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Event Rates
by Sahir Rai Bhatnagar*, Maxime Turgeon*, Jesse Islam, James A. Hanley, and Olli Saarela

Abstract In clinical studies of time-to-event data, a quantity of interest to the clinician is their patient’s
risk of an event. However, methods relying on time matching or risk-set sampling (including Cox
regression) eliminate the baseline hazard from the estimating function. As a consequence, the focus has
been on reporting hazard ratios instead of survival or cumulative incidence curves. Indeed, reporting
patient risk or cumulative incidence requires a separate estimation of the baseline hazard. Using
case-base sampling, Hanley & Miettinen (2009) explained how parametric hazard functions can be
estimated in continuous-time using logistic regression. Their approach naturally leads to estimates
of the survival or risk function that are smooth-in-time. In this paper, we present the casebase R
package, a comprehensive and flexible toolkit for parametric survival analysis. We describe how
the case-base framework can also be used in more complex settings: non-linear functions of time
and non-proportional hazards, competing risks, and variable selection. Our package also includes
an extensive array of visualization tools to complement the analysis. We illustrate all these features
through three different case studies. * SRB and MT contributed equally to this work.

1 Introduction

The semiparametric Cox model has become the default approach to survival analysis even though Cox
himself later suggested he would prefer to model the hazard function directly. In a 1994 interview with
Professor Nancy Reid, Sir David Cox was asked how he would model a set of censored survival data,
to which he responded: “I think I would normally want to tackle problems parametrically . . . and if
you want to do things like predict the outcome for a particular patient, it’s much more convenient to
do that parametrically” (Reid 1994). Indeed, the most relevant quantity in a clinical setting is often the
5- or 10-year risk of experiencing a certain event given the patient’s particular profile. However, the
most reported metric from a Cox model is the (potentially time-dependent) hazard ratio (HR). The
covariate-conditional survival curve is arguably a more important summary measure to report than
the HR. While stepwise survival curves can be computed with the Cox model, they require a second
step to separately estimate the baseline hazard (Breslow 1972).

Several authors have since pursued fully parametric approaches that made the fitting of smooth
survival curves more transparent and intuitive through generalized linear models. The key feature
of these procedures is splitting the time axis into discrete intervals. Whitehead (1980) showed the
equivalence between a Cox model and a Poisson regression with a parameter for each event time;
Carstensen (2019) provides an exposition of this equivalence with a real data example and supporting
R code for computing standard errors. Arjas & Haara (1987) and Efron (1988) treated each patient-day
as a Bernoulli random variable with probability equal to the discrete hazard rate. A potential issue
with these approaches is that the number of time bins need to be chosen by the data analyst. On the
one hand, a fine grouping of times may result in few (or none) events per interval, which then leads to
instability in the Newton-Raphson procedure for estimation (Kalbfleisch and Prentice 2011, vol. 360,
sec. 4.8), and large long-format datasets. On the other hand, a coarse grouping could potentially mask
nonlinear trends in the hazard function.

Rather than discretizing time, Hanley & Miettinen (2009) selected a discrete set of person-time
coordinates (“person-moments”) in continuous time from all observed follow-up experience constitut-
ing the study base. By doing so, they obtained a likelihood expression for the hazard function that
is equivalent to that of logistic regression with an offset term. More specifically, all person-moments
when the event of interest occurred are selected as the case series, complemented by a randomly
sampled base series of person-moments serving as controls. This approach allows flexible modeling
of the hazard function by including functions of time as covariates (e.g. using splines or generalized
additive models). Furthermore, time-dependent covariates can be modeled through interactions with
time. In short, Hanley & Miettinen (2009) use the well-understood logistic regression for directly
modeling the hazard function, without requiring a discrete-time model.

In this article, we present the casebase R package (Bhatnagar et al. 2021) which implements
and extends the Hanley & Miettinen (2009) approach for fitting fully parametric hazard models and
covariate-conditional survival curves using the familiar interface of the glm function. Our imple-
mentation includes extensions to other models such as penalized regression for variable selection
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and competing risk analysis. In addition, we provide functions for exploratory data analysis and
visualizing the estimated quantities such as the hazard function, survival curve, and their standard
errors. The ultimate goal of our package is to make fitting flexible hazards accessible to end users who
favor reporting absolute risks and survival curves over hazard ratios.

In what follows, we first recap some theoretical details on case-base sampling and its use for
estimating parametric hazard functions. We then give a short review of existing R packages that
implement comparable features to casebase. Next, we provide some details about the implementation
of case-base sampling in our package, and we give a brief survey of its main functions. This is followed
by three case studies that illustrate the flexibility and capabilities of casebase. We show how the same
framework can be used for non-linear functions of time and non-proportional hazards, competing
risks, and variable selection via penalized regression. Finally, we end the article with a discussion of
the results and of future directions.

2 Theoretical details

As discussed in Hanley & Miettinen (2009), the key idea behind case-base sampling is to consider the
entire study base as an infinite collection of person-moments. These person-moments are indexed by
both an individual in the study and a time point, and therefore each person-moment has a covariate
profile and an outcome status (i.e. whether the event happened) attached to it. By estimating the
probability of an event occurring at a particular person-moment, we can extract information about
hazards and survival.

Therefore, we start by assembling all person-moments at which the event occurred; this collection
of person-moments is what Hanley & Miettinen call the case series. The incidence of the case series
is dictated by the hazard function of interest. Next, we sample a finite number of person-moments
(blinded to case moments); this second collection of person-moments is what Hanley & Miettinen
call the base series. The sampling mechanism for the base series is left at the discretion of the user, but
in practice we find that sampling uniformly from the study base provides both simplicity and good
performance. This is the default sampling mechanism in the package.

Likelihood and estimating function

To describe the theoretical foundations of case-base sampling, we use the framework of counting
processes. In what follows, we abuse notation slightly and omit any mention of σ-algebras. Instead,
following Aalen et al (2008), we use the placeholder “past” to denote the past history of the correspond-
ing process. The reader interested in more details can refer to Saarela & Arjas (2015) and Saarela (2016).
First, let Ni(t) ∈ {0, 1} be counting processes corresponding to the event of interest for individual
i = 1, . . . , n. For simplicity, we will consider Type I censoring due to the end of follow-up at time τ
(the general case of independent censoring is treated in Saarela (2016)). We are interested in modeling
the hazard functions λi(t) of the processes Ni(t), and which satisfy

λi(t)dt = E[dNi(t) | past].

The processes Ni(t) count the person-moments from the case series.

