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Abstract
Nesterov’s accelerated gradient (AG) is a popular technique to optimize objective functions comprising two components: a
convex loss and a penalty function. While AG methods perform well for convex penalties, such as the LASSO, convergence
issues may arise when it is applied to nonconvex penalties, such as SCAD. A recent proposal generalizes Nesterov’s AG
method to the nonconvex setting. The proposed algorithm requires specification of several hyperparameters for its practical
application. Aside from some general conditions, there is no explicit rule for selecting the hyperparameters, and how different
selection can affect convergence of the algorithm. In this article, we propose a hyperparameter setting based on the complexity
upper bound to accelerate convergence, and consider the application of this nonconvex AG algorithm to high-dimensional
linear and logistic sparse learning problems. We further establish the rate of convergence and present a simple and useful
bound to characterize our proposed optimal damping sequence. Simulation studies show that convergence can be made, on
average, considerably faster than that of the conventional proximal gradient algorithm. Our experiments also show that the
proposed method generally outperforms the current state-of-the-art methods in terms of signal recovery.

Keywords Optimization · Statistical computing · Variable selection

1 Introduction

Sparse learning is an important component of modern data
science and is an essential tool for the statistical analy-
sis of high-dimensional data, with significant applications
in signal processing and statistical genetics, among others.
Penalization is commonly used to achieve sparsity in param-
eter estimation. The prototypical optimization problem for
obtaining penalized estimators is
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β̂ ∈ arg min
β∈Rq+1

⎡
⎣ f (β) +

q∑
j=1

pλ

(
β j
)
⎤
⎦ ,

where f : R
q+1 �→ R is a convex loss function, pλ :

R �→ R≥0 constitutes the penalty term, and λ > 0
is the tuning parameter for the penalty. Commonly used
penalization methods for sparse learning include: LASSO
(Least Absolute Shrinkage and Selection Operator) (Tib-
shirani 1996), Elastic Net (Zou and Hastie 2005), SCAD
(Smoothly Clipped Absolute Deviation) (Fan and Li 2001)
andMCP (MinimaxConcave Penalty) (Zhang 2010).Among
these penalties, parameter estimation with SCAD and MCP
leads to a nonconvex objective function. The nonconvexity
poses a challenge in statistical computing, as most methods
developed for convex objective functions might not converge
when applied to the nonconvex counterpart.

Various approaches have been proposed to carry out
parameter estimation with SCAD or MCP penalties. Zou
and Li (2008) proposed a local linear approximation, which
yields a first-order majorization-minimization (MM) algo-
rithm. Kim et al. (2008) discussed a difference-of-convex
programming (DCP) method for ordinary least square esti-
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mators penalized by the SCAD penalty, which was later
generalized by Wang et al. (2013) to a general class of non-
convex penalties to produce a first-order algorithm. These
first-order methods belong to the class of proximal gradient
descent methods, which are usually inefficient as relaxation
is often expensive (Nesterov 2004). The objective function is
often ill-conditioned for sparse learning problems, and gradi-
ent descent with constant step size is especially inefficient for
high-dimensional problems. Indeed, previous studies have
suggested that the condition number of a square random
matrix grows linearly with respect to its dimension (Edel-
man 1988). Therefore, high-dimensional problems have a
large condition number with high probability. Specific to
gradient descent with constant step size, the trajectory will
oscillate in the directions with a large eigenvalue, moving
very slowly toward the directions with a small eigenvalue,
making the algorithm inefficient. Lee et al. (2016) devel-
oped a modified second-order method originally designed
for the ordinary least square loss function penalized by
LASSO with extensions to SCAD and MCP; this attempt
was later extended to generalized linear models, such as
logistic and Poisson regression, and Cox’s proportional haz-
ard model. Quasi-Newton methods, or a mixture of first and
second-order descent methods, have also been applied on
nonconvex penalties (Ibrahim et al. 2012; Ghosh and Thore-
sen 2018). However, for high-dimensional problems, these
second-order methods are slow due to the computational cost
of evaluating the secant condition. Concurrently, most first
and second-order methods discussed above require a line-
search procedure at each step to ensure global convergence,
which is prohibitive when the number of parameters to esti-
mate grows large. Breheny and Huang (2011) implemented a
coordinate descentmethod in thencvregR package to carry
out estimation for linear models with least squares loss or
logistic regression, penalized bySCADandMCP.Mazumder
et al. (2011) also implemented a coordinate descent method
in the sparsenet R package, which carries out a closed-
form root-finding update in a coordinate-wise manner for
penalized linear regression. Similar to how ill-conditioning
makes gradient descent inefficient, coordinate descent meth-
ods are generally inefficient when the covariate correlations
are high (Friedman et al. 2077). Previous studies have also
found that coordinate-wise minimization might not converge
for some nonsmooth objective functions (Spall 2012). Fur-
thermore, it is naturally challenging to run coordinate-wise
minimization in parallel, as the algorithm must run in a
sequential coordinate manner.

Due to the low computational cost and adequate mem-
ory requirement per iteration, first-order methods without a
line search procedure have become the primary approach for
high-dimensional problems arising from various areas (Beck
2017). For smooth convex objective functions, Nesterov pro-
posed the accelerated gradient method (AG) to improve

the rate of convergence from O(1/N ) for gradient descent
to O(1/N 2) while achieving global convergence (Nesterov
1983). Subsequently, Nesterov extended AG to composite
convex problems (Nesterov 2012), whereas the objective is
the sumof a smooth convex function and a simple nonsmooth
convex function. With proper step-size choices, Nesterov’s
AG was later shown optimal to solve both smooth and non-
smooth convex programming problems (Lan 2011).

