, an important next step is to identify the 
endophenotype(s) to which it is sensitive (23). Applying the 
technique to imaging data from explanted lung tissue samples 
with known characteristics could provide insight in that regard 
(24). In Appendix E7 (supplement), we discuss the spatial in-
formation inherent in MCI values and how it relates to specific 
structures in the lungs (see also Figs E2 and E3 [supplement]).

A potential application of using MCI images could be in de-
tecting other diffuse lung disease, such as early interstitial lung 
disease. Currently, there is a lack of sensitive biomarkers with 
which to follow interstitial lung disease progression and moni-
tor response to therapy (25). Preliminary data suggest that MCI 
potentially might also fill this unmet clinical need (26). In future 
work, we will investigate the ability of the MCI technique to 
differentiate between COPD, interstitial lung disease, and other 
types of lung disease. Finally, as the proposed MCI methods are 
organ and image modality agnostic, we plan to explore applica-
tions to other organs, diseases, and image modalities.

In summary, we evaluated the use of an image transforma-
tion, called the MCI, to discriminate COPD on CT images. 
Incorporated into a CNN analysis, this transformation allows 
an improvement in classification performance. Used instead in 
the context of a basic univariate classification, it still performs at 
a level that may be useful in certain types of applications. Fur-
ther investigation of MCI images for classifying diseases at CT 
is warranted.
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