To complement the case series, we sample person-moments for the base series. To do so, we specify
the base series sampling mechanism as non-homogeneous Poisson processes Ri(t) ∈ {0, 1, 2, . . .};
the person-moments where dRi(t) = 1 constitute the base series. We note that the same individual
can contribute multiple person-moments to the base series. The process Qi(t) = Ri(t) + Ni(t) then
counts both the case and base series person-moments contributed by individual i. As mentioned
above, the processes Ri(t) are specified by the user via its intensity function ρi(t). The process Qi(t) is
characterized by E[dQi(t) | past] = λi(t)dt + ρi(t)dt.

If the hazard function λi(t; θ) is parametrized in terms of θ, we can define an estimator θ̂ by
maximization of the likelihood expression

L0(θ) =
n

∏
i=1

exp
{
−
∫ min(ti ,τ)

0
λi(t; θ)dt

} n

∏
i=1

∏
t∈[0,τ)

λi(t; θ)dNi(t),

where ∏t∈[0,u) represents a product integral from 0 to u, and where ti is the event time for individual i.
However, the integral over time makes the computation and maximization of L0(θ) challenging using
standard software.

Case-base sampling allows us to avoid this integral. By conditioning on a sampled person-moment,
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we get individual partial likelihood contributions of the form

P(dNi(t) | dQi(t) = 1, past)
θ
∝

λi(t; θ)dNi(t)

ρi(t) + λi(t; θ)
.

By using the symbol
θ
∝, we mean that both sides of the expression are equal up to multiplicative

factors that do not depend on θ. Therefore, an estimating function for θ can be composed of these
contributions as:

L(θ) =
n

∏
i=1

∏
t∈[0,τ)

(
λi(t; θ)dNi(t)

ρi(t) + λi(t; θ)

)dQi(t)

. (1)

When a logarithmic link function is used for modeling the hazard function, the above expression is of
a logistic regression form with an offset term log(1/ρi(t)). Note that the sampling units selected in
the case-base sampling mechanism are person-moments, rather than individuals, and the parameters
to be estimated are hazards or hazard ratios rather than odds or odds ratios. Generally, an individual
can contribute more than one person-moment, and thus the terms in the product integral are not
independent. Nonetheless, Saarela (2016) showed that the corresponding partial likelihood score
function has mean zero at the true value θ = θ0, and that the resulting estimator θ̂ is asymptotically
normally distributed.

In Hanley & Miettinen (2009), the authors suggest sampling the base series uniformly from the
study base. In terms of Poisson processes, their sampling strategy corresponds to a time-homogeneous
Poisson process with intensity equal to ρi(t) = b/B, where b is the number of sampled base series
person-moments, and B is the total population-time for the study base (e.g. the sum of all individual
follow-up times). More complex examples are also possible; see for example Saarela & Arjas (2015),
where the intensity functions for the sampling mechanism are proportional to the cardiovascular
disease event rate given by the Framingham score. Non-uniform sampling mechanisms can increase
the efficiency of the resulting maximum partial likelihood estimators.

Variance estimates

The asymptotic normality of θ̂ gives us an efficient way to estimate the variance of various estimators
derived from the hazard function. For example, to construct confidence bands around risk functions
and survival functions, we can use the following procedure:

1. Compute θ̂ and its variance-covariance matrix V(θ̂) which is obtained as part of the logistic
regression output.

2. Sample B times from a multivariate normal N
(

θ̂, V(θ̂)
)

.
3. For each sample, compute the survival function using Equation (6) below.
4. Use the pointwise quantiles of these survival function estimates to construct a pointwise

confidence band for the survival function of interest.

This procedure is similar to parametric bootstrap (Efron and Tibshirani 1994, sec. 6.5), but it can be
more accurately described as a form of approximate Bayesian computation. As such, the validity of
the confidence bands relies on the Bernstein-von Mises theorem (Van der Vaart 2000, vol. 3, chap. 10).

Common parametric models

Here we show that certain named distributions such as exponential, Weibull or Gompertz can be fit
using our framework, though we are not restricted to such models. Let g(t; X) be the linear predictor
such that log(λ(t; X)) = g(t; X). Different functions of t lead to different parametric hazard models.
The simplest of these models is the one-parameter exponential distribution which is obtained by
taking the hazard function to be constant over the range of t:

log(λ(t; X)) = β0 + β1X. (2)

In this model, the instantaneous failure rate is independent of t.1

The Gompertz hazard model is given by including a linear term for time:

log(λ(t; X)) = β0 + β1t + β2X. (3)

1The conditional chance of failure in a time interval of specified length is the same regardless of how long the
individual has been in the study. This is also known as the memoryless property (Kalbfleisch and Prentice 2011).
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Use of log(t) yields the Weibull hazard which allows for a power dependence of the hazard on
time (Kalbfleisch and Prentice 2011):

log(λ(t; X)) = β0 + β1 log(t) + β2X. (4)

Competing risk analysis

Case-base sampling can also be used in the context of competing risk analysis. Assuming there are
J competing events, we can show that each sampled person-moment’s contribution to the partial
likelihood is of the form

λj(t)dNj(t)

ρ(t) + ∑J
j=1 λj(t)

,

where Nj(t) is the counting process associated with the event of type j and λj(t) is the corresponding
cause-specific hazard function. As may be expected, this functional form is similar to the terms
appearing in the likelihood function for multinomial regression with an offset term.2

Variable selection

To perform variable selection on the regression parameters θ ∈ Rp of the hazard function, we can add
a penalty to the likelihood and optimise the following equation:

min
θ∈Rp

−ℓ (θ) +
p

∑
j=1

wj pλ,α(θj) (5)

where ℓ (θ) = log L(θ) is the log of the likelihood function given in (1), pλ,α(θj) is a penalty term
controlled by the non-negative regularization parameters λ and α, and wj is the penalty factor for the
jth covariate. These penalty factors serve as a way of allowing parameters to be penalized differently.
For example, we could set the penalty factor for time to be 0 to ensure it is always included in the
selected model.

3 Comparison with existing packages

Survival analysis is an important branch of applied statistics and epidemiology. Accordingly, there is
already a vast ecosystem of R packages implementing different methodologies. In this section, we
describe how the functionalities of casebase compare to these packages.

At the time of writing, a cursory examination of CRAN’s Survival Task View reveals that there
are over 250 packages related to survival analysis (Allignol and Latouche 2019). For the purposes
of this article, we restricted our review to packages that implement at least one of the following
features: parametric modeling, non-proportional hazard models, competing risk analysis, penalized
estimation, and Cumulative Incidence (CI) estimation. By searching for appropriate keywords in the
DESCRIPTION file of these packages, we found 60 relevant packages. These 60 packages were then
manually examined to determine which ones are comparable to casebase. In particular, we excluded
packages that were focused on a different set of problems, such as frailty and multistate models. The
remaining 14 packages appear in Table 1, along with some of the functionalities they offer.