Given that sparse learning problems are often high-
dimensional, Nesterov’s AG has been frequently used for
convex problems in statistical machine learning (e.g., Simon
et al. 2013; Yang and Zou 2014; Yu et al. 2015; Akyildiz
and Míguez 2021). However, convergence is questionable if
the convexity assumption is violated. Recently, Ghadimi and
Lan (2015) generalized the AG method to nonconvex objec-
tive functions, hereafter referred to as the nonconvex AG
method, and derived the rates of convergence for both smooth
and composite objective functions. While this method can
be applied to nonconvex sparse learning problems, several
hyperparameters must be set prior to running the algorithm
and can be difficult to choose in practice. Indeed, the non-
convex AG method has never been applied in the context of
sparse statistical learning problems with nonconvex penal-
ties, such as SCAD and MCP.

This manuscript presents a detailed analysis of the com-
plexity upper bound of the nonconvex AG algorithm and
proposes a hyperparameter setting to accelerate convergence
(Theorem 1). We further establish the rate of convergence
(Theorem 2) and present a simple and useful bound to char-
acterize our proposed optimal damping sequence (Theorem
3 and Corollary 1). Our simulation studies on penalized lin-
ear and logistic models show that the nonconvex AGmethod
with the proposed hyperparameter selector converges consid-
erably faster than other first-order methods.We also compare
the signal recovery performance of the algorithm to that of
ncvreg, the state-of-the-art method based on coordinate
descent, showing that the proposed method outperforms the
state-of-the-art coordinate descent method.

The rest of this manuscript is organised as follows. In
Sects. 2, 3, 4, we will present an analysis of the nonconvex
AG algorithm by Ghadimi and Lan to illustrate the algorithm
as a generalization of Nesterov’s AG. We also present for-
mal results about the effect of hyperparameter settings on
the complexity upper bound. Section5 will include simula-
tion studies for linear and logisticmodels penalized bySCAD
and MCP penalties. The simulation studies show that i) The
AGmethod using our proposed hyperparameter settings con-
verges faster than commonly used first-order methods for
data with various q/n and covariate correlation settings;
and ii) our method outperforms the current state-of-the-art
method, i.e. ncvreg, in terms of signal recovery perfor-
mance, especially when the signal-to-noise ratios are low.
Theproofs for the theorems are included in the “AppendixA”.
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2 Motivation and setup

Having built on Nesterov’s seminal work, Ghadimi and
Lan (2015) considered the following composite optimization
problem:

min
x∈Rq+1

� (x) + χ (x) , � (x) := f (x) + h (x) , (P)

where f ∈ C1,1L f
(Rq+1,R) is convex, h ∈ C1,1Lh

(Rq+1,R)

is possibly nonconvex, and χ is a convex function over a
bounded domain, and C1,1L denotes the class of first-order
Lipschitz smooth functions with L being the Lipschitz con-
stant. They devised Algorithm 1 discussed in details in next
section, and presented a theoretical analysis of their algo-
rithm.

Some commonly used nonconvex penalties, such as
SCAD and MCP, have a form that can naturally be decom-
posed into summation of a convex and a nonconvex func-
tion satisfying the conditions required by Ghadimi and
Lan (2015). When such penalties are added to a smooth
convex deviance measure, such as negative of typical log-
likelihoods, the resulting optimization problem follows the
form of optimization problem (P). As we show below this
is, in particular, the case when the deviance measure is a
quadratic loss and the penalty is either SCAD or MCP. The
quadratic loss plays the role of f . The other two functions,
i.e. h and χ are specified for both SCAD andMCP penalties.
Define

pλ,a,SCAD (β) = χ (β) + hSCAD (β) , (1)

pλ,γ,MCP (β) = χ (β) + hMCP (β) ; (2)

where β := [
β0, β1, . . . , βq

]T , χ (β) = ∑q
j=1 λ|β j |, and

hSCAD (β) =
q∑
j=1

⎧⎪⎪⎨
⎪⎪⎩

0; |β j | ≤ λ

2λ|β j |−β2
j −λ2

2(a−1) ; λ < |β j | < aλ

1
2 (a + 1) λ2 − λ|β j |; |β j | ≥ aλ

∈ C1,1
LSCAD

(3)

hMCP (β) =
q∑
j=1

⎧⎨
⎩

− β2
j

2γ ; |β j | < γλ

1
2 γ λ2 − λ|β j |; |β j | ≥ γ λ

∈ C1,1
LMCP

(4)

In the above equations, λ > 0, a > 2, γ > 1 are the penalty
tuning parameters. It is trivial that, in (1) and (2), χ (β) is
convex and the remaining term is a first-order smooth con-
cave function. In view of the optimization problem (P), when
applying SCAD/MCP on a convex C1,1L�

statistical learning
objective function, f = −2� will be the convex component;
hSCAD, hMCP will be the smooth nonconvex component with
LSCAD = 1

a−1 and LMCP = 1
γ
; and χ = ∑q

j=1 λ|β j | will
be the nonsmooth convex component. For high-dimensional

statistical learning problems, the L-smoothness constant for
the smooth nonconvex component, LSCAD and LMCP , are
often negligiblewhen compared to the greatest singular value
of the design matrix (Meckes 2020). In statistical learning
applications, most unconstrained problems can, in fact, be
reduced to problems over a bounded domain, as information
often suggests the boundedness of the variables.

