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Abstract
Interactions between genes and environmental factors may play a key role in the etiology of many common disorders.
Several regularized generalized linear models have been proposed for hierarchical selection of gene by environment
interaction effects, where a gene-environment interaction effect is selected only if the corresponding genetic main effect
is also selected in the model. However, none of these methods allow to include random effects to account for popu-
lation structure, subject relatedness and shared environmental exposure. In this article, we develop a unified approach
based on regularized penalized quasi-likelihood estimation to perform hierarchical selection of gene-environment inter-
action effects in sparse regularized mixed models. We compare the selection and prediction accuracy of our proposed
model with existing methods through simulations under the presence of population structure and shared environmental
exposure. We show that for all simulation scenarios, including and additional random effect to account for the shared
environmental exposure reduces the false positive rate and false discovery rate of our proposed method for selection
of both gene-environment interaction and main effects. Using the F1 score as a balanced measure of the false discovery
rate and true positive rate, we further show that in the hierarchical simulation scenarios, our method outperforms
other methods for retrieving important gene-environment interaction effects. Finally, we apply our method to a real data
application using the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study, and found that our
method retrieves previously reported significant loci.

Keywords
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1 Introduction
Genome-wide association studies (GWASs) have led to the identification of hundreds of common genetic variants, or single
nucleotide polymorphisms (SNPs), associated with complex traits1 and are typically conducted by testing association on
each SNP independently. However, these studies are plagued with the multiple testing burden that limits discovery of
potentially important predictors, as genome-wide significance p-value threshold of 5 × 10−8 has become the standard.
Moreover, GWASs have brought to light the problem of missing heritability, that is, identified variants only explain a low
fraction of the total observed variability for traits under study.2 Beyond the identified genetic variants, interactions between
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genes and environmental factors may play a key role in the multifactorial etiology of many complex diseases that are subject
to both genetic and environmental risk factors. For example, in assessing interactions between a polygenic risk score (PRS)
and non-genetic risk factors for young-onset breast cancers (YOBC), Shi et al.3 showed a decreased association between
the PRS and YOBC risk for women who had ever used hormonal birth control, suggesting that environmental exposure
might result in risk stratification by interacting with genetic factors. Thus, there is a rising interest for discovering gene-
environment interaction (GEI) effects as they are fundamental to better understand the effect of environmental factors in
disease and to increase risk prediction accuracy.4

Several regularized generalized linear models (GLMs) have been proposed for selection of both genetic and GEI effects
in genetic association studies,5–7 but currently no such method allows to include any random effect to account for genetic
similarity between subjects. Indeed, one can control for population structure and/or closer relatedness by including in the
model a polygenic random effect with variance-covariance structure proportional to a kinship or genetic similarity matrix
(GSM).8 However, because kinship is a high-dimensional process, it cannot be fully captured by including only a few
principal components (PCs) as fixed effects in the model.9 Hence, while both PC analysis (PCA) and mixed models (MMs)
share the same underlying model, MMs are more robust in the sense that they do not require distinguishing between the
different types of confounders.10 Moreover, MMs alleviate the need to evaluate the optimal number of PCs to retain in the
model as fixed effects.

Except for normal responses, the joint estimation of variance components and fixed effects in regularized models is
challenging both from a computational and analytical point of view, as the marginal likelihood for a generalized linear
mixed model (GLMM) has no analytical form. To address these challenges, penalized quasi-likelihood (PQL) estimation
is conceptually attractive as under this method, random effects can be treated as fixed effects, which allows to perform
regularized estimation of both fixed and random effects as in the GLM framework. The computational efficiency of mul-
tivariable methods for high-dimensional MMs rely on performing a single spectral or Cholesky decomposition of the
covariance matrix to rotate the phenotype and design matrix such that the transformed data become uncorrelated. For very
large sample sizes, computing these decompositions can be very burdensome, with complexity of O(n3), where n is the
sample size. Secondly, to obtain regularized estimates for the genetic predictors and GEI effects in linear mixed models
(LMMs), we need to perform matrix multiplications with complexity of O(n2) and O(n2p) to rotate the phenotype and
genotype matrices respectively, with p the number of genetic predictors. Even for moderately small cohorts, the number of
predictors in GWAS is often greater than 1 million, such that the genotype matrix itself will require around one terabyte of
space to be loaded in memory in a normal double-precision format.11 In PQL regularized models, by minimizing the objec-
tive function with respect to the fixed effects vector only, we need not rotate the genotype matrix as we are conditioning on
the random effects vector estimate.

Several authors have proposed to combine PQL estimation in presence of sparsity by inducing regularization to perform
joint selection of fixed and/or random effects in multivariable GLMMs.12–14 However, these methods were not developed
to specifically address selection of GEI effects. Although it is possible to perform naive selection of fixed and GEI effects
by simply considering interaction terms as additional predictors, the aforementioned methods are not tailored to perform
hierarchical selection, where interaction terms are only allowed to be selected if their corresponding main effects are active
(i.e. non-zero) in the model.15 Hierarchical variable selection of GEI effects is appealing both for increasing statistical
power16 and for enhancing model interpretability because interaction terms that have large main effects are more likely to
be retained in the model.

Population structure and closer relatedness may also cause dependence between gene and environment, leading to selec-
tion of spurious GEI effects.17 In the context of GWAS, Sul et al.18 showed that under the polygenic model, ignoring this
dependence may largely increase the false positive rate of GEI statistics. They proposed introducing an additional random
effect that captures the similarity of individuals due to polygenic GEI effects to account for the fact that individuals who
are genetically related and who share a common environmental exposure are more closely related. To our knowledge, the
spurious selection of GEI effects in regularized models due to the dependence between gene and shared environmental
exposure has not been explored yet. Thus, further work is needed to develop sparse regularized GLMMs for hierarchical
selection of GEI effects in genetic association studies, while explicitly accounting for the complex correlation structure
between individuals that arises from both genetic and environmental factors.

In this article, we develop a unified approach based on regularized PQL estimation to perform hierarchical selection
of GEI effects in sparse regularized logistic mixed models. Similar to Sul et al.,18 we use a random effect that captures
population structure and closer relatedness through a genetic kinship matrix, and shared environmental exposure through a
GxE kinship matrix. We propose to use a composite absolute penalty (CAP) for hierarchical variable selection19 to seek a
sparse subset of genetic and GEI effects that gives an adequate fit to the data. We derive a proximal Newton-type algorithm
with block coordinate descent for PQL estimation with mixed lasso and group lasso penalties, relying on our previous
work to address computational challenges associated with regularized PQL estimation in high-dimensional data.12 We



St-Pierre et al. 3

compare the prediction and selection accuracy of our proposed model with existing methods through simulations under the
presence of population structure and environmental exposure. Finally, we also apply our method to a real data application
using the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study cohort20 to study the sex-specific
association between temporomandibular disorder (TMD) and genetic predictors.