Parametric survival models are implemented in several packages, each differing in the parametric
distributions available: CFC (2019), flexsurv (2016), SmoothHazard (2017), rstpm2 (2019), mets
(2014), and survival (2015). For example, SmoothHazard is limited to Weibull distributions (2017),
whereas both flexsurv and survival allow users to supply any distribution of their choice. flexsurv,
SmoothHazard, mets and rstpm2 can model the effect of time using splines, which allows flexible
modeling of the hazard function. As discussed above, casebase can model any parametric family
whose log-hazard can be expressed as a linear combination of covariates (including time). Therefore,
our package is more general in that it allows the user to model any linear or non-linear transformation
of time including splines and higher order polynomials. Also, by including interaction terms between

2Specifically, it corresponds to the following parametrization for a multinomial random variable Y:

log
(

P(Y = j | X)

P(Y = J | X)

)
= XT β j + log(1/ρ), j = 1, . . . , J − 1.
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Table 1: Comparison of various R packages for survival analysis. Competing Risks: whether an
implementation for competing risks is present. Allows Non PH: includes models for non-proportional
hazards. Penalized Regression: allows for a penalty term on the regression coefficients when es-
timating hazards (e.g. lasso or ridge). Splines: allows a flexible fit on time through the use of
splines. Parametric: implementation for parametric models. Semi-parametric: implementation for
semi-parametric models. Interval/left censoring: models for interval and left-censoring. If this is not
selected, the package only handles right-censoring. Risk estimates: estimation of survival curve and
cumulative incidence is available.

Package Competing Risks Allows Non PH Penalized Regression Splines Parametric Semi Parametric Interval/Left Censoring Risk Estimates

casebase X X X X X X
CFC X X X X
cmprsk X X X
crrp X X X
fastcox X X

flexrsurv X X X X
flexsurv X X X X X
glmnet X X X
glmpath X X
mets X X X X

penalized X X
riskRegression X X X X
rstpm2 X X X X X X
SmoothHazard X X X X
survival X X X X X X

covariates and time, it also allows users to fit (non-proportional) time-varying coefficient models.
However, unlike flexsurv, we do not explicitly model any shape parameter.

Several packages implement penalized estimation for the Cox model: glmnet (2011), glmpath
(2018), penalized (2010), riskRegression (2020). Moreover, some packages also include penalized
estimation in the context of Cox models with time-varying coefficients: elastic-net penalization with
rstpm2 (2019), while survival (2015) has an implementation of ridge-penalized estimation. On the
other hand, our package casebase provides penalized estimation of the hazard function. To our
knowledge, casebase and rstpm2 are the only packages to offer this functionality.

Next, several R packages implement methodologies for competing risk analysis; for a different
perspective on this topic, see Mahani & Sharabiani (2019). The package survival provides functionality
for competing risk analysis and multistate modelling. The package cmprsk provides methods for
cause-specific subdistribution hazards, such as in the Fine-Gray model (1999). On the other hand, the
package CFC estimates cause-specific CIs from unadjusted, non-parametric survival functions. Our
package casebase also provides functionalities for competing risk analysis by estimating parametrically
the cause-specific hazards. From these quantities, we can then estimate the cause-specific CIs.

Finally, several packages include functions to estimate the survival function and the CI. The corre-
sponding methods generally fall into two categories: transformation of the estimated hazard function,
and semi-parametric estimation of the baseline hazard. The first category broadly corresponds to
parametric survival models, where the full hazard is explicitly modeled. Using this estimate, the
survival function and the CI can be obtained using their functional relationships (see Equations (6)
and (7) below). Packages providing this functionality include CFC, flexsurv, mets, and survival. Our
package casebase also follows this approach for both single-event and competing risk analyses. The
second category outlined above broadly corresponds to semi-parametric models. These models do
not model the full hazard function, and therefore the baseline hazard needs to be estimated sepa-
rately in order to estimate the survival function. This is achieved using semi-parametric estimators
(e.g. Breslow’s estimator) or parametric estimators (e.g. spline functions). Packages that implement this
approach include riskRegression, rstpm2, survival, and glmnet. As mentioned in the introduction,
a key distinguishing factor between these two approaches is that the first category leads to smooth
estimates of the survival function, whereas the second category often produces estimates in the form
of stepwise functions.

4 Implementation details

The functions in the casebase package can be divided into two categories: 1) exploratory data analysis,
in the form of population-time plots; and 2) parametric modeling of the hazard function. We strove
for compatibility with both data.frames and data.tables; this can be seen in the coding choices we
made and the unit tests we wrote.
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Population-time plots

Population-time plots are a descriptive visualization of incidence density, where the population time
that constitutes the study base is represented by area, and events by points within the area. The
case-base sampling approach described above can be visualized in the form of a population time plot.
These plots are informative graphical displays of survival data and should be one of the first steps in
an exploratory data analysis. The popTime function and plot method facilitate this task:

1. The casebase::popTime function takes as input the original dataset along with the column
names corresponding to the timescale, the event status and an exposure group of interest (op-
tional). This will create an object of class popTime.

2. The corresponding plot method for the object created in Step 1 can be called to create the
population time plot with several options for customizing the aesthetics.

By splitting these tasks, we give flexibility to the user. While the method call in Step 2 allows
further customization by using the ggplot2 (Wickham 2016) family of functions, users may choose the
graphics system of their choice to create population-time plots from the object created in Step 1.

To illustrate these functions, we will use data from the European Randomized Study of Prostate
Cancer Screening (ERSPC) (Schröder et al. 2009) which was extracted using the approach described
in Liu et al. (2014). This dataset is available through the casebase package. It contains the recreated
individual observations for 159,893 men from seven European countries, who were between the ages
of 55 and 69 years when recruited for the trial.

We first create the necessary dataset for producing the population time plot using the popTime
function. In this example, we stratify the plot by treatment group. The resulting object inherits from
class popTime and stores the exposure variable as an attribute:

pt_object <- casebase::popTime(ERSPC, time = "Follow.Up.Time",
event = "DeadOfPrCa", exposure = "ScrArm")

inherits(pt_object, "popTime")
#> [1] TRUE
attr(pt_object, "exposure")
#> [1] "ScrArm"

We then pass this object to the corresponding plot method:

plot(pt_object, add.base.series = TRUE)

Figure 1 depicts the process of creating a population-time plot. It is built sequentially by first
adding a layer for the area representing the population time in gray (Figure 1A), with subjects having
the least amount of observation time plotted at the top of the y-axis. We immediately notice a
distinctive stepwise shape in the population time area. This is due to the randomization of the Finnish
cohorts which were carried out on January 1 of each of year from 1996 to 1999. Coupled with the
uniform December 31 2006 censoring date, this led to large numbers of men with exactly 11, 10, 9
or 8 years of follow-up. Tracked backwards in time (i.e. from right to left), the population-time plot
shows the recruitment pattern from its beginning in 1991, and the January 1 entries in successive years.
Tracked forwards in time (i.e. from left to right), the plot for the first three years shows attrition due
entirely to death (mainly from other causes). Since the Swedish and Belgian centres were the last to
complete recruitment in December 2003, the minimum potential follow-up is three years. Tracked
further forwards in time (i.e. after year 3) the attrition is a combination of deaths and staggered entries.
As we can see, population-time plots summarise a wealth of information about the study into a simple
graph.