3 The accelerated gradient algorithm

This Section comprises two subsections. Section 3.1 includes
an algorithm proposed by Ghadimi and Lan (2015) for solv-
ing the composite optimization problem (P). In Sect. 3.2 we
propose an approach for selecting the hyperparameters of the
algorithm by minimizing the complexity upper bound (10)

3.1 Nonconvex accelerated gradient method

Building on Nesterov’s AG algorithm, Ghadimi and Lan
(2015) proposed the following algorithm for solving the com-
posite optimization problem (P).

Algorithm 1 Accelerated Gradient Algorithm
Input: starting point x0 ∈ R

q+1, {αk} s.t. α1 = 1 and ∀k ≥ 2, 0 <

αk < 1, {ωk > 0}, and {δk > 0}
0. Set xag0 = x0 and k = 1
1. Set

xmd
k = αk x

ag
k−1 + (1 − αk) xk−1 (5)

2. Compute ∇�
(
xmd
k

)
and set

xk = xk−1 − δk∇�
(
xmd
k

)
(smooth) (6)

xk = P
(
xk−1,∇�

(
xmd
k

)
, δk

)
(composite)

xagk = xmd
k − ωk∇�

(
xmd
k

)
(smooth) (7)

xagk = P
(
xmd
k ,∇�

(
xmd
k

)
, ωk

)
(composite)

3. Set k = k + 1 and go to step 1
Output: Minimizer xmd

N

In Algorithm 1, “smooth” represents the updating for-
mulas for smooth problems, and “composite” represents the
update formulas for composite problems, and P is the prox-
imal operator defined as:

P (x, y, c) := arg min
u∈Rq+1

{
〈y, u〉 + 1

2c
‖u − x‖2 + χ (u)

}
.

It is evident that the composite counter-part of the algorithm
is the Moreau envelope smoothing of the simple nonconvex
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function; for this reason, in later analysis of the algorithm,
we will use smooth updating formulas for the sake of par-
simony. As an interpretation of the algorithm, {αk} controls
the damping of the system, and ωk controls the step size for
the “gradient correction” update for momentum method. In
what follows, �k is defined recursively as:

�k :=
{
1, k = 1;
(1 − αk) �k−1, k ≥ 2.

Ghadimi and Lan (2015) proved that under the following
conditions:

αkδk ≤ ωk <
1

L�

, ∀k = 1, 2, . . . N − 1 and (8)

α1

δ1�1
≥ α2

δ2�2
≥ · · · ≥ αN

δN�N
, (9)

the rate of convergence for composite optimization problems
can be illustrated by the following complexity upper bound:

min
k=1,...,N

∥∥∥G
(
xmd
k ,∇�

(
xmd
k

)
, ωk

)∥∥∥2

≤
[

N∑
k=1

�−1
k ωk (1 − L�ωk)

]−1

[
‖x0 − x∗‖2

δ1
+ 2Lh

�N

(∥∥x∗∥∥2 + M2
)]

. (10)

In the above inequality, G (xmd
k ,∇�

(
xmd
k

)
, ωk

)
is the ana-

logue to the gradient for smooth functions defined by:

G (x, y, c) := 1

c
[x − P (x, y, c)] .

In accelerated gradient settings, x corresponds to the past
iteration, y corresponds to the smooth gradient at x , and c
corresponds to the step size taken.

3.2 Hyperparameters for nonconvex accelerated
gradient method

Here we discuss how hyperparameters, αk , ωk and δk can be
selected to accelerate convergence of Algorithm 1 by min-
imizing the complexity upper bound. From Lemma 1, it is
clear that the conditions (8) and (9) merely present a lower
bound for the vanishing rate of {αk}. We also observe that
the right-hand side of (A1) is monotonically increasing with
respect to αk ; thus, to obtain the maximum values for {αk},
it is sufficient to maximize αk recursively.

Using 5, 6, and 7, we have

xmd
k+1 − (1 − αk+1) x

ag
k

αk+1
= xmd

k − (1 − αk) x
ag
k−1

αk

− δk∇�
(
xmd
k

)
and

xagk =xmd
k − ωk∇�

(
xmd
k

)
.

By sorting out the terms in the above equations, we obtain
the following updating formulas:

xagk =xmd
k − ωk∇�

(
xmd
k

)
(11)

xmd
k+1 =xagk + αk+1 ·

(
1

αk
− δk

ωk

)
·
(
ωk∇�

(
xmd
k

))

+ αk+1 ·
(

1

αk
− 1

) (
xagk − xagk−1

)
(12)

Compared to Nesterov’s AG, the AGmethod proposed by
Ghadimi and Lan differs by the convergence conditions (8)

and (9), and the inclusion of the term αk+1 ·
(

1
αk

− δk
ωk

)
·

(
ωk∇�

(
xmd
k

))
in (12). Since αk+1 ·

(
1
αk

− δk
ωk

)
≥ 0 is

implied by convergence condition (8), this added term
functions as a step to reduce the magnitude of “gradient cor-
rection” presented in (11): the resulting framework will keep
the same momentum compared to Nesterov’s AG, but the
momentum step update will occur at a midpoint between
xagk and xmd

k to yield xmd
k+1. Such a framework suggests that

the proposed algorithm is merely a midpoint generalization
in the gradient correction step of Nesterov’s AG. Therefore,
the acceleration occurs to the convex component f of the
objective function �. Following this intuition, we proceed
to investigate the optimization hyperparameter settings for
the most accelerating effect in Theorem 1 based on the idea
of minimizing the complexity upper bound (10) when the
objective function is convex; i.e., when h ≡ 0.