2 Methodology

2.1 Model
We have the following GLMM

g(𝜇i) = 𝜂i = Zi𝜽 + Di𝛼 + Gi𝜷 + (DiGi)𝜸 + bi (1)

for i = 1,… , n, where 𝜇i = 𝔼(yi|Z i, Gi, Di, bi), Z i is a 1 × m row vector of covariates for subject i, Gi is a 1 × p row vector
of genotypes for subject i taking values {0, 1, 2} as the number of copies of the minor allele, (𝜽⊺,𝜷⊺)⊺ is a (m + p) × 1
column vector of fixed covariate and additive genotype effects including the intercept, Di is the exposure of individual i
to a binary or continous environmental factor D with fixed effect 𝛼, and 𝜸 = (𝛾1, 𝛾2,… , 𝛾p)⊺ ∈ ℝp is the vector of fixed
GEI effects. Thus, we have a total of 2p + m + 1 coefficients. We assume that b = (b1,… , bn)⊺ ∼  (0, 𝜏gK + 𝜏dKD) is an
n×1 column vector of random effects, with 𝝉 = (𝜏g, 𝜏d)⊺ the variance components that account for the relatedness between
individuals. K is a known GSM or kinship matrix and KD is an additional kinship matrix that describes how individuals are
related both genetically and environmentally, because a pair of individuals who are genetically related and share the same
environment exposure have a non-zero kinship coefficient. The kinship matrix KD corrects for the spurious association of
GEI effects due to population structure and subjects relatedness, in the same way that the kinship matrix K corrects for
population structure and subjects relatedness on the main effects. Thus, the matrix KD can be interpreted as the covariance
matrix between individuals that captures the residual variance explained by the sum of many small GEI effects across the
genome. For a binary exposure, we define KD

ij = Kij if Di = Dj, and KD
ij = 0 otherwise. For a continuous exposure, one

possibility is to set KD
ij = Kij(1 − d(Di, Dj)), where d is a metric with range [0, 1]. The phenotypes yi’s are assumed to be

conditionally independent and identically distributed given (Z i, Gi, Di, b) and follow any exponential family distribution
with canonical link function g(⋅), mean 𝔼(yi|Z i, Gi, Di, b) = 𝜇i and variance Var(yi|Z i, Gi, Di, b) = 𝜙a−1

i 𝜈(𝜇i), where 𝜙 is
a dispersion parameter, ai are known weights, and 𝜈(⋅) is the variance function.

2.2 Regularized PQL estimation
In order to estimate the model parameters and perform variable selection, we use an approximation method to obtain an
analytical closed form for the marginal likelihood of model (1). We propose to fit (1) using a PQL method,12,21 from where
the log integrated quasi-likelihood function is equal to

𝓁PQL(𝚯,𝜙, 𝝉; b̃) = −1
2

log |
|
|

(
𝜏gK + 𝜏dKD

)
W + In

|
|
|
+

n∑

i=1

qli(𝚯; b̃) − 1
2

b̃
⊺ (

𝜏gK + 𝜏dKD
)−1

b̃ (2)

where 𝚯 = (𝜽⊺, 𝛼, 𝜷⊺, 𝜸⊺)⊺, W = 𝜙
−1𝚫−1 = 𝜙

−1diag
{

ai

𝜈(𝜇i)[g′(𝜇i)2]

}

is a diagonal matrix containing weights for each

observation, qli(𝚯; b) = ∫ 𝜇i

yi

ai(yi−𝜇)
𝜙𝜈(𝜇)

d𝜇 is the quasi-likelihood for the ith individual given the random effects b, and b̃ is the

solution which maximizes
∑n

i=1 qli(𝚯; b) − 1

2
b⊺(𝜏gK + 𝜏dKD)−1b.

In typical genome-wide studies, the number of genetic predictors is much greater than the number of observations
(p > n), and the fixed effects parameter vector 𝚯 becomes underdetermined when modeling p SNPs jointly. Moreover,
we would like to induce a hierarchical structure, that is, a GEI effect can be present only if both exposure and genetic
main effects are also included in the model. Thus, we propose to add a sparse group lasso penalty22 to the negative quasi-
likelihood function in (2) to seek a sparse subset of genetic and GEI effects that gives an adequate fit to the data. Indeed, the
sparse group lasso is part of the family of CAPs that can induce hierarchical variable selection.19 We define the following
objective function Q

𝜆
which we seek to minimize with respect to (𝚯,𝜙, 𝝉):

Q
𝜆
(𝚯,𝜙, 𝝉; b̃) := −𝓁PQL(𝚯,𝜙, 𝝉; b̃) + (1 − 𝜌)𝜆

∑

j

‖(𝛽j, 𝛾j)‖2 + 𝜌𝜆

∑

j

|𝛾j| (3)

where 𝜆 > 0 controls the strength of the overall regularization and 𝜌 ∈ [0, 1) controls the relative sparsity of the GEI effects
for each SNP. In our modeling approach, we do not penalize the environmental exposure fixed effect 𝛼. Thus, a value of
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𝜌 = 0 is equivalent to a group lasso penalty where we only include a predictor in the model if both its main effect 𝛽j and
GEI effect 𝛾j are non-zero. A value of 0 < 𝜌 < 1 is equivalent to a sparse group lasso penalty where main effects can be
selected without their corresponding GEI effects due to the different strengths of penalization, but a GEI effect is still only
included in the model if the corresponding main effect is non-zero.

2.3 Estimation of variance components
Jointly estimating the variance components 𝜏g, 𝜏d and scale parameter 𝜙 with the regression effects vector 𝚯 and random
effects vector b is a computationally challenging non-convex optimization problem. Updates for 𝜏g, 𝜏d and 𝜙 based on a
majorization-minimization (MM) algorithm23 would require inverting three different n×n matrices, with complexity O(n3),
at each iteration. Thus, even for moderately small sample sizes, this is not practicable for genome-wide studies. Instead,
we propose a two-step method where variance components and scale parameter are estimated only once under the null
association of no genetic effect, that is assuming 𝜷 = 𝜸 = 0, using the average information restricted maximum likelihood
(AI-REML) algorithm.12,24

2.4 Spectral decomposition of the random effects covariance matrix
Given 𝜏g, 𝜏d , and �̂� estimated under the null, spectral decomposition of the random effects covariance matrix yields

(
𝜏gK + 𝜏dKD

)−1 =
(
U𝚲U⊺)−1

= U𝚲−1U⊺ (4)

where U is an orthonormal matrix of eigenvectors and 𝚲 is a diagonal matrix of eigenvalues Λ1 ≥ Λ2 ≥ ⋯ ≥ Λn > 0
when both K and KD are positive definite. In practice, if K is rank-deficient, one can replace it by K + 𝜖In for 𝜖 > 0 small,
to ensure that both K and KD are positive definite.

Using (4) and assuming that the weights in W vary slowly with the conditional mean,25 minimizing (3) is now equivalent
to

�̂� = argmin
𝚯

−
n∑

i=1

qli(𝚯; 𝜹) + 1
2
𝜹
⊺𝚲−1𝜹 + (1 − 𝜌)𝜆

∑

j

‖(𝛽j, 𝛾j)‖2 + 𝜌𝜆

∑

j

|𝛾j|

= argmin
𝚯

f (𝚯; 𝜹) + g(𝚯) (5)

where 𝜹 = U⊺b̃ is the minimizer of f (𝚯; 𝜹) := −
∑n

i=1 qli(𝚯; 𝜹)+ 1

2
𝜹⊺𝚲−1𝜹. Thus, iteratively solving (5) also requires updat-

ing the solution 𝜹 at each step until convergence. Conditioning on the previous solution for 𝚯, 𝜹 is obtained by minimizing
a generalized ridge weighted least-squares (WLS) problem with 𝚲−1 as the regularization matrix. Then, conditioning on
𝜹, �̂� is found by minimizing a WLS problem with a sparse group lasso penalty. We present in Appendix A our proposed
proximal Newton-type algorithm that cycles through updates of �̃� and 𝚯.

3 Simulation study
We first evaluated the performance of our proposed method, called pglmm, against that of a standard logistic lasso, using
the Julia package GLMNet which wraps the Fortran code from the original R package glmnet .26 Then, among logistic
models that impose hierarchical interactions, we compared our method with the glinternet 7 and gesso 6 models which
are both implemented in R packages. The glinternet method relies on overlapping group lasso, and even though it is
optimized for selection of gene by gene interactions in high-dimensional data, it is applicable for selection of GEI effects.
An advantage of the method is that it only requires tuning a single parameter value. On the other hand, gesso uses a CAP
penalty with a group L∞ norm (iCAP) to induce a hierarchical structure, and the default implementation fits solutions paths
across a two-dimensional grid of tuning parameter values. For all methods, selection of the tuning parameters is performed
by cross-validation. The default implementation for glmnet , glinternet and pglmm is to find the smallest value of
the tuning parameter 𝜆 such that no predictor are selected in the model, and then to solve the penalized minimization
problem over a grid of decreasing values of 𝜆. For these three methods, we used a grid of 50 values of 𝜆 on the log10 scale
with 𝜆min = 0.01𝜆max, where 𝜆max is chosen such that no predictors are selected in the model. In addition, for pglmm , we
solved the penalized minimization problem over a grid of 10 values of the tuning parameter 𝜌 evenly spaced from 0 to 0.9,
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Table 1. Number of samples by population for the high quality harmonized set of 4097 whole genomes from the Human Genome
Diversity Project (HGDP) and the 1000 Genomes Project (1000 G).