Next, layers for the case series and base series are added. The y-axis location of each case moment
is sampled at random vertically on the plot to avoid having all points along the upper edge of the gray
area (Figure 1B). By randomly distributing the cases, we can get a sense of the incidence density. In
Figure 1C, we see that more events are observed at later follow-up times. Therefore, a constant hazard
model would not be appropriate in this instance as it would overestimate the incidence earlier on
in time, and underestimate it later on. Finally, the base series is sampled uniformly from the study
base (Figure 1D). The reader should refer to the package vignettes for more examples and a detailed
description of how to modify the aesthetics of a population-time plot.

Parametric modeling

The parametric modeling step was separated into three parts:
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Figure 1: Population time plot for the ERSPC dataset. A: The gray area can be thought of as N=159,893
infinitely thin horizontal rectangles ordered by length of follow-up. B: The red points correspond to
when death has occurred for any one of those infinitely thin rectangles. C: To improve visibility, these
red points are randomly redistributed along their respective x-coordinates, providing a visualization
of incidence density. More events are observed at later follow-up times, motivating the use of
non-constant hazard models. D: The base series, a representative sample of the entire grey area, is
represented by the green points.

1. case-base sampling;
2. estimation of the smooth hazard function;
3. estimation of the survival function.

By separating the sampling and estimation functions, we allow the possibility of users implement-
ing more complex sampling scheme (as described in Saarela (2016)), or more complex study designs
(e.g. time-varying exposure).

The sampling scheme selected for sampleCaseBase was described in Hanley & Miettinen (2009):
we first sample along the “person” axis, proportional to each individual’s total follow-up time, and
then we sample a moment uniformly over their follow-up time. This sampling scheme is equivalent to
the following picture: imagine representing the total follow-up time of all individuals in the study
along a single dimension, where the follow-up time of the next individual would start exactly when
the follow-up time of the previous individual ends. Then the base series could be sampled uniformly
from this one-dimensional representation of the overall follow-up time. In any case, the output is a
dataset of the same class as the input, where each row corresponds to a person-moment. The covariate
profile for each such person-moment is retained, and an offset term is added to the dataset. This
output could then be used to fit a smooth hazard function, or for visualization of the base series.

Next, the fitting function fitSmoothHazard starts by looking at the class of the dataset: if it
was generated from sampleCaseBase, it automatically inherited the class cbData. If the dataset sup-
plied to fitSmoothHazard does not inherit from cbData, then the fitting function starts by calling
sampleCaseBase to generate the base series. In other words, users can bypass sampleCaseBase alto-
gether and only worry about the fitting function fitSmoothHazard.

The fitting function retains the familiar formula interface of glm. The left-hand side of the formula
should be the name of the column corresponding to the event type. The right-hand side can be any
combination of the covariates, along with an explicit functional form for the time variable. Note
that non-proportional hazard models can be achieved at this stage by adding an interaction term
involving time (cf. Case Study 1 below). The offset term does not need to be specified by the user, as it
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is automatically added to the formula before calling glm.

To fit the hazard function, we provide several approaches that are available via the family param-
eter. These approaches are:

• glm: This is the familiar logistic regression.
• glmnet: This option allows for variable selection using the elastic-net (Zou and Hastie 2005)

penalty (cf. Case Study 3). This functionality is provided through the glmnet package (Friedman,
Hastie, and Tibshirani 2010).

• gam: This option provides support for Generalized Additive Models via the mgcv package (Hastie
and Tibshirani 1987).

In the case of multiple competing events, the hazard is fitted via multinomial regression as
performed by the VGAM package. We selected this package for its ability to fit multinomial regression
models with an offset.

Once a model-fit object has been returned by fitSmoothHazard, all the familiar summary and
diagnostic functions are available: print, summary, predict, plot, etc. Our package provides one more
functionality: it computes risk functions from the model fit. For the case of a single event, it uses the
familiar identity

S(t) = exp
(
−
∫ t

0
λ(u; X)du

)
. (6)

The integral is computed using either the numerical or Monte-Carlo integration. The risk function (or
cumulative distribution function) is then defined as

F(t) = 1 − S(t). (7)

For the case of a competing-event analysis, the event-specific risk is computed using the following
procedure: first, we compute the overall survival function (i.e. for all event types):

S(t) = exp
(
−
∫ t

0
λ(u; X)du

)
, λ(t; X) =

J

∑
j=1

λj(t; X).

From this, we can derive the cause-specific subdensities:

f j(t) = λj(t)S(t).

By integrating these subdensities, we obtain the cause-specific CI functions:

CIj(t) =
∫ t

0
f j(u)du.

Again, the integrals are computed using either numerical integration (via the trapezoidal rule) or
Monte Carlo integration. This option is controlled by the argument method of the absoluteRisk
function.

Finally, the output from absoluteRisk can be passed to a method confint to compute confidence
bands around the survival function, as described in the Theoretical Details section. These bands are
only valid when family = "glm" as it relies on the asymptotic normality of the estimator. Currently,
this is only available for the single-event setting.

5 Illustration of package

In this section, we illustrate the main functions of the casebase package through three case studies.
Each one showcases a different type of analysis. First, we show how to model non-constant and
non-proportional hazards through a flexible specification of time. Then we perform a competing risk
analysis and compare our results with the Cox model and the Fine-Gray model. The third case study
illustrates how to perform variable selection in high-dimensional datasets.

Case study 1—flexible modeling of the hazard function

For our first case study, we return to the ERSPC study and investigate the differences in risk between
the control and screening arms. Previous re-analyses of these data suggest that the 20% reduction in
prostate cancer death due to screening was an underestimate (Hanley 2010). The estimated 20% (from
a proportional hazards model) did not account for the delay between screening and the time the effect
is expected to be observed. As a result, the null effects in years 1–7 masked the substantial reductions
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that began to appear from year 8 onward. This motivates the use of a time-dependent hazard ratio
which can easily be fit with the casebase package by including an interaction term with time in the
model. We fit a flexible hazard by using a smooth function of time modeled with a penalized cubic
spline basis with 2 degrees of freedom (implemented in the survival::pspline function). The model
is fit using fitSmoothHazard with the familiar formula interface:

fit <- fitSmoothHazard(DeadOfPrCa ~ pspline(Follow.Up.Time, df = 2) * ScrArm,
data = ERSPC, ratio = 10)