It can be deduced from (A1) that an increasing sequence
of {δk} allows a slower vanishing rate for {αk}. Specifi-
cally, the existence of δ1 in (10) can be explained as the
following: the momentum initialization step in Algorithm 1
indicates that xmd

1 = xag0 = x0. We also have xag1 = xmd
1 −

ω1∇�
(
xmd
1

) = xag0 − ω1∇� (x0) for smooth problems or
xag1 = P (xmd

1 ,∇�
(
xmd
1

)
, ω1

) = P (xag0 ,∇� (x0) , ω1
)

for composite problems. In view of (12), the momentum ini-
tializes as xag1 − xag0 = −ω1∇� (x0) for smooth problems.

Thus, should δ1 < ω1 take a smaller value, α2 ·
(

1
α1

− δ1
ω1

)
>

0; i.e., xmd
2 is a convex combination of xag1 and the initial point

x0, and the smaller δ1 is, the closer xmd
2 is to x0. Meanwhile,

a smaller δ1 allows a faster increasing sequence {δk}; hence
a slower-vanishing sequence {αk} can be achieved to incor-
porate more momentum. This process can be interpreted as
follows: when xmd

2 does not retain the full step update from
the initial point x0, more initial momentum will be allowed
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to accumulate, as the initial momentum is in the same direc-
tion as the update. We therefore choose δ1 = ω1; i.e., to
let xmd

2 retain fully the update from x0 in the direction of
−ω1∇� (x0), such that no excess initial momentum will be
needed to account for initial update deficiency in this direc-
tion.

4 Theoretical analysis of the algorithm

For gradient methods without a line-search procedure, the
step size for the gradient correction is usually set to be a
constant. Based on this convention, we assume ωk = β

for k = 1, 2, . . . , N . Theorem 1 below presents the optimal
choice of hyperparameters under mild conditions.

Theorem 1 Assume conditions (8) and (9) hold. Let δ1 =
ωk = ω and h = 0. Then the complexity upper bound (10)
is minimized by:

ᾱk+1 = 2

1 +
√
1 + 4

ᾱ2
k

, ᾱ1 = 1, (13)

δ̄k+1 = ω̄

ᾱk+1
, (14)

ω̄ = 2

3L�

. (15)

Proof See “Appendix A.1”. ��
As illustrated by the proof of the above theorem, the

optimization hyperparameter settings (13), (14), and (15)
allow for the greatest values of {αk} under the constant
gradient-correction step size and maximum initial update
assumptions; i.e., condition 1. Such settings allow the most
acceleration for the convex component. Although a greater
momentum will result in a much faster convergence at the
initial stage of the algorithm, it will also result in oscilla-
tions of larger magnitudes near the minimizer. Therefore,
in the following theorem, we will show that the complexity
upper bound will always maintain O (1/N ) rate of conver-
gence. This observation implies that the accelerated gradient
method’s worst-case scenario is at least as good as O (1/N )

for gradient descent in terms of the rate of convergence.

Theorem 2 Assume conditions (8) and (9) hold. Then under
the assumptions of Theorem 1, the complexity upper bound
is O (1/N ).

Proof See “Appendix A.2”. ��
The recursive formula for optimal momentum hyperpa-

rameter, {αk}, as presented in (13), is of a rather complicated
structure. The next theorem illustrates the vanishing rate of
{αk}.

Theorem 3 Let ᾱ1 = 1 and (13) holds. Then

2(
1 + a · k−b

)
k + 1

< ᾱk ≤ 2

k + 1
, k = 1, . . . , N , (16)

for any a > 0, 0 < b < 1, such that

a (1 − b) · 22−b − ab (1 − b) · 2−b − 1 ≥ 0. (17)

Proof See “Appendix A.3”. ��
The following corollary establishes a tight bound for the

damping sequence, hence providing the speed of conver-
gence of our proposed optimal damping sequence {ᾱk} to
2

k+1 .

Corollary 1 The lower bound in (16) is maximized at

āk = 2b̄k
(1−b̄k)(4−b̄k)

and

b̄k = 2+5
(
log 2

k

)
+
√
9
(
log 2

k

)2+4

2
(
log 2

k

) for k ≥ 8.

The lower bound in (16) therefore becomes

k + 1

2
− ᾱ−1

k = O (log k) (18)

Proof See “Appendix A.4”. ��
To better illustrate Corollary 1, we plot the value of

log
(
ākk−b

)
v.s. (k, b) in Fig. 1. The plot shows that as k

grows large, the optimizer b̄k converges to 1 at a very slow
rate. It also reflects on the speed of 1 + āk · k−b̄k , the coef-
ficient of k in the denominator of the lower bound in (16),
goes to 1 as k increases.