Population 1000 genomes HGDP Total

African 879 (28%) 110 (12%) 989 (24%)
Admixed American 487 (15%) 62 (7%) 549 (13%)
Central/South Asian 599 (19%) 184 (20%) 783 (19%)
East Asian 583 (18%) 234 (25%) 817 (20%)
European 618 (20%) 153 (16%) 771 (19%)
Middle Eastern 0 158 (17%) 158 (4%)
Oceanian 0 30 (3%) 30 (1%)
Total 3166 931 4097
Unrelated individuals 2520 880 3400

fitting a total of 500 models. The default implementation for gesso is to solve the minimization problem over a 20×20
two-dimensional grid of the tuning parameters values 𝜆1, 𝜆2, starting from the smallest value such that all coefficients are
zero, and setting 𝜆min = 0.1𝜆max. Finally, for glmnet , gesso , and glinternet , population structure and environmental
exposure is accounted for by adding the top 10 PCs of the kinship matrix as additional covariates.

3.1 Simulation model
We performed a total of 100 replications for each of our simulation scenarios, drawing anew genotypes and simulated traits,
using real genotype data from a high quality harmonized set of 4097 whole genomes from the Human Genome Diversity
Project (HGDP) and the 1000 Genomes Project (1000 G).27 At each replication, we sampled 10,000 candidate SNPs from
the chromosome 21 and randomly selected 100 (1%) to be causal. Let S be the set of candidate causal SNPs, with |S| = 100,
then the causal SNPs fixed effects 𝛽j were generated from a Gaussian distribution  (0, h2

S𝜎
2∕|S|), where h2

S is the fraction
of variance on the logit scale that is due to total additive genetic fixed effects. Let S′ be the set of candidate causal SNPs, not
necessarily overlapping with S, that have a non-zero GEI effect, with |S′| = 50, then the GEI effects 𝛾j were generated from
a Gaussian distribution  (0, h2

S′𝜎
2∕|S′|), where h2

S′ is the fraction of variance on the logit scale that is due to total additive
GEI fixed effects. Further, we simulated a random effect from a Gaussian distribution 𝜖 ∼  (0, h2

g𝜎
2K + h2

d
𝜎

2KD), where

h2
g and h2

d
are the fractions of variance explained by the polygenic and polygenic by environment effects, respectively. The

kinship matrices K and KD were calculated using a set of 50,000 randomly sampled SNPs excluding the set of candidate
SNPs, and PCs were obtained from the singular value decomposition of K . We simulated a covariate for age using a
Normal distribution and used the sex covariate provided with the data as a proxy for environmental exposure. Then, for
i = 1,… , 4097, binary phenotypes were generated using the following model:

logit(𝜋) = logit(𝜋0k) − log(1.3) × Sex + log(1.05)Age∕10 +
∑

j∈S

𝛽jG̃j +
∑

j∈S′

𝛾j ⋅ (Sex × G̃j) + 𝜖 (6)

where 𝜋0k , for k = 1,… , 7, was simulated using a U(0.1, 0.9) distribution to specify a different prevalence for each popu-
lation in Table 1 under the null, and G̃j is the jth column of the standardized genotype matrix g̃ij = (gij −2pi)∕

√
2pi(1 − pi)

and pj is the minor allele frequency (MAF) for the jth predictor.
In all simulation scenarios, we set h2

S = 0.2 and h2
S′ = 0.1 such that each of the main effects (|S| = 100) or GEI

effects (|S′| = 50) explains 0.2% of the total variability on the logit scale. We compared the methods when h2
g = 0.2

and h2
d
= 0.1 (i.e. low polygenic effects with 𝜎

2 = 9), and when h2
g = 0.4 and h2

d
= 0.2 (i.e. high polygenic effects

with 𝜎
2 = 35), respectively. In the first simulation scenario, we induced a hierarchical structure for the simulated data by

imposing 𝛾j ≠ 0 → 𝛽j ≠ 0 for j = 1,… , p, such that the total number of causal SNPs is equal to 100, with half of them
having non-zero GEI effects. In the second simulation scenario, we repeated the simulations from the first scenario, but
without enforcing any hierarchical structure, such that the number of causal SNPs is equal to 150, with 100 of them having
non-zero main effects, and 50 having non-zero GEI effects.

3.2 Metrics
To compare the performance of all methods in discovering important genetic predictors and estimating their main and
interaction effects, we define in this section the performance metrics that will be used. First, we define the model size



6 Statistical Methods in Medical Research 0(0)

as simply the number of non-zero coefficients estimated by a model, that is,
∑p

j=1
I(𝛽j ≠ 0) for the main effects, and

∑p
j=1

I(�̂�j ≠ 0) for the GEI effects. The false positive rate (FPR) is defined as the number of non-causal predictors that are
falsely identified as causal (false positives), divided by the total number of non-causal predictors. The true positive rate
(TPR), also known as sensitivity or recall, is defined as the number of true causal predictors that are correctly identified
(true positives), divided by the total number of causal predictors. The false discovery rate (FDR) is defined as the number
of false positives divided by the total number of selected predictors in the model. Thus, while FPR and TPR measure the
ability of a model to distinguish between causal and non-causal predictors, the FDR actually measures the proportion of
predictors that are not causal among those declared significant. Moreover, in genetic association studies where the number
of non-causal predictors is very high, we are more interested in controlling the FDR rather than the FPR. Alternatively, we
can define the precision as 1 minus the FDR, which measures the proportion of causal predictors among those declared
significant. The F1 score is defined as the harmonic mean of the precision and TPR, and it can be used to take into account
that methods with a large number of selected predictors will likely have a higher TPR, and inversely that methods with a
lower number of selected predictors will likely have a higher precision. Finally, the area under the curve (AUC) is used
as a measure of the predictive performance of all methods when predicting the binary status of individuals. It takes into
account the TPR of all methods at various FPR values when making individual predictions. A higher AUC means that a
method has a better capacity at distinguishing between cases and controls.

3.3 Results
We obtained solutions paths across a one dimensional (glmnet, glinternet ) or two-dimensional grid of tuning parame-
ter values (gesso , pglmm ) for the hierarchical and non-hierarchical simulation scenarios and reported the mean precision,
that is, the proportion of selected predictors that are causal, over 100 replications for the selection of GEI effects (Figure 1)
and main genetic effects (Figure 2) respectively. We see from Figure 1 that in the hierarchical simulation scenario, gesso
and pglmm retrieve important GEI effects with better precision than glmnet and glinternet . When we simulate a low
random polygenic GEI effect, gesso slightly outperforms pglmm , but when we increase the heritability of the two random
effects, both methods perform similarly. When we simulate data under no hierarchical assumption, precision for all hierar-
chical models fall drastically, although they still perform better than the standard lasso model. We note that gesso retrieves
important GEI effects with equal or better precision than other methods in all simulation settings. This is explained by the
fact that gesso is using a CAP penalty with L∞ group norm which has been shown to perform better than the sparse group
lasso for retrieving interaction effects.19 On the other hand, we see from Figure 2 that pglmm outperforms all methods
for retrieving important main effects for both hierarchical and non-hierarchical simulation scenarios. When we simulate
low polygenic effects, pglmm and glmnet perform comparably. We also note that gesso retrieves main effects with less
precision than glmnet and pglmm in all scenarios. At last, the precision of glinternet is considerably lower than all
other methods until the number of selected main genetic effects in the model is large.