The output object from fitSmoothHazard inherits from the singleEventCB and glm classes. For
this reason, we can leverage the summary method for glm objects to output a familiar summary of the
results:

summary(fit)
#> Fitting smooth hazards with case-base sampling
#>
#> Sample size: 159893
#> Number of events: 540
#> Number of base moments: 5400
#> ----
#>
#> Call:
#> fitSmoothHazard(formula = DeadOfPrCa ~ pspline(Follow.Up.Time,
#> df = 2) * ScrArm, data = ERSPC, ratio = 10)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -1.168 -0.486 -0.414 -0.215 3.262
#>
#> Coefficients:
#> Estimate Std. Error
#> (Intercept) -13.81 9.98
#> pspline(Follow.Up.Time, df = 2)1 2.66 10.96
#> pspline(Follow.Up.Time, df = 2)2 6.43 9.73
#> pspline(Follow.Up.Time, df = 2)3 5.57 10.10
#> pspline(Follow.Up.Time, df = 2)4 7.27 9.90
#> pspline(Follow.Up.Time, df = 2)5 6.54 10.10
#> pspline(Follow.Up.Time, df = 2)6 10.82 10.03
#> pspline(Follow.Up.Time, df = 2)7 -11.74 30.13
#> ScrArmScreening group 9.22 13.35
#> pspline(Follow.Up.Time, df = 2)1:ScrArmScreening group -9.25 14.85
#> pspline(Follow.Up.Time, df = 2)2:ScrArmScreening group -9.80 12.97
#> pspline(Follow.Up.Time, df = 2)3:ScrArmScreening group -9.04 13.54
#> pspline(Follow.Up.Time, df = 2)4:ScrArmScreening group -9.39 13.23
#> pspline(Follow.Up.Time, df = 2)5:ScrArmScreening group -10.65 13.55
#> pspline(Follow.Up.Time, df = 2)6:ScrArmScreening group -8.86 13.46
#> pspline(Follow.Up.Time, df = 2)7:ScrArmScreening group -11.58 36.92
#> z value Pr(>|z|)
#> (Intercept) -1.38 0.17
#> pspline(Follow.Up.Time, df = 2)1 0.24 0.81
#> pspline(Follow.Up.Time, df = 2)2 0.66 0.51
#> pspline(Follow.Up.Time, df = 2)3 0.55 0.58
#> pspline(Follow.Up.Time, df = 2)4 0.73 0.46
#> pspline(Follow.Up.Time, df = 2)5 0.65 0.52
#> pspline(Follow.Up.Time, df = 2)6 1.08 0.28
#> pspline(Follow.Up.Time, df = 2)7 -0.39 0.70
#> ScrArmScreening group 0.69 0.49
#> pspline(Follow.Up.Time, df = 2)1:ScrArmScreening group -0.62 0.53
#> pspline(Follow.Up.Time, df = 2)2:ScrArmScreening group -0.76 0.45
#> pspline(Follow.Up.Time, df = 2)3:ScrArmScreening group -0.67 0.50
#> pspline(Follow.Up.Time, df = 2)4:ScrArmScreening group -0.71 0.48
#> pspline(Follow.Up.Time, df = 2)5:ScrArmScreening group -0.79 0.43
#> pspline(Follow.Up.Time, df = 2)6:ScrArmScreening group -0.66 0.51
#> pspline(Follow.Up.Time, df = 2)7:ScrArmScreening group -0.31 0.75
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#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#> Null deviance: 3619.1 on 5939 degrees of freedom
#> Residual deviance: 3359.1 on 5924 degrees of freedom
#> AIC: 3391
#>
#> Number of Fisher Scoring iterations: 7

As noted in the Theoretical Details section, the usual asymptotic results hold for likelihood ratio
tests built using case-base sampling models. Therefore, we can easily test the significance of the spline
term and its interaction with time:

anova(fit, test = "LRT")
#> Analysis of Deviance Table
#>
#> Model: binomial, link: logit
#>
#> Response: DeadOfPrCa
#>
#> Terms added sequentially (first to last)
#>
#>
#> Df Deviance Resid. Df Resid. Dev
#> NULL 5939 3619
#> pspline(Follow.Up.Time, df = 2) 7 246.6 5932 3373
#> ScrArm 1 5.6 5931 3367
#> pspline(Follow.Up.Time, df = 2):ScrArm 7 7.9 5924 3359
#> Pr(>Chi)
#> NULL
#> pspline(Follow.Up.Time, df = 2) <2e-16 ***
#> ScrArm 0.018 *
#> pspline(Follow.Up.Time, df = 2):ScrArm 0.343
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Similarly, to compare different models (e.g. time modeled linearly), we could compute Akaike’s
Information Criterion (AIC) for each model.

Time-dependent hazard ratios

In what follows, the hazard ratio for a variable X is defined as

λ
(

t|X = x1, Z = z; β̂
)

λ(t|X = x0, Z = z; β̂)

where λ(t|·; β̂) is the hazard rate as a function of the variable t (which is usually time, but can be any
other continuous variable), x1 is the value of X for the exposed group, x0 is the value of X for the
unexposed group, Z are other covariates in the model which are equal to z in both the exposed and
unexposed group, and β̂ are the estimated regression coefficients. As indicated by the formula above,
it is most instructive to plot the hazard ratio as a function of a variable t only if there is an interaction
between t and X. Otherwise, the resulting plot will simply be a horizontal line across time.

The plot method with type="hr" for objects of class singleEventCB can be used to compute
time-dependent hazard ratios and confidence intervals. In Figure 2, we show the estimated hazard
ratio and 95% confidence interval for screening vs. control group as a function of time. Note that we
must specify the covariate profile for the reference group and times for the predicted hazards.

new_time <- seq(1, 12, by = 0.1)
new_data <- data.frame(ScrArm = factor("Control group",

levels = c("Control group","Screening group")),
Follow.Up.Time = new_time)

plot(fit, type = "hr", newdata = new_data,
var = "ScrArm", xvar = "Follow.Up.Time", ci = TRUE)
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Figure 2: Estimated hazard ratio and 95% confidence interval for screening vs. control group as a
function of time in the ERSPC dataset. Hazard ratios are estimated from fitting a parametric hazard
model as a function of the interaction between a cubic pspline basis (df=2) of follow-up time and
treatment arm. 95% confidence intervals are calculated using the delta method. The plot shows that
the effect of screening only begins to become statistically apparent by year 7. The 25-60% reductions
seen in years 8-12 of the study suggests a much higher reduction in prostate cancer due to screening
than the single overall 20% reported in the original article.

The plot shows that the effect of screening only becomes statistically apparent by year 7 and later.
The 25-60% reductions seen in years 8-12 of the study suggests a much higher reduction in prostate
cancer due to screening than the single overall 20% reported in the original article.