5 Simulations studies

In this section, we conduct two sets of simulation stud-
ies for nonconvex penalized linear and logistic models. We
first visualize the convergence rates and signal recovery per-
formance for each set of simulation studies using a single
simulation replicate. Second, we compare the convergence
rates across the first-order methods with varying q/n ratios
and covariate correlations for 100 simulation replications.
Lastly, we compare the signal recovery performance using
our method to the state-of-the-art method, ncvreg (Bre-
heny and Huang 2011), with varying covariate correlations
and signal-to-noise ratios (SNRs) for 100 simulation replica-
tions. Since the iterative complexity differs for the first-order
methods and coordinate descent methods, the convergence
rates in terms of the number of iterations are not directly
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Fig. 1 Numerical plots for
Corollary 1. The figure plots
log

(
ākk−b

)
v.s. k and b; the red

line plots its minimizer

b̄k = 2+5
(
log 2

k

)
+
√
9
(
log 2

k

)2+4

2
(
log 2

k

)

for each k. The plot reflects on
the speed for the coefficient of k
in the denominator of the lower
bound in (16) converges to 1.
The red line shows that b̄k
converges to 1 at an extremely
slow rate

Fig. 2 Convergence rate performance of first-order methods on SCAD (left) and MCP (right) penalized linear model for a single simulation
replicate. k represents the number of iterations, gk represents the iterative objective function value, and g∗ represents the minimum found by the
three methods considered

comparable. Thus, we choose to compare the computing
time between AG, proximal gradient descent, and coordinate
descent.

5.1 Simulation setup

Linearmodelswith theOLS loss function is a popularmethod
for modelling a continuous response. We aim to achieve sig-
nal recovery by solving the following problem for penalized
linear models:

arg min
β∈Rq+1

1

2n
‖Xβ − y‖22 +

q∑
j=1

pλ

(
β j
)
,

where pλ : R �→ R≥0 is the SCAD or MCP penalty func-
tion. To compare the convergence rates across the first-order
methods, we choose different q/n ratios and the strength of
correlation, τ , between the covariates. These two parameters
are most likely to impact the convergence rates. Median and
corresponding 95%bootstrap confidence intervals from1000
bootstrap replications for the number of iterations required
for the iterative objective values to make a fixed amount of
descent are reported. To compare the signal recovery per-
formance between our AG method and the state-of-the-art
packagencvreg, we performed 100 simulation replications
with varyingSNRsandcovariate correlations, as theydirectly
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Fig. 3 Solution paths obtained
using the proposed AG method
for MCP-penalized linear model
with different values of γ for a
single simulation replicate. The
behaviors of the solution path
match the expected from the
MCP penalized problems. The
solution path behaves similarly
to hard-thresholding for a small
γ . As γ increases, the solution
path will behave more similarly
to soft-thresholding

impact the signal recovery performance. The simulation stud-
ies we performed adapt the following setups:

• The total number of observations n = 1000 for visualiza-
tion plots and signal recovery performance comparison,
and n = 200, 500, 1000, 3000 for convergence rate and
computing time comparisons.

• For visualization purposes, we perform one simulation
replicate with the number of covariates q = 2004,
with 4 nonzero signals being 2,−2, 8,−8. We per-
form 100 simulation replications with the number of
covariates q = 2050, with 5 blocks of “true” signals
equal-spaced with 500 zeros in-between for convergence
rate and computing time comparison, as well as signal
recovery performance comparison. For each simulation
replicate, the blocks of the “true” signals are simulated
from N10 (0.5, 1), N10 (5, 2), N10 (10, 3), N10 (20, 4),
N10 (50, 5), respectively.

• The design matrix, X, is simulated from a multivari-
ate Gaussian distribution with mean 0. The covariance
matrix � is a τ−Toeplitz matrix, where τ = 0.5 for the
visualization plots and τ = 0.1, 0.5, 0.9 for the conver-
gence rate and computing time comparison, as well as
signal recovery performance comparison. All covariates
are standardized; i.e., centered by the sample mean and
scaled by the sample standard deviation.

• The signal-to-noise ratio is set as SNR =
√

βT
true�β true

σ
,

whereβ true are the “true” coefficient values, and σ is used
as the residual standard deviation. SNR = 5 for visual-
ization plots, SNR = 3 for convergence rate comparison,

and SNR = 1, 3, 7, 10 for signal recovery performance
comparison.

• For visualization plots, convergence rate and computing
time comparisons, we take λ = 0.5, a = 3.7 for SCAD
and λ = 0.5, γ = 3 for MCP, unless otherwise specified.
For signal recovery rate comparison, λ sequence consists
of 50 values equal-spaced from λmax

1 to 0. The tuning
parameter λ is chosen to minimize the (non-penalized)
loss function value on a validation set of the same size as
the training set.

• For signal recovery performance comparison, we use the
same objective function as ncvreg to ensure that the
same value of penalty tuning parameters results in the
same degree of penalization. We also adapt the same
strong rule setup as ncvreg (Lee and Breheny 2015).

To compare the gradient-based methods and the coor-
dinate descent method, we compare the computing time
when both coded inPython/CuPy. The coordinate descent
method was coded based on the state-of-the-art pseudo-
code (Breheny and Huang 2011). All of the computing was
carried out on a NVIDIA A100 GPU with CUDA compute
capability of 8.0 on theNarval computing cluster fromCalcul
Quèbec/Compute Canada. Furthermore, we also excluded
the computation of the L-smoothness parameter for the coor-
dinate descent method in our simulations.