In practice, we often do not have any a priori knowledge for the number of main effects and/or GEI effects that we
want to include in the final model. Thus, instead of comparing methods at a fixed number of selected predictors along their
regularization paths, we used cross-validation to compare how each method performs when having to select an optimal
number of predictors in the model for the same two simulation scenarios that we previously described. We randomly split
the data (n = 4097) into training and test subjects, using a 80/20 ratio, and fitted the full lasso solution path on the training
set for 100 replications. We report the model size, FPR, TPR, FDR, and F1 score on the training sets, and the area under the
ROC curve (AUC) when making predictions on the independent test subjects. To assess the potential spurious association
of both main and GEI effects due to shared environmental exposure, we compare our method when including only the
kinship matrix K (plmm (1 Random effect (RE))) and when including both K and KD matrices (pglmm (2 REs)).

With respect to selection of the GEI effects (Table 2), the comparative performance of each method varies depending on
the simulation scenario. As expected, we see that including an additional random effect reduces the FPR for all simulation
scenarios for our proposed method. Unsurprisingly, glinternet and glmnet have the lowest FPRs of all methods since
they always select the least number of GEI effects in the final models. Consequently, they have the smallest TPRs in all
scenarios. By using the F1 score to account for the trade-off between FDR and TPR, we have that pglmm performs the best
in hierarchical simulation scenarios, while gesso performs better in the non-hierarchical scenarios.

With respect to the genetic main effects (Table 3), pglmm selects the lowest number of predictors in the model, and
thus has the lowest FPR and FDR in all simulation scenarios. Again, adding an additional random effect reduces the FPR
for pglmm , but to a lower extent than for selection of GEI effects. On the other hand, glinternet always selects the
largest number of predictors in all scenarios, and hence has the highest TPR and FPR values. Using the F1 score to balance
FDR and TPR, we see that pglmm performs the best for retrieving the important main genetic effects in all simulation
scenarios. Also, we see that gesso and pglmm perform similarly when the heritability of the polygenic random effects is
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Figure 1. Precision of compared methods averaged over 100 replications as a function of the number of active gene-environment
interaction (GEI) effects.

low, but when we increase the heritability, the FDR for gesso increases drastically, and the number of selected main effects
becomes on average more than 1.5 times higher than for pglmm . Results for the accuracy of predicting binary outcomes in
independent test sets are included in Table 4. We see that pglmm with two random effects outperforms all other methods
for all simulation scenarios.

4 Discovering sex-specific genetic predictors of painful temporomandibular disorder
Significant associations between temporomandibular disorder (TMD), which is a painful disease of the jaw, and four distinct
loci have been previously reported in combined or sex-segregated analyses on the OPPERA study cohort.28 Moreover,
TMD has much greater prevalence in females than in males and is believed to have some sex-specific pathophysiologic
mechanisms.29 In this analysis, we wanted to explore the comparative performance of our proposed method pglmm in
selecting important sex-specific predictors of TMD and its performance predicting the risk of painful TMD in independent
subjects from two replication cohorts, the OPPERA II Chronic TMD Replication case-control study, and the Complex
Persistent Pain Conditions (CPPC): Unique and Shared Pathways of Vulnerability study, using the OPPERA cohort as
discovery cohort. Sample sizes and distribution of sex, cases and ancestry for the three studies are shown in Table 5, and
further details on study design, recruitment, subject characteristics, and phenotyping for each study are provided in the
Supplemental Material of Smith et al.28 (available at http://links.lww.com/PAIN/A688).

We used the imputed data described by Smith et al.28 Genotypes were imputed to the 1000 Genomes Project phase 3
reference panel using the software packages SHAPEIT30 for prephasing and IMPUTE version 2.31 For each cohort inde-
pendently, we assessed imputation quality taking into account the number of minor alleles as well as the information score
such that a SNP with rare MAF must pass a higher quality information threshold for inclusion. After merging all three
cohorts, we tested for significant deviations of the Hardy-Weinberg equilibrium (HWE) separately in cases and controls,
using a more strict p-value threshold for hypothesis testing among cases to avoid discarding disease-associated SNPs that
are possibly under selection32 (< 10−6 in controls, < 10−11 in cases). We filtered using a SNP call rate > 95% on the

http://links.lww.com/PAIN/A688
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Figure 2. Precision of compared methods averaged over 100 replications as a function of the number of active main effects in the
model.

combined dataset to retain imputed variants present in all cohorts, which resulted in a total of 4.8 million imputed SNPs.
PCs and kinship matrices were calculated on the merged genotype data using the –pca and –make-rel flags in PLINK,33

after using the same HWE p-value threshold and SNP call rate as for the imputed data. To reduce the number of candidate
predictors in the regularized models, we performed a first screening by testing genome-wide association with TMD for
subjects in the OPPERA discovery cohort using PLINK. We fitted a logistic regression for additive SNP effects, with age,
sex, and enrollment site as covariates and the first 10 PCs to account for population stratification, and retained all SNPs
with a p-value below 0.05, which resulted in a total of 243 thousand predictors.

We present in Table 6 the estimated odds ratios (OR) by each method, pglmm , gesso , and glmnet , for the selected
SNPs for both main and GEI effects. Of note, it was not possible to use the glinternet package due to computational
considerations, its memory requirement being too large for the joint analysis of the 243 thousand preselected predictors.
All three methods selected the imputed insertion/deletion (indel) polymorphism on chromosome 4 at position 146,211,844
(rs5862730), which was the only reported SNP that reached genome-wide significance in the full OPPERA cohort (OR =
1.4, 95% confidence interval (CI): [1.26; 1.61], P = 2.82 × 10−8).28 In a females-only analysis, rs5862730 was likewise
associated with TMD (OR = 1.54, 95% CI: [1.33; 1.79], P = 1.7 × 10−8), and both pglmm and gesso selected the GEI
term between rs5862730 and sex.

Moreover, we present in Table 7, the AUC in the training and test cohorts, the number of predictors selected in each model
and the total computation time to fit each method. We see that pglmm has the highest AUC on the training data, as well
as the best predictive performance on the CPPC cohort alone. On the other hand, glmnet and gesso both have a greater
predictive performance in the OPPERA2 cohort compared to pglmm. When combining the predictions for OPPERA2 and
CPPC cohorts, all three methods have similar predictive performance. In term of the number of predictors selected by
each model, glmnet has selected two SNPs with important main effects and no GEI effects, while gesso has selected the
highest number of predictors, that is a total of 13 SNPs with both main and GEI effects. On the other hand, our proposed
method pglmm has selected a total of seven SNPs, among which three had a selected GEI effect with sex. Finally, we
report for each method the computational time to fit the model on the training cohort using 10-folds cross-validation.
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Table 2. Results for the GEI effects 𝛾 .

Non-hierarchical model Hierarchical model

Metric Method Low 𝜖 High 𝜖 Low 𝜖 High 𝜖

Model size pglmm (1 RE) 84.6 99.2 95.5 103
pglmm (2 REs) 58.4 57.8 63.9 59.8
glmnet 21.6 38.8 22.7 38.6
glinternet 17.5 39.2 19.5 39.6
gesso 64.3 102 78.6 110

FPR pglmm (1 RE) 8.31 × 10−3 9.76 × 10−3 8.96 × 10−3 9.69 × 10−3

pglmm (2 REs) 5.72 × 10−3 5.65 × 10−3 6.00 × 10−3 5.55 × 10−3

glmnet 2.09 × 10−3 3.80 × 10−3 2.20 × 10−3 3.76 × 10−3

glinternet 1.68 × 10−3 3.79 × 10−3 1.84 × 10−3 3.79 × 10−3

gesso 6.20 × 10−3 9.94 × 10−3 7.38 × 10−3 1.06 × 10−2

TPR pglmm (1 RE) 0.039 0.043 0.126 0.124
pglmm (2 REs) 0.030 0.031 0.084 0.091
glmnet 0.016 0.020 0.018 0.025
glinternet 0.016 0.030 0.024 0.038
gesso 0.052 0.068 0.104 0.103

FDR pglmm (1 RE) 0.966 0.965 0.926 0.908
pglmm (2 REs) 0.936 0.968 0.921 0.889
glmnet 0.962 0.974 0.955 0.967
glinternet 0.948 0.956 0.923 0.949
gesso 0.945 0.948 0.912 0.930

F1 pglmm (1 RE) 0.035 0.033 0.091 0.084
pglmm (2 REs) 0.039 0.036 0.082 0.090
glmnet 0.036 0.033 0.035 0.036
glinternet 0.040 0.038 0.045 0.048
gesso 0.052 0.048 0.083 0.067

Note: For each simulation scenario, we report the mean value over 100 replications when we simulate only one random effect with low heritability
(low 𝜖) and we simulate two random effects with high heritability (high 𝜖). Bolded values indicate the method with the best performance according to
each metric.
FPR: false positive rate; TPR: true positive rate; FDR: false discovery rate; RE: random effect.
Model size is defined as

∑p
j=1 I(�̂�j ≠ 0).