A more parsimonious model based on these results could be constructed as follows:

log λ (t | Z) =

{
α, t < t0

α + βZ(t − t0), t ≥ t0
,

where t0 ≈ 7 years. This model corresponds to a hazard ratio that is constant and equal to 1 until
t = t0, after which it decreases exponentially. If we fix the value t0, we can easily implement this
model using our package; for example:

fitSmoothHazard(DeadOfPrCa ~ as.integer(Follow.Up.Time >= t0) :
ScrArm : I(Follow.Up.Time - t0),

data = ERSPC)

Here, we use the binary variable as.integer(Follow.Up.Time >= t0) in order to write the two
cases of our formula above in a more compact way. We also use the function I(), which allows us
to specify new variables within the formula using normal R code. This is required, as otherwise the
symbol - would be interpreted as a formula operator. Finally, the term ScrArm : I(Follow.Up.Time -
t0) represents the product Z(t − t0) in the equation above. We use the operator : instead of * in order
to only include the interaction term, not the main effects.

Alternatively, the breakpoint t0 could also be estimated by combining case-base sampling with
segmented regression. However, this extension is beyond the current scope of casebase.
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Hazard functions

Modeling the hazard function directly allows us to easily visualize it with the plot method and
type="hazard" for objects of class singleEventCB. We plot the hazard functions for both treatment
arms in Figure 3. The pattern we see is consistent with the population-time plot shown in Figure 1C,
where more events are observed at later follow-up times. The drop at the end can be explained by the
fact that very few observations were followed for the entire 15 year period.

plot(fit, type = "hazard",
hazard.params = list(xvar = "Follow.Up.Time",

by = "ScrArm"))
#> Conditions used in construction of plot
#> ScrArm: Control group / Screening group
#> offset: 0
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Figure 3: Estimated hazard functions for control and screening groups in the ERSPC dataset. Hazards
are estimated from fitting a parametric model with casebase sampling as a function of the interaction
between a cubic pspline basis (df=2) of follow-up time and treatment arm. The package vignettes
provide a detailed description of how to plot hazard functions for any combination of covariates along
with confidence bands.

Absolute risk

Next, the absoluteRisk function takes as input the singleEventCB object and returns a matrix where
each column corresponds to the covariate profiles specified in the newdata argument, and each row
corresponds to time points specified by the time argument:

new_data <- data.frame(ScrArm = c("Control group", "Screening group"))
new_time <- seq(0,14,0.1)
risk <- absoluteRisk(fit, time = new_time, newdata = new_data)

We can subsequently compute confidence intervals for the risk function using the method
confint.absRiskCB:

conf_ints <- confint(risk, fit)
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head(conf_ints)
#> time estimate conf.low conf.high cov_prof
#> 1 0.0 0.0e+00 0.0e+00 0.0e+00 Control group
#> 2 0.1 1.8e-06 1.9e-07 1.2e-05 Control group
#> 3 0.2 3.9e-06 4.8e-07 2.2e-05 Control group
#> 4 0.3 6.1e-06 9.0e-07 3.2e-05 Control group
#> 5 0.4 8.7e-06 1.5e-06 4.1e-05 Control group
#> 6 0.5 1.2e-05 2.3e-06 5.0e-05 Control group

In Figure 4, we see the 95% confidence bands around the estimates. We also overlay the Kaplan-
Meier curves as a reference.
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Figure 4: Risk function estimates for control and screening groups in the ERSPC data using case-base
sampling and Kaplan-Meier, along with 95% confidence bands. The smooth curve (case-base sampling)
vs. step function (Cox model) highlight one of the main differences between the two approaches. The
larger confidence bands in the later years is due to the relatively few number of individuals who were
followed for more than 12 years.

Case study 2—competing risk analysis

In this case study, we show how case-base sampling can be used in the context of a competing risk
analysis. For illustrative purposes, we use the same data that was used in Scrucca et al (2010). The
data was downloaded from the first author’s website, and it is now available as part of the casebase
package.

The data contains information on 177 patients who received a stem-cell transplant for acute
leukemia. The event of interest is relapse, but other competing causes (e.g. death, progression, graft
failure, graft-versus-host disease) were also recorded. Several covariates were captured at baseline:
sex, disease type (acute lymphoblastic or myeloblastic leukemia, abbreviated as ALL and AML,
respectively), disease phase at transplant (Relapse, CR1, CR2, CR3), source of stem cells (bone marrow
and peripheral blood, coded as BM+PB, or only peripheral blood, coded as PB), and age.

First, we look at a population-time plot to visualize the incidence density of both relapse and the
competing events. In Figure 5, failure times are highlighted on the plot using red dots for the event of
interest and blue dots for competing events. In this plot, we see evidence of a non-constant hazard
function: the density of points is larger at the beginning of follow-up than at the end.
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Figure 5: Population-time plot for the stem-cell transplant study with both relapse and competing
events. The area representing the population time is shown in gray, with subjects having the least
amount of observation time plotted at the top of the y-axis. The y-axis location of each case series and
competing event moment is sampled at random vertically on the plot to avoid having all points along
the upper edge of the gray area. The density of points at the beginning of follow-up relative to the end
indicates a non-constant hazard function.

Our main objective is to compute the cumulative incidence of relapse for a given set of covariates.
We start by fitting a smooth hazard to the data using a linear term for time:

model_cb <- fitSmoothHazard(
Status ~ ftime + Sex + D + Phase + Source + Age,
data = bmtcrr,
ratio = 100,
time = "ftime"

)

We want to compare our hazard ratio estimates to that obtained from a Cox regression (using the
survival package version 3.2-13).

library(survival)
# Prepare data for coxph
bmtcrr_cox <- transform(bmtcrr,

id = seq_len(nrow(bmtcrr)),
Status = factor(Status))

model_cox <- coxph(Surv(ftime, Status) ~ Sex + D + Phase + Source + Age,
data = bmtcrr_cox, id = id)

From the fit object, we can extract both the hazard ratios and their corresponding confidence
intervals. These quantities appear in Table 2. As we can see, the type of disease corresponds to a
significant hazard ratio: the hazard for AML is about half that for ALL. Moreover, being in relapse at
transplant is associated with a hazard ratio of 4.22 when compared to CR1.

Given the estimate of the hazard functions obtained using case-base sampling, we can compute
the cumulative incidence curve for a fixed covariate profile. We perform this computation for a 35
year old woman who received a stem-cell transplant from peripheral blood at relapse. We compare
the absolute risk curve for such a woman with ALL with that for a similar woman with AML.
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Table 2: Estimates and confidence intervals for the hazard ratios for each coefficient. Both estimates
from case-base sampling and Cox regression are presented.

Case-Base Cox

Covariates HR 95% Conf. HR 95% Conf.