The simulation setups for penalized logistic models are
similar to those above for penalized linear models, except

1 λmax is the minimal value for λ such that all penalized coefficients
are estimated as 0.
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Table 1 Signal recovery
performance (sample mean and
standard error of∥∥∥β true−β̂

∥∥∥2
2
/‖β true‖2

2,
positive/negative predictive
values (PPV, NPV) for signal
detection, and active set
cardinality |Â|) for ncvreg
and AG with our proposed
hyperparameter settings on
SCAD-penalized linear model
over 100 simulation replications,
across varying values of SNRs
and covariates correlations (τ )

∥∥∥β true−β̂

∥∥∥2
2
/‖β true‖2

2 τ = 0.1 0.5 0.9

SNR = 1, AG 0.128(0.021) 0.521(0.114) 2.839(0.497)

SNR = 1, ncvreg 0.131(0.02) 0.485(0.102) 2.929(0.525)

SNR = 3, AG 0.05(0.009) 0.156(0.035) 2.075(0.339)

SNR = 3, ncvreg 0.052(0.009) 0.156(0.028) 2.087(0.357)

SNR = 7, AG 0.022(0.004) 0.085(0.014) 1.278(0.262)

SNR = 7, ncvreg 0.021(0.004) 0.083(0.015) 1.3(0.262)

SNR = 10, AG 0.016(0.003) 0.065(0.011) 1.163(0.207)

SNR = 10, ncvreg 0.015(0.003) 0.063(0.013) 1.167(0.22)

PPV τ = 0.1 0.5 0.9

SNR = 1, AG 0.747(0.134) 0.622(0.188) 0.488(0.25)

SNR = 1, ncvreg 0.255(0.061) 0.287(0.132) 0.286(0.19)

SNR = 3, AG 0.681(0.162) 0.551(0.206) 0.327(0.234)

SNR = 3, ncvreg 0.282(0.079) 0.307(0.098) 0.275(0.148)

SNR = 7, AG 0.58(0.138) 0.42(0.257) 0.197(0.141)

SNR = 7, ncvreg 0.32(0.065) 0.344(0.152) 0.175(0.101)

SNR = 10, AG 0.528(0.272) 0.437(0.09) 0.211(0.081)

SNR = 10, ncvreg 0.349(0.127) 0.409(0.1) 0.206(0.047)

NPV τ = 0.1 0.5 0.9

SNR = 1, AG 0.984(0.001) 0.984(0.001) 0.979(0.001)

SNR = 1, ncvreg 0.987(0.001) 0.986(0.001) 0.98(0.001)

SNR = 3, AG 0.989(0.001) 0.988(0.002) 0.98(0.001)

SNR = 3, ncvreg 0.99(0.001) 0.989(0.001) 0.98(0.001)

SNR = 7, AG 0.992(0.001) 0.991(0.001) 0.981(0.001)

SNR = 7, ncvreg 0.993(0.001) 0.991(0.001) 0.981(0.001)

SNR = 10, AG 0.993(0.001) 0.992(0.001) 0.982(0.001)

SNR = 10, ncvreg 0.993(0.001) 0.992(0.001) 0.982(0.001)

|Â| τ = 0.1 0.5 0.9

SNR = 1, AG 25.82(8.08) 31.58(17.056) 23.11(15.166)

SNR = 1, ncvreg 100.88(25.582) 94.32(41.572) 42.01(20.592)

SNR = 3, AG 42.78(14.003) 55.48(20.653) 42.83(16.308)

SNR = 3, ncvreg 120.17(33.554) 101.75(29.498) 46.72(16.252)

SNR = 7, AG 61.89(21.881) 97.88(36.736) 86.71(26.567)

SNR = 7, ncvreg 115.4(23.845) 107.19(31.445) 89.74(23.1)

SNR = 10, AG 101.21(66.968) 81.17(25.325) 70.8(11.642)

SNR = 10, ncvreg 123.5(52.077) 90.58(40.419) 71.47(10.954)

that the active coefficients are set differently to account for
the exponential scale inherent to the logistic regression. For
the single-replicate visualization simulations, we let the 4
nonzero signals be 0.5,−0.5, 0.8,−0.8. For the simulations
with 100 replications to compare the convergence rate and
signal recovery performance, we simulate the 5 blocks of the
“true” signals from N10 (0.5, 1), N10 (0.5, 1), N10 (−0.5, 1),
N10 (−0.5, 1), N10 (1, 1), respectively. The SNR for logis-
tic regression has the same definition as linear models, with
Gaussian noise added to the generated continuous predic-
tor Xβ true. The binary outcomes are independent Bernoulli

realizations, with probabilities being the logistic transforms
of the continuous response.

5.2 Simulation results

5.2.1 Penalized linear regression

Figure2 shows the log differences of iterative objective
values for a single replicate. This figure visualizes the
accelerating effect of the AG method using our proposed
hyperparameter settings. Median with the corresponding
95% bootstrap CI of the number of iterations required for the
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Table 2 Signal recovery
performance (sample mean and
standard error of∥∥∥β true−β̂

∥∥∥2
2
/‖β true‖2

2,
positive/negative predictive
values (PPV, NPV), and active
set cardinality |Â| for signal
detection) for ncvreg and AG
with our proposed
hyperparameter settings on
MCP-penalized linear model
over 100 simulation replications,
across varying values of SNRs
and covariates correlations (τ )

∥∥∥β true−β̂

∥∥∥2
2
/‖β true‖2

2 τ = 0.1 0.5 0.9

SNR = 1, AG 0.133(0.022) 0.563(0.124) 2.839(0.39)

SNR = 1, ncvreg 0.126(0.019) 0.494(0.112) 2.86(0.427)

SNR = 3, AG 0.049(0.01) 0.169(0.034) 1.997(0.329)

SNR = 3, ncvreg 0.048(0.009) 0.161(0.032) 1.92(0.34)