FPR is defined as
∑p

j=1 I(�̂�j ≠ 0 ∩ 𝛾j = 0)∕
∑p

j=1 I(𝛾j = 0).
TPR is defined as

∑p
j=1 I(�̂�j ≠ 0 ∩ 𝛾j ≠ 0)∕

∑p
j=1 I(𝛾j ≠ 0).

FDR is defined as
∑p

j=1 I(�̂�j ≠ 0 ∩ 𝛾j = 0)∕
∑p

j=1 I(�̂�j ≠ 0).

F1 is defined as 2 ×
(

1
1−FDR

+ 1
TPR

)−1
.

While glmnet only took two hours to fit, it failed to retrieve any potentially important GEI effects between TMD and sex,
albeit we note that it had a similar predictive performance than the hierarchical methods on the combined test sets. On the
other hand, pglmm had the highest computational time required to fit the model, because it requires iteratively estimating a
random effects vector of size n = 3030, while both glmnet and gesso only require to estimate a vector of fixed effects of
size 10 for the PCs. However, pglmm had the highest AUC on the train set, and was able to retrieve potentially important
GEI effects for some of the select SNPs in the model, while selecting half as many predictors than gesso.

5 Discussion
We have developed a unified approach based on regularized PQL estimation, for selecting important predictors and GEI
effects in high-dimensional GWAS data, accounting for population structure, close relatedness, shared environmental expo-
sure and binary nature of the trait. We proposed to combine PQL estimation with a CAP for hierarchical selection of main
genetic and GEI effects, and derived a proximal Newton-type algorithm with block coordinate descent to find coordinate-
wise updates. We showed that for all simulation scenarios, including and additional random effect to account for the shared
environmental exposure reduced the FPR of our proposed method for selection of both GEI and main effects. Using the F1
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Table 3. Results for the genetic predictors main effects 𝛽.

Non-hierarchical model Hierarchical model

Metric Method Low 𝜖 High 𝜖 Low 𝜖 High 𝜖

Model size pglmm (1 RE) 227 212 220 204
pglmm (2 REs) 206 190 214 179
glmnet 278 444 286 450
glinternet 299 481 312 480
gesso 212 361 224 367

FPR pglmm (1 RE) 2.09 × 10−2 1.96 × 10−2 2.01 × 10−2 1.87 × 10−2

pglmm (2 REs) 1.89 × 10−2 1.74 × 10−2 1.95 × 10−2 1.62×10−2

glmnet 2.59 × 10−2 4.24 × 10−2 2.66 × 10−2 4.29 × 10−2

glinternet 2.80 × 10−2 4.61 × 10−2 2.91 × 10−2 4.57 × 10−2

gesso 1.95 × 10−2 3.42 × 10−2 2.05 × 10−2 3.47 × 10−2

TPR pglmm (1 RE) 0.195 0.181 0.208 0.196
pglmm (2 REs) 0.188 0.177 0.206 0.188
glmnet 0.215 0.244 0.226 0.257
glinternet 0.216 0.246 0.237 0.271
gesso 0.190 0.220 0.210 0.238

FDR pglmm (1 RE) 0.895 0.895 0.891 0.883
pglmm (2 REs) 0.888 0.885 0.885 0.870
glmnet 0.920 0.944 0.917 0.942
glinternet 0.925 0.948 0.922 0.943
gesso 0.906 0.937 0.903 0.932

F1 pglmm (1 RE) 0.123 0.120 0.136 0.134
pglmm (2 REs) 0.126 0.124 0.138 0.140
glmnet 0.115 0.091 0.119 0.094
glinternet 0.109 0.085 0.116 0.094
gesso 0.123 0.096 0.131 0.103

Note: For each simulation scenario, we report the mean value over 100 replications when we simulate two random effects with low heritability (low 𝜖)
and high heritability (high 𝜖). Bolded values indicate the method with the best performance according to each metric.
FPR: false positive rate; TPR: true positive rate; FDR: false discovery rate; RE: random effect.
Model size is defined as

∑p
j=1 I(𝛽j ≠ 0).

FPR is defined as
∑p

j=1 I(𝛽j ≠ 0 ∩ 𝛽j = 0)∕
∑p

j=1 I(𝛽j = 0).
TPR is defined as

∑p
j=1 I(𝛽j ≠ 0 ∩ 𝛽j ≠ 0)∕

∑p
j=1 I(𝛽j ≠ 0).

FDR is defined as
∑p

j=1 I(𝛽j ≠ 0 ∩ 𝛽j = 0)∕
∑p

j=1 I(𝛽j ≠ 0).

F1 is defined as 2 ×
(

1
1−FDR

+ 1
TPR

)−1
.

Table 4. Results for the prediction accuracy of a binary outcome on test sets.

Non-hierarchical model Hierarchical model

Metric Method Low 𝜖 High 𝜖 Low 𝜖 High 𝜖

AUC pglmm (1 RE) 0.719 0.786 0.728 0.788
pglmm (2 REs) 0.723 0.790 0.730 0.792
glmnet 0.688 0.753 0.695 0.751
glinternet 0.702 0.760 0.710 0.761
gesso 0.695 0.750 0.707 0.751

Note: For each simulation scenario, we report the mean AUC value over 100 replications when we simulate two random effects with low heritability
(low 𝜖) and high heritability (high 𝜖). Bolded values indicate the method with the best performance according to each metric.
RE: random effect; AUC: area under the curve.
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Table 5. Demographic data for the OPPERA training cohort, and for the OPPERA2 and CPPC test cohorts.

Study name

OPPERA OPPERA2 CPPC

N (% female) 3030 (64.6) 1342 (66.0) 390 (84.4)
Cases (%) 999 (33.0) 444 (33.0) 164 (42.0)
Ancestry (% white) 61 79 68

OPPERA: Orofacial Pain: Prospective Evaluation and Risk Assessment; CPPC: Complex Persistent Pain Conditions.

Table 6. Selected SNPs by each method with their estimated odds ratios (OR) for the main effects (𝛽) and GEI effects (𝛾) from the
TMD real data analysis.

pglmm gesso glmnet

Chromosome Position OR
𝛽

OR
𝛾

OR
𝛽+𝛾 OR

𝛽
OR

𝛾
OR

𝛽+𝛾 OR
𝛽

3 5,046,726 – – – 1.0042 1.0087 1.0129 –
3 153,536,154 1.0020 – – – – – –
4 42,549,777 1.0068 1.0042 1.0110 1.0029 1.0060 1.0089 –
4 146,211,844 1.0252 1.0448 1.0712 1.0261 1.0553 1.0829 1.0312
11 17,086,381 1.0076 – – 1.0014 1.0029 1.0042 –
11 132,309,606 0.9965 – – – – – –
12 19,770,625 – – – 1.0045 1.0094 1.0140 –
12 47,866,802 1.0184 1.0001 1.0184 – – – 1.0140
12 47,870,741 – – – 1.0152 1.0320 1.0477 –
14 24,345,235 1.0013 – – – – – –
16 81,155,867 – – – 1.0039 1.0082 1.0122 –
17 46,592,346 – – – 1.0025 1.0052 1.0077 –
17 52,888,414 – – – 1.0005 1.0011 1.0017 –
17 69,061,947 – – – 1.0021 1.0043 1.0064 –
18 36,210,549 – – – 1.0186 1.0392 1.0585 –
19 37,070,882 – – – 1.0020 1.0042 1.0062 –
21 32,760,615 – – – 1.0051 1.0107 1.0159 –

Note: All three methods selected the imputed insertion/deletion (indel) polymorphism on chromosome 4 at position 146,211,844 (rs5862730), which
was the only reported SNP that reached genome-wide significance in the full OPPERA cohort.
SNPs: single nucleotide polymorphisms; GEI: gene-environment interaction; TMD: temporomandibular disorder; OPPERA: Orofacial Pain: Prospective
Evaluation and Risk Assessment.