Sex 0.73 (0.42, 1.27) 0.68 (0.39, 1.21)
Disease 0.54 (0.3, 0.98) 0.52 (0.28, 0.94)
Phase (CR2 vs. CR1) 1.19 (0.48, 2.97) 1.21 (0.47, 3.09)
Phase (CR3 vs. CR1) 1.44 (0.37, 5.64) 1.67 (0.46, 6.08)
Phase (Relapse vs. CR1) 4.22 (1.95, 9.12) 4.55 (1.98, 10.46)

Source 1.46 (0.48, 4.46) 1.46 (0.47, 4.53)
Age 0.99 (0.97, 1.02) 0.99 (0.97, 1.02)

Next, we compare our estimates to that obtained from a corresponding Fine-Gray model (1999).
The Fine-Gray model is a semiparametric model for the cause-specific subdistribution hazard, i.e. the
function dj(t) such that

CIj(t) = 1 − exp
(
−
∫ t

0
dj(u)du

)
,

where CIj(t) is the cause-specific CI. The Fine-Gray model allows to directly assess the effect of a
covariate on the subdistribution hazard, as opposed to the cause-specific hazard. For the computation,
we use the timereg package (Thomas H. Scheike and Zhang 2011):

library(timereg)
model_fg <- comp.risk(Event(ftime, Status) ~ const(Sex) + const(D) +

const(Phase) + const(Source) + const(Age),
data = bmtcrr, cause = 1, model = "fg")

# Estimate CI curve
risk_fg <- predict(model_fg, newdata, times = time_points)

We can also estimate the CI for relapse using the Cox model and the Aalen-Johansen estimator:

# Estimate absolute risk curve
risk_cox <- survfit(model_cox, newdata = newdata)

Figure 6 shows the CI curves for all three models. As we can see, all three approaches agree quite
well for AML; however, for ALL, there seems to be a difference of about 5% between the Fine-Gray
curve and the curves estimated using case-base sampling and Cox regression. This difference does
not appear to be significant: the curve from case-base sampling is contained within a 95% confidence
band around the Fine-Gray absolute risk curve (figure not shown).

Case study 3—variable selection

For the third case study, we show how casebase can also be used for variable selection through
regularized estimation of the hazard function as given by Equation (5). We note that this is different
than the semiparametric model Coxnet, which regularizes the Cox partial likelihood. To illustrate
this functionality, we use the dataset from the Study to Understand Prognoses Preferences Outcomes
and Risks of Treatment (SUPPORT) (Knaus et al. 1995).3 The SUPPORT dataset tracks death in five
American hospitals within individuals who are considered seriously ill. The cleaned and imputed data
consists of 9104 observations and 30 variables, and it is available as part of the casebase package. In
the comparisons below, all covariates except sps and aps were used. These two variables correspond
to scores for predicting the outcome that were developed as part of the original study. For more
information about this dataset, the reader is encouraged to look at the documentation in our package.

For our penalized case-base model, we opt for the natural log of time which corresponds to
a Weibull distribution. For fitting the penalized hazard, we use fitSmoothHazard.fit, which is a
matrix interface to the fitSmoothHazard function. The fitSmoothHazard and fitSmoothHazard.fit

3The original data is available online from the Department of Biostatistics at Vanderbilt University: https:
//biostat.app.vumc.org/wiki/Main/SupportDesc
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Figure 6: Cumulative Incidence curve for a fixed covariate profile and the two disease groups. The
estimate obtained from case-base sampling is compared to the Fine-Gray and Aalen-Johansen estimates.
In general, the three approaches agree quite well for AML, while there seems to be a difference of
about 5% between the Fine-Gray curve and the curves estimated using case-base sampling and Cox
regression for ALL. However, this difference does not appear to be significant as the curve from
case-base sampling is contained within a 95% confidence band around the Fine-Gray absolute risk
curve (figure not shown).

functions sample the case and base series, calculate the required offset, and transform the data to
match the expected input of the glmnet package. The penalized logistic regression is then fit for
multiple values of the tuning parameter using the function glmnet::cv.glmnet and the binomial
family. To fitSmoothHazard.fit, we supply both a matrix y containing the time and event variables,
and a matrix x containing all other covariates. We apply the lasso penalty by setting alpha = 1 and
assign a penalty.factor (wj; cf. Equation (5)) of 0 to the time variable to ensure it is in the selected
model. We compare our approach to both Cox regression, and lasso penalized Cox regression (fitted
via the glmnet package and using the Cox family).

To compare the performance of our models, we split the data into 95% training and 5% test sets. To
assess both discrimination and calibration, we use a time-dependent version of the classical Brier score
that is adjusted for censoring (Graf et al. 1999). The Brier score can be used with both parametric and
semi-parametric models. We use the riskRegression package to compute these scores for all models.

# Create matrices for inputs
x <- model.matrix(death ~ . - d.time - aps - sps,

data = train)[, -c(1)] # Remove intercept
y <- data.matrix(subset(train, select = c(d.time, death)))

# Regularized logistic regression to estimate hazard
pen_cb <- casebase::fitSmoothHazard.fit(x, y,
family = "glmnet",
time = "d.time", event = "death",
formula_time = ~ log(d.time), alpha = 1,
ratio = 10, standardize = TRUE,
penalty.factor = c(0, rep(1, ncol(x)))

)

In Figure 7, we show the coefficient estimates for covariates that we selected by both penalized
Cox and penalized case-base. We note that both penalized approaches produce similar results. We can
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also clearly see the shrinkage effect owing to the ℓ1 penalty.
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Figure 7: Coefficient estimates from the Cox model (Cox), penalized Cox model using the glmnet
package (Pen. Cox), and our approach using penalized case-base sampling (Pen. CB). Only the
covariates that were selected by both penalized approaches are shown. The shrinkage of the coefficient
estimates for Pen. Cox and Pen. CB occurs due to the ℓ1 penalty.

We then compare the risk estimation over the test set. The predicted probabilities for each test set
observation are averaged, resulting in the absolute risk curves shown in Figure 8A. The Kaplan-Meier
curve is calculated on the test set only. We see minimal differences between the four approaches across
follow-up-time. Note that the apparent smoothness of the Cox and penalized Cox curves is due to
the large number of observations in the training set, which is used to derive the Breslow estimate
of the baseline hazard. As described above, we compare the performance between the models by
computing the Brier scores over time. In Figure 8B, we see that the adjusted models all perform
similarly, outperforming the Kaplan-Meier estimate.

6 Discussion

In this article, we presented the R package casebase, which provides functions for fitting smooth
parametric hazards and estimating risk functions using case-base sampling. Our package also provides
several functions to produce graphical summaries of the data and the results. We outlined the
theoretical underpinnings of the approach, we provided details about our implementation, and we
illustrated the merits of the case-base framework and the package through three case studies.