SNR = 7, AG 0.021(0.004) 0.088(0.016) 1.503(0.329)

SNR = 7, ncvreg 0.02(0.004) 0.086(0.017) 1.416(0.302)

SNR = 10, AG 0.014(0.003) 0.059(0.011) 1.084(0.272)

SNR = 10, ncvreg 0.014(0.003) 0.059(0.013) 1.134(0.248)

PPV τ = 0.1 0.5 0.9

SNR = 1, AG 0.85(0.081) 0.744(0.161) 0.616(0.208)

SNR = 1, ncvreg 0.435(0.085) 0.407(0.135) 0.387(0.154)

SNR = 3, AG 0.842(0.119) 0.732(0.21) 0.506(0.286)

SNR = 3, ncvreg 0.505(0.112) 0.514(0.121) 0.366(0.18)

SNR = 7, AG 0.761(0.175) 0.646(0.293) 0.505(0.218)

SNR = 7, ncvreg 0.541(0.128) 0.547(0.173) 0.483(0.201)

SNR = 10, AG 0.801(0.099) 0.489(0.134) 0.375(0.225)

SNR = 10, ncvreg 0.559(0.107) 0.476(0.135) 0.377(0.225)

NPV τ = 0.1 0.5 0.9

SNR = 1, AG 0.983(0.001) 0.982(0.001) 0.979(0.001)

SNR = 1, ncvreg 0.986(0.001) 0.984(0.001) 0.979(0.0)

SNR = 3, AG 0.988(0.001) 0.986(0.001) 0.98(0.001)

SNR = 3, ncvreg 0.989(0.001) 0.987(0.001) 0.98(0.001)

SNR = 7, AG 0.991(0.001) 0.989(0.001) 0.981(0.001)

SNR = 7, ncvreg 0.992(0.001) 0.989(0.001) 0.981(0.001)

SNR = 10, AG 0.992(0.001) 0.99(0.001) 0.982(0.001)

SNR = 10, ncvreg 0.993(0.001) 0.99(0.001) 0.982(0.001)

|Â| τ = 0.1 0.5 0.9

SNR = 1, AG 19.7(4.584) 20.6(9.45) 12.5(8.163)

SNR = 1, ncvreg 51.61(13.612) 47.32(16.093) 20.25(11.411)

SNR = 3, AG 30.55(8.437) 34.52(16.44) 25.37(14.373)

SNR = 3, ncvreg 60.14(15.873) 48.08(13.783) 31.0(13.981)

SNR = 7, AG 44.45(14.273) 56.95(32.804) 31.96(25.048)

SNR = 7, ncvreg 66.7(20.364) 58.36(24.633) 33.38(25.617)

SNR = 10, AG 43.23(11.26) 64.65(12.923) 46.58(18.186)

SNR = 10, ncvreg 65.36(13.06) 67.16(15.483) 46.07(19.223)

iterative objective function values to make a fixed amount
of descent for 100 simulation replications are reported in
Figs. 8 and 9 in “Appendix B.1”. The lack of bars in the
reportedbarplots indicates that themedianof 100 replications
breaks down; i.e., the corresponding proximal gradient algo-
rithm fails to converge to the minimizer found by the three
algorithms within 2000 iterations. The AGmethod using our
hyperparameter settings converges much faster than prox-
imal gradient and AG using the original hyperparameter
settings proposed by Ghadimi and Lan for both SCAD and
MCP-penalizedmodels discussed here, as reflected inFigs. 2,
8 and 9. It can also be observed that momentum methods

such as AG are much less likely to be stuck at saddle points
or local minimizers than proximal gradient—this property
is consistent with previous findings (Jin et al. 2017). Since
the proposed AG methods belong to the class of momen-
tum methods, the AG algorithms do not possess a descent
property. As suggested by a previous study (Su et al. 2014),
oscillation will occur at the end of the trajectory; the descent
propertywill therefore vanish. This is also reflected in Figs. 2,
5—as the trajectory moves close to the optimizer, the oscil-
lation will start to occur for the AG methods. Among all
the first-order methods, the AG method with our proposed
hyperparameter settings tends to converge the fastest in
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Fig. 4 Sample means for
positive/negative predictive
values (PPV, NPV) of signal
detection across different values
of covariates correlation (τ ) and
SNRs for AG with our proposed
hyperparameter settings and
ncvreg on SCAD-penalized
linear model over 100
simulation replications. The
error bars represent the standard
errors

Fig. 5 Convergence rate performance of first-order methods on SCAD (left) and MCP (right) penalized logistic regression for a single simulation
replicate. k represents the number of iterations, gk represents the iterative objective function value, and g∗ represent the minimum found by the
three methods considered

all scenarios considered, as illustrated by Figs. 8 and 9 in
“Appendix B.1”. The observed standard errors among 100
simulation replications are rather small, suggesting that the
halting time retains predictable for high-dimensionalmodels,
which agrees with the recent findings (Paquette et al. 2020).

Figures10 and 11 report median with the corresponding
95%bootstrapCI of the computing time (in seconds) required
for the infinity norm of the two consecutive iterations∥∥∥β(k+1) − β(k)

∥∥∥∞ to fall below 10−4 for 100 simulation

replications. It can be observed that the computing time for

AGwith suggested settings is much shorter than the comput-
ing time for coordinate descent.