Table 7. Area under the ROC curve (AUC), model size and computational time for the analysis of TMD.

AUCtrain AUCtest Model size

Method OPPERA OPPERA2 CPPC OPPERA2+CPPC Main effects GEI effects Computational time (hours)

glmnet 0.722 0.587 0.632 0.551 2 0 2
gesso 0.725 0.586 0.630 0.551 13 13 9
pglmm 0.867 0.512 0.652 0.550 7 3 47

CPPC: Complex Persistent Pain Conditions; GEI: gene-environment interaction; TMD: temporomandibular disorder; OPPERA: Orofacial Pain:
Prospective Evaluation and Risk Assessment.

score as a balanced measure of the FDR and TPR, we showed that in the hierarchical simulation scenarios, pglmm outper-
formed all other methods for retrieving important GEI effects. Moreover, using real data from the OPPERA study to explore
the comparative performance of our method in selecting important predictors of TMD, we found that our proposed method
was able to retrieve a previously reported significant loci in a combined or sex-segregated GWAS.

A limitation of pglmm compared to a logistic lasso or group lasso with PC adjustment is the computational cost of
performing multiple matrix calculations that comes from incorporating a GSM to account for population structure and
relatedness between individuals. These computations become prohibitive when the sample size increases, and this may
hinder the use of random effects in hierachichal selection of both genetic and GEI fixed effects in genetic association
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studies. Solutions to explore in order to increase computation speed and decrease memory usage would be the use of
conjugate gradient methods with a diagonal preconditioner matrix, as proposed by Zhou et al.,34 and the use of sparse
GSMs to adjust for the sample relatedness.35

In this study, we focused solely on the sparse group lasso as a hierarchical regularization penalty. Although previous
work has shown that using a CAP penalty with a group L∞ norm (iCAP) might perform better than a sparse group lasso
penalty for retrieving important interaction terms,19 substantive work is needed to develop an efficient algorithm to fit the
iCAP penalty in the presence of random effects. It is also important to highlight that for selection of main effects, the sparse
group lasso penalty might perform better than the iCAP penalty. Thus, the choice of which group penalty to use should
reflect this trade off between improving the selection of main effects versus selection of important GEI effects. Moreover,
it is known that estimated effects by lasso will have large biases because the resulting shrinkage is constant irrespective
of the magnitude of the effects. Alternative regularizations like the Smoothly Clipped Absolute Deviation (SCAD)36 and
Minimax Concave Penalty (MCP)37 could be explored, although we note that both SCAD and MCP require tuning an
additional parameter which controls the relaxation rate of the penalty. Another alternative includes refitting the sparse
group lasso penalty on the active set of predictors only, similarly to the relaxed lasso, which has shown to produce sparser
models with equal or lower prediction loss than the regular lasso estimator for high-dimensional data.38

Another interesting question to address in the context of high-dimensional GLMMs would be to assess the goodness of
fit of the selected sparse model. In the context of high-dimensional GLMs, a recent methodology has been proposed to test
for any signal left in the residuals after fitting a sparse model in order to assess whether a sparse non-linear model would be
more appropriate.39 Although there exist graphical and numerical methods for checking the adequacy of GLMMs,40 to our
knowledge no such procedure has been extended to high-dimensional mixed models. Finally, it would also be of interest to
explore if joint selection of fixed and random effects could result in better selection and/or predictive performance. Future
work includes tuning the generalized ridge regularization on the random effects,41 or replacing it by a lasso regularization
to perform selection of individual random effects.14,42
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A Appendix

A.1 Updates for 𝜹

The gradient and Hessian of f (𝚯; 𝜹) are given by the following equations:

∇𝜹 f (𝚯; 𝜹) = −�̂�−1U⊺(y − 𝝁) + 𝚲−1𝜹

∇2
𝜹

f (𝚯; 𝜹) = �̂�
−1U⊺𝚫−1U + 𝚲−1

This leads to the Newton updates

�̃�
(t+1) = �̃�

(t) − [∇2
𝜹

f (𝚯|�̃�
(t))]−1∇𝜹 f (𝚯|�̃�

(t))

= �̃�
(t) +

[
�̂�
−1U⊺𝚫−(t)U + 𝚲−1]−1

(

�̂�
−1U⊺(y − 𝝁(t)) − 𝚲−1�̃�

(t)
)

=
[
U⊺𝚫−(t)U + �̂�𝚲−1]−1

U⊺𝚫−(t)
(

𝚫(t)(y − 𝝁(t)) + U �̃�
(t)
)

(7)

which requires repeatedly inverting the n×n matrix 𝚺(t) := U⊺𝚫−(t)U + �̂�𝚲−1 with complexity O(n3) where n is the sample

size. Defining the working vector Ỹ = X𝚯(t) +U �̃�
(t) +𝚫(t)(y−𝝁(t)), where X𝚯 = Z𝜽+D𝛼 +G𝜷 + (D⊙G)𝜸, the Newton

updates in (7) can be rewritten as follows:

�̃�
(t+1) =

[
U⊺𝚫−(t)U + �̂�𝚲−1]−1

U⊺𝚫−(t) (Ỹ − X𝚯(t))

which can be equivalently obtained as the solutions to the following generalized ridge WLS problem:

�̃�
(t+1) = argmin

𝜹

�̂�
−1

(
Ỹ − X𝚯(t) − U𝜹

)⊺ 𝚫−(t) (Ỹ − X𝚯(t) − U𝜹
)
+ 𝜹⊺𝚲−1𝜹 (8)

Equation (8) is analogous to the PC ridge regression (PCRR) model,43 and demonstrates that PCA and MMs indeed share
the same underlying model. At last, to solve (8) without repeatedly inverting the n × n matrix 𝚺(t) := U⊺𝚫−(t)U + �̂�𝚲−1,

http://dx.doi.org/10.1186/s12711-018-0373-2
http://dx.doi.org/10.1214/07-aoas147
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we propose using a coordinate descent algorithm,44 for which each coordinate’s updates are given, for j = 1,… , n, by

𝛿j ←

∑n
i=1 wiUij

(

Ỹi − X i𝚯(t) −
∑

l≠j Uil𝛿l

)

∑n
i=1 wiU

2
ij + �̂�Λ−1

j

(9)

where wi = 𝚫−(t)
ii .