As a methodological framework, case-base sampling is very flexible. Some of this flexibility has
been explored before in the literature: for example, Saarela and Hanley (2015) used case-base sampling
to model a time-dependent exposure variable in a vaccine safety study. As another example, Saarela
and Arjas (2015) combined case-base sampling and a Bayesian non-parametric framework to compute
individualized risk assessments for chronic diseases. In the case studies above, we further explored
this flexibility along two fronts. On the one hand, we showed how splines could be used as part
of the linear predictor to model the effect of time on the hazard. This strategy yielded estimates of
the survival function that were qualitatively similar to semiparametric estimates derived from Cox
regression; however, case-base sampling led to estimates of the survival function that vary smoothly in
time and are thus easier to interpret. On the other hand, we also displayed the flexibility of case-base
sampling by showing how it could be combined with penalized logistic regression to perform variable
selection. Furthermore, the second case study showed how case-base sampling can be applied to
competing risks settings. It should be noted that the three case studies presented above only considered
covariates that were fixed at baseline. In one of the package vignettes, we use the Stanford Heart
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Figure 8: Comparison of Cox regression (Cox), penalized Cox regression (Pen. Cox), penalized case-
base sampling estimation (Pen. CB), and Kaplan-Meier (K-M). (A) Probability of death as a function of
follow-up time which is the average of the predicted probabilities for each test set observation. The
Kaplan-Meier curve is calculated on the test set only. We see minimal differences between the four
approaches across follow-up-time for the absolute risk curves. Note that the apparent smoothness of
the Cox and penalized Cox curves is due to the large number of observations in the training set, which
is used to derive the Breslow estimate of the baseline hazard. (B) Brier score as a function of follow-up
time, where a lower score corresponds to better performance. We see that the adjusted models all
perform similarly, outperforming the Kaplan-Meier estimate.

Transplant data Crowley and Hu (1977) to show how case-base sampling can also be used in the
context of time-dependent exposure. In this study, the exposure period was defined as the week
following vaccination. Hence, the main covariate of interest, i.e. exposure to the vaccine, was changing
over time. In this context, case-base sampling offers an efficient alternative to nested case-control
designs or self-matching.

Even though we did not illustrate it in this article, case-base sampling can also be combined with
the framework of generalized additive models. This functionality has already been implemented in
the package. Similarly, case-base sampling can be combined with quasi-likelihood estimation to fit
survival models that can account for the presence of over-dispersion. All of these examples illustrate
how the case-base sampling framework in general, and the package casebase in particular, allows the
user to fit a broad and flexible family of survival functions.

Poisson regression can also be used to estimate the full hazard by discretizing time. However, this
method requires user input on the number of intervals, or equivalently, on the cut points. This choice
made by the user can have a significant impact on the model. Small intervals may result in many
empty, non-informative bins. This may cause convergence issues for the Newton-Raphson procedure
(Kalbfleisch and Prentice 2011). If the intervals are too wide, the nonlinear trends that are present
in the hazard may be masked. Rather than discretizing time like in Poisson regression, case-base
sampling provides a continuous-time approach to using GLMs for estimating hazard functions.

As presented in Hanley & Miettinen (2009), case-base sampling is comprised of three steps: 1)
sampling a case series and a base series from the study; 2) fit the log-hazard as a linear function of
predictors (including time); and 3) use the fitted hazard to estimate the risk function. Accordingly,
our package provides functions for each step. Moreover, the simple interface of the fitSmoothHazard
function resembles the glm interface. This interface should look familiar to new users. Our modular
approach also provides a convenient way to extend our package for new sampling or fitting strategies.

In the case studies above, we compared the performance of case-base sampling with that of Cox
regression and Fine-Gray models. In terms of function interface, casebase uses a formula interface that
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is closer to that of glm, in that the event variable is the only variable appearing on the left-hand side
of the formula. By contrast, both survival::coxph and timereg::comp.risk use arrays that capture
both the event type and time. Both approaches to modeling yield user-friendly code. However, in
terms of output, both approaches differ significantly. Case-base sampling produces smooth hazards
and smooth survival curves, whereas Cox regression and Fine-Gray models produce stepwise CIs
and never explicitly model the hazard function. Qualitatively, we showed that by using splines in the
linear predictor, all three models yielded similar curves.

Our choice of modeling the log-hazard as a linear function of covariates allows us to develop a
simple computational scheme for estimation. However, as a downside, it does not allow us to model
location and scale parameters separately like the package flexsurv. For example, if we look at the
Weibull distribution as parametrised in stats::pweibull, the log-hazard function is given by

log λ(t; α, β) = [log(α/β)− (α − 1) log(β)] + (α − 1) log t,

where α, β are shape and scale parameters, respectively. Unlike casebase, the approach taken by
flexsurv also allows the user to model the scale parameter as a function of covariates. Of course,
this added flexibility comes at the cost of interpretability: by modeling the log-hazard directly, the
parameter estimates from casebase can be interpreted as estimates of log-hazard ratios. To improve
the flexibility of casebase at capturing the scale of a parametric family, we could replace the logistic
regression with its quasi-likelihood counterpart and therefore model over- and under-dispersion with
respect to the logistic likelihood. We defer the study of the properties and performance of such a
model to a future article.

Future work will look at some of the methodological extensions of case-base sampling. First, to
assess the quality of the model fit, we would like to study the properties of the residuals (e.g. Cox-
Snell, martingale). More work needs to be done to understand these residuals in the context of
the partial likelihood underlying case-base sampling. The resulting diagnostic tools could then be
integrated in this package. Also, we are interested in extending case-base sampling to account for
interval censoring. This type of censoring is very common in longitudinal studies, and many packages
(e.g. SmoothHazard, survival and rstpm2) provide functions to account for it. Again, we hope to
include any resulting methodology as part of this package.

In future versions of the package, we also want to increase the complement of diagnostic and
inferential tools that are currently available. For example, we would like to include more functions to
compute calibration and discrimination statistics (e.g. AUC) for our models. Saarela and Arjas (2015)
also describe how to obtain a posterior distribution for the AUC from their model. Their approach
could potentially be included in casebase. Finally, we want to provide more flexibility in how the
case-base sampling is performed. This could be achieved by adding a hazard argument to the function
sampleCaseBase. In this way, users could specify their own sampling mechanism. For example, they
could provide a hazard that gives sampling probabilities that are proportional to the cardiovascular
disease event rate given by the Framingham score (Saarela and Arjas 2015).

In conclusion, we presented the R package casebase which implements case-base sampling for
fitting parametric survival models and for estimating smooth survival functions using the frame-
work of generalized linear models. We strongly believe that its flexibility and its foundation on the
familiar logistic regression model will make it appealing to new and established practitioners. The
casebase package is freely available from the Comprehensive R Archive Network at https://cran.r-
project.org/package=casebase. Interested users can visit http://sahirbhatnagar.com/casebase/
for detailed package documentation and vignettes.
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