A.2 Updates for 𝚯
Since the objective function in (5) consists of a smooth convex function f (𝚯; 𝜹) and a non-smooth convex regularizer
g(𝚯), we propose a proximal Newton algorithm with cyclic coordinate descent to find PQL regularized estimates for 𝚯,
in the spirit of the proposed algorithm by Friedman et al.26 for estimation of GLMs with convex penalties. Let again
X𝚯 = Z𝜽 + D𝛼 + G𝜷 + (D ⊙ G)𝜸 and 𝚯(t) be the current iterate, the iterative step reduces to

𝚯(t+1) = argmin
𝚯

{

1
2st

‖
‖
‖
‖
‖

𝚯 −
(

𝚯(t) − st

[

∇2
𝚯f (𝚯(t)|𝜹)

]−1
∇𝚯f (𝚯(t)|𝜹)

)‖
‖
‖
‖
‖

2

2

+ g(𝚯)

}

= argmin
𝚯

{
1

2st

‖
‖
‖
𝚯 −

[
X⊺𝚫−(t)X

]−1
X⊺𝚫−(t) (X𝚯(t) + st𝚫(t)(y − 𝝁(t))

)‖
‖
‖

2

2
+ g(𝚯)

}

where st is a suitable step size. Defining the working vector Ỹ = X𝚯(t) +U �̃�
(t+1) + st𝚫(t)(y−𝝁(t)), we can again rewrite the

minimization problem as a WLS problem where

𝚯(t+1) = argmin
𝚯

{
1

2st

‖
‖
‖
‖
𝚯 −

[
X⊺𝚫−(t)X

]−1
X⊺𝚫−(t)

(

Ỹ − U �̃�
(t+1)

)‖
‖
‖
‖

2

2
+ g(𝚯)

}

= argmin
𝚯

{

1
2st

n∑

i=1

wi

(

Ỹi − X i𝚯 − U i�̃�
(t+1)

)2
+ (1 − 𝜌)𝜆

∑

j

‖(𝛽j, 𝛾j)‖2 + 𝜌𝜆

∑

j

|𝛾j|

}

(10)

where wi = 𝚫−(t)
ii . We use block coordinate descent and minimize (10) with respect to each component of 𝚯 =

(𝜽⊺, 𝛼⊺,𝜷⊺, 𝜸⊺)⊺. In practice, we set st = 1 and do not perform step-size optimization. We present in Appendix 5 the
detailed derivations and our block coordinate descent algorithm to obtain PQL regularized estimates for 𝚯.

A.3 Strong rule
In modern genome-wide studies, the number of genetic predictors is often very large, and assuming that most of the
predictors effects are equal to 0, it would be desirable to discard them from the coordinate descent steps to speed up the
optimization procedure. Tibshirani et al.45 derived sequential strong rules that can be used when solving the lasso and
lasso-type problems over a grid of tuning parameter values 𝜆1 ≥ 𝜆2 ≥ 𝜆m, and more details about the derivation of the
sequential strong rule for the sparse group lasso can be found by Liang.46 Therefore, having already computed the solution
�̂�k−1 at 𝜆k−1, the sequential strong rule discards the jth genetic predictor from the optimization problem at 𝜆k if

√
(

G⊺
j (y − 𝜇(�̂�k−1))

)2
+

(

S
𝜌𝜆k−1

((D ⊙ Gj)⊺(y − 𝜇(�̂�k−1)))
)2

≤ (1 − 𝜌)(2𝜆k − 𝜆k−1)

where S
𝜆
(⋅) is the soft-thresholding function defined as follows:

S
𝜆
(a) =

⎧
⎪
⎨
⎪
⎩

a − 𝜆 if a > 𝜆

0 if |a| ≤ 𝜆

a + 𝜆 if a < −𝜆
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A.4 Prediction
Our proposed method to calculate prediction scores in individuals that were not used in training the models is presented in
this section. In sparse regularized PQL estimation, we iteratively fit on a training set of size n the working LMM

Ỹ = X�̂� + b̃ + 𝝐

where �̂� = {Θ̂k ≠ 0|1 ≤ k ≤ 2p + m + 1} is the set of non-null predictors, and 𝝐 = g′(𝝁)(y − 𝝁) ∼  (0, W−1), with

W = 𝜙
−1diag

{
ai

𝜈(𝜇i)[g′(𝜇i)2]

}

the diagonal matrix containing weights for each observation. Let Ỹ s be the latent working

vector in a testing set of ns individuals with predictor set X s. Similar to Bhatnagar et al.,47 we assume that the marginal
joint distribution of Ỹ s and Ỹ is multivariate Normal :

[
Ỹ s

Ỹ

]

∼ 
([

X s�̂�
X�̂�

]

,

[
𝚺11 𝚺12
𝚺21 𝚺22

])

where 𝚺12 = Cov(Ỹ s, Ỹ ) = 𝜏gK12 + 𝜏dKD
12 is the sum of the ns × n GSMs between the testing and training individuals, and

𝚺22 = Var(Ỹ ) = W−1 + 𝜏gK22 + 𝜏dKD
22. It follows from standard normal theory that

Ỹ s|Ỹ , �̂�, �̂� , �̂�, X , X s ∼ 
(

X s�̂� + 𝚺12𝚺−1
22 (Ỹ − X�̂�),𝚺11 − 𝚺12𝚺−1

22 𝚺21

)

The predictions are based on the conditional expectation 𝔼[Ỹ s|Ỹ , �̂�, �̂� , �̂�, X , X s], that is,

�̂�s = g−1
(

𝔼[Ỹ s|Ỹ , �̂�, �̂� , �̂�, X , X s]
)

= g−1
(

X s�̂� + 𝚺12𝚺−1
22 (Ỹ − X�̂�)

)

= g−1
(

X s�̂� + 𝚺12

(
W−1 + U𝚲U⊺)−1 (Ỹ − X�̂�)

)

where g(⋅) is the link function and U𝚲U⊺ is the spectral decomposition of the GSM for training subjects, with U the n × n
matrix of eigenvectors.

A.5 Proximal Newton method
Defining the working vector Ỹ = X𝚯(t) + U �̃�

(t+1) + st𝚫(t)(y − 𝝁(t)) with suitable step size st, we can again rewrite the
minimization problem as a WLS problem where

𝚯(t+1) = argmin
𝚯

{
1

2st

‖
‖
‖
‖
𝚯 −

[
X⊺𝚫−(t)X

]−1
X⊺𝚫−(t)

(

Ỹ
(t) − U𝜹

(t+1))‖‖
‖
‖

2

2
+ g(𝚯)

}

= argmin
𝚯

{

1
2st

n∑

i=1

wi

(

Ỹi − X i𝚯 − U i�̃�
(t+1)

)2
+ (1 − 𝜌)𝜆

∑

j

‖(𝛽j, 𝛾j)‖2 + 𝜌𝜆

∑

j

|𝛾j|

}

(11)



St-Pierre et al. 17

with wi = 𝚫−(t)
ii . We use block coordinate descent and minimize (11) with respect to each component of 𝚯 =

(𝜽⊺, 𝛼⊺,𝜷⊺, 𝜸⊺)⊺. Suppose we have estimates 𝜃l for l ≠ j, �̃�, �̃�, and �̃�, it is straightforward to show that the updates for
𝜃j and 𝛼 are given by the following equations:

𝜃j ←

∑n
i=1 wiZij

(

Ỹi −
∑

l≠j Zil𝜃l − Di�̃� − Gi�̃� − (Di ⊙ Gi)�̃� − U i�̃�
)

∑n
i=1 wiZ

2
ij

�̃� ←

∑n
i=1 wiDi

(
Ỹi − Z i�̃� − Gi�̃� − (Di ⊙ Gi)�̃� − U i�̃�

)

∑n
i=1 wiD

2
i

Denote the residual ri;−j = Ỹi − Z i�̃� − Di�̃� −
∑

l≠j Gil𝛽l −
∑

l≠j(Di ⊙ Gil)�̃�l − U i�̃�. The subgradient equations for 𝛽j and 𝛾j

are equal to

0 ∈

⎡
⎢
⎢
⎢
⎢
⎣

−
n∑

i=1

wiGij

(
ri;−j − Gij𝛽j − (Di ⊙ Gij)�̃�j

)

−
n∑

i=1

wi(Di ⊙ Gij)
(
ri;−j − Gij𝛽j − (Di ⊙ Gij)�̃�j

)
+ 𝜌𝜆st𝜕‖�̃�j‖1

⎤
⎥
⎥
⎥
⎥
⎦

+ (1 − 𝜌)𝜆st𝜕‖𝛽j, �̃�j‖2

where we define the subgradients

u ∈ 𝜕‖�̃�j‖1 =

{
[−1, 1] if �̃�j = 0

sign(�̃�j) if �̃�j ≠ 0
; v ∈ 𝜕‖𝛽j, �̃�j‖2 =

⎧
⎪
⎨
⎪
⎩

{v| ‖v‖2 ≤ 1} if 𝛽j = �̃�j = 0

1

‖𝛽j, �̃�j‖2

[
𝛽j

�̃�j

]

otherwise

(1) The case 𝛽j = �̃�j = 0 implies

⎡
⎢
⎢
⎢
⎢
⎣

n∑

i=1

wiGijri;−j

n∑

i=1

wi(Di ⊙ Gij)ri;−j − 𝜌𝜆stu

⎤
⎥
⎥
⎥
⎥
⎦

= (1 − 𝜌)𝜆stv

Since ‖v‖2 ≤ 1, equality of the constraint holds as long as

(
n∑

i=1

wiGijri;−j

)2

+

(
n∑

i=1

wi(Di ⊙ Gij)ri;−j − 𝜌𝜆stu

)2

≤ ((1 − 𝜌)𝜆st)2

Since u ∈ [−1, 1], a necessary and sufficient condition for 𝛽j = �̃�j = 0 being a solution is

(
n∑

i=1

wiGijri;−j

)2

+

(

S
𝜌𝜆st

(
n∑

i=1

wi(Di ⊙ Gij)ri;−j

))2

≤ ((1 − 𝜌)𝜆st)2 (12)

where S
𝜆
(⋅) is the soft-thresholding function defined as follows:

S
𝜆
(a) =

⎧
⎪
⎨
⎪
⎩

a − 𝜆 if a > 𝜆

0 if |a| ≤ 𝜆

a + 𝜆 if a < −𝜆
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(2) The case (𝛽j, �̃�j)⊺ ≠ 0 implies

⎡
⎢
⎢
⎢
⎢
⎣

n∑

i=1

wiGij(ri;−j − DiGij�̃�j)
n∑

i=1

wi(Di ⊙ Gij)(ri;−j − Gij𝛽j) − 𝜌𝜆stu

⎤
⎥
⎥
⎥
⎥
⎦

=

⎛
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎣

n∑

i=1

wiG
2
ij 0

0
n∑

i=1

wi(Di ⊙ Gij)2

⎤
⎥
⎥
⎥
⎥
⎦

+
(1 − 𝜌)𝜆st
√

𝛽
2
j + �̃�

2
j

I2

⎞
⎟
⎟
⎟
⎟
⎠

[
𝛽j

�̃�j

]

(13)

We have that �̃�j = 0 if |
∑n

i=1 wi(Di ⊙ Gij)(ri;−j − Gij𝛽j)| ≤ 𝜌𝜆st since u ∈ [−1, 1]. This implies that

n∑

i=1

wiGijri;−j =

(
n∑

i=1

wiG
2
ij + (1 − 𝜌)

𝜆st

|𝛽j|

)

𝛽j

with the solution being equal to

𝛽j =
S(1−𝜌)𝜆st

(∑n
i=1 wiGijri;−j

)

∑n
i=1 wiG

2
ij

There is no closed-form solution for (13) if both �̃�j and 𝛽j are non-null. In this case, we can replace (11) by a surrogate

objective function using a MM algorithm.48 From the concavity of the 𝓁2 norm ‖𝛽j, 𝛾j‖2 =
√

𝛽
2
j + 𝛾

2
j , we have the following

inequality:

‖𝛽j, 𝛾j‖2 ≤ ‖𝛽
(t)
j , 𝛾 (t)j ‖2 +

1

2‖𝛽(t)j , 𝛾 (t)j ‖2

(

‖𝛽j, 𝛾j‖
2
2 − ‖𝛽

(t)
j , 𝛾 (t)j ‖2

2

)

from where we derive the MM iterative step

𝚯(t+1) = argmin
𝚯

{

1
2st

n∑

i=1

wi

(

Ỹ (t)
i − X i𝚯 − U i𝜹

(t+1)
)2

+ (1 − 𝜌)𝜆
∑

j

‖𝛽j, 𝛾j‖
2
2

2‖𝛽(t)j , 𝛾 (t)j ‖2

+ 𝜌𝜆

∑

j

|𝛾j|

}

Using cyclic coordinate descent, the updates for 𝛽j and 𝛾j are given by the following equations:

𝛽j ←

∑n
i=1 wiGij

(
ri;−j − DiGij�̃�j

)

∑n
i=1 wiG

2
ij + (1 − 𝜌)𝜆s̃t

�̃� ←
S
𝜌𝜆st

(∑n
i=1 wiDiGij(ri;−j − Gij𝛽j)

)

∑n
i=1 wi(DiGij)2 + (1 − 𝜌)𝜆s̃t

where we defined s̃t = st∕‖𝛽
(t)
j , 𝛾 (t)j ‖2. Algorithm 1 summarizes our block coordinate descent (BCD) procedure to obtain

regularized estimates for the fixed effects vector 𝚯 = (𝜽⊺, 𝛼⊺,𝜷⊺, 𝜸⊺)⊺.
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Algorithm 1: BCD algorithm to minimize the PQL loss function of the GEI model (5) with mixed lasso and group
lasso penalties for GLMMs.

Input: y, X = [Z D G (D ⊙ G)]
Output: �̂�, �̂�, �̂�, �̂�
Estimate 𝜏g, 𝜏d and 𝜙 under the null model (i.e. 𝜷 = 𝜸 = 0) using the AI-REML algorithm; Given 𝜏g, 𝜏d and �̂�,

perform spectral decomposition of the random effects covariance matrix 𝜏gK + 𝜏dKD = U𝚲U⊺; Initialize

𝚯(0) = (𝜽(0)⊺, 𝛼(0)⊺, 𝜷 (0)⊺, 𝜸(0)
⊺)⊺ and �̃�

(0)
; for 𝜆 = 𝜆1, 𝜆2,… do

for t=0,1,. . . until convergence do

Select a suitable step size st; Update 𝝁(t) ← g−1(X𝚯(t) + U �̃�
(t)), 𝚫(t) ← diag(g′(𝝁(t))) and wi ← 𝚫−(t)

ii for

i = 1,… , n; Update Ỹ ← X𝚯(t) + U �̃�
(t) + st𝚫(t)(y − 𝝁(t)); /* Inner loop to estimate �̃� for j=1,. . . ,n until

convergence do

𝛿j
(t+1)

←

∑n
i=1 wiUij

(

Ỹi − X i𝚯(t) −
∑

l≠j Uil𝛿l

)

∑n
i=1 wiU

2
ij + �̂�Λ−1

j

Update 𝝁(t) ← g−1
(

X𝚯(t) + U �̃�
(t+1)

)

; Update Ỹ ← X𝚯(t) + U �̃�
(t+1) + st𝚫(t)(y − 𝝁(t));

/* Inner loop to estimate 𝚯(t+1) for k=1,. . . ,m until convergence do

𝜃k ←

∑n
i=1 wiZij

(
Ỹi −

∑
l≠k Zil𝜃l − Di�̃� − Gi�̃� − (Di ⊙ Gi)�̃� − U i�̃�

)

∑n
i=1 wiZ

2
ik

�̃� ←

∑n
i=1 wiDi

(
Ỹi − Z i�̃� − Gi�̃� − (Di ⊙ Gi)�̃� − U i�̃�

)

∑n
i=1 wiD

2
i

for j=1,. . . ,p until convergence do
Compute ri;−j = Ỹi − Z i�̃� − Di�̃� −

∑
l≠j Gil𝛽l −

∑
l≠j(Di ⊙ Gil)�̃�l − U i�̃�; If

|
∑n

i=1 wi(Di ⊙ Gij)(ri;−j − Gij𝛽j)| ≤ 𝜆st then set

�̃�j ← 0 and 𝛽j ←
S
𝜆st
(
∑n

i=1 wiGijri;−j)
∑n

i=1 wiG
2
ij

Else then set

𝛽j ←

∑n
i=1 wiGij

(
ri;−j − DiGij�̃�j

)

∑n
i=1 wiG

2
ij + 𝜆s̃t

�̃� ←
S
𝜆s̃t

(∑n
i=1 wiDiGij(ri;−j − Gij𝛽j)

)

∑n
i=1 wi(DiGij)2 + 𝜆s̃t

where s̃t = st∕‖𝛽
(t)
j , 𝛾 (t)j ‖2.
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