To visualize the signal recovery performance using our
proposed method, Fig. 3 plots the solution paths for the
MCP-penalized linear model with different values of γ . The
grey lines in Fig. 3 represent the recovered values for the
noise variables. AGmethod performs verywell when applied
to signal recovery problems for nonconvex-penalized lin-
ear models. Figure3 serves as an arbitrary instance that the
recovered signals using our method exhibit the expected pat-
tern with MCP—as λ decreases, the degree of penalization
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Fig. 6 Solution paths obtained
using the proposed AG method
for MCP-penalized logistic
regression with different values
of γ for a single simulation
replicate. The behaviors of the
solution path match the
expected from the MCP
penalized problems. The
solution path behaves similarly
to hard-thresholding for a small
γ . As γ increases, the solution
path will behave more similarly
to soft-thresholding

decreases, and more false-positive signals will be selected.
The stable solution path for the recovered signals suggests
that the algorithm does not converge to a point far away from
the “true” coefficients.

To further illustrate the signal recovery performance, the
means and standard errors for the scaled estimation error∥∥∥β true−β̂

∥∥∥2
2

‖β true‖2
2

, positive/negative predictive values (PPV, NPV),

and active set cardinality across 100 replications are reported
in Tables 1 and 2 in “Appendix B.1”. In what follows, A
denotes the set of nonzero “true” coefficients and Â denotes
the set of nonzero coefficients selected by the model. PPV
and NPV use the following definitions:

PPV := |A ∩ Â|
|Â| , NPV := |AC ∩ ÂC |

|ÂC | .

Sample means and standard errors for PPV and NPV from
Table 1 are further visualized in Fig. 4. When applied to
sparse learning problems, the signal recovery performance of
our proposedmethod often outperformsncvreg, the current
state-of-the-art method (Breheny and Huang 2011), particu-
larly in terms of the positive predictive values (PPV). This
can be observed from Fig. 4 and Tables 1, 2 from “Appendix
B.1”. This observation is especially evident when the signal-

to-noise ratios are low. At the same time,
∥∥∥β true−β̂

∥∥∥2
2
/‖β true‖2

2

for both methods are close. As the SNR increases, the vali-
dation set becomes more similar to the training set, causing
the chosen model to have a smaller λ. The model size will
therefore increase, which will decrease the value of PPV.

5.2.2 Penalized logistic regression

The simulation results reflected in Figs. 5 and 6, as well as
Figs. 12, 13 and Tables 3, 4 in “Appendix B.2” suggest simi-
lar findings for penalized logistic models to our findings for
penalized linear models as discussed in Sect. 5.2.1. We fur-
ther note that when applied to penalized logistic models, the
coordinate descent method often fails to converge, resulting
in overall poor performance in positive predictive values as
reflected in Fig. 7 and Tables 3, 4 in “Appendix B.2”. When
it does converge, the coordinate descent method does so at
a very slow rate. In comparison, our proposed method has
a convergence guarantee in theory and converges within a
reasonable number of iterations in our simulation studies,
as shown in Figs. 8, 9 in “Appendix B.2”. In our comput-
ing time comparison, we used identical simulation setups
and convergence standard for both the AG method and coor-
dinate descent method, running both on a NVIDIA A100
GPU with CUDA compute capability of 8.0 from Compute
Canada; the submitted simulation job finished well within 20
minutes for both SCAD and MCP-penalized logistic models
when using the AGmethod, but exceeded the 7-day comput-
ing time limit imposed on the Narval cluster when using the
coordinate descent method.

6 Discussion

We considered a recently developed generalization of Nes-
terov’s accelerated gradient method for nonconvex optimiza-
tion, and we have discussed its potential in sparse statistical
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Table 3 Signal recovery
performance (sample mean and
standard error of∥∥∥β true−β̂

∥∥∥2
2
/‖β true‖2

2,
positive/negative predictive
values (PPV, NPV), and active
set cardinality |Â| for signal
detection) for ncvreg and AG
with our proposed
hyperparameter settings on
SCAD-penalized logistic model
over 100 simulation replications,
across varying values of SNRs
and covariates correlations (τ )

∥∥∥β true−β̂

∥∥∥2
2
/‖β true‖2

2 τ = 0.1 0.5 0.9

SNR = 1, AG 0.768(0.047) 0.81(0.041) 0.896(0.04)

SNR = 1, ncvreg 0.803(0.033) 0.84(0.033) 0.903(0.037)

SNR = 3, AG 0.556(0.057) 0.656(0.054) 0.839(0.056)

SNR = 3, ncvreg 0.603(0.053) 0.682(0.055) 0.813(0.053)

SNR = 7, AG 0.377(0.076) 0.521(0.073) 0.779(0.072)

SNR = 7, ncvreg 0.438(0.054) 0.537(0.074) 0.735(0.074)

SNR = 10, AG 0.311(0.077) 0.474(0.073) 0.757(0.079)

SNR = 10, ncvreg 0.377(0.064) 0.481(0.079) 0.712(0.078)

PPV τ = 0.1 0.5 0.9

SNR = 1, AG 0.8(0.079) 0.779(0.1) 0.697(0.126)

SNR = 1, ncvreg 0.221(0.045) 0.265(0.079) 0.309(0.169)

SNR = 3, AG 0.875(0.054) 0.859(0.065) 0.765(0.096)

SNR = 3, ncvreg 0.244(0.052) 0.273(0.072) 0.273(0.133)

SNR = 7, AG 0.901(0.052) 0.881(0.057) 0.788(0.098)

SNR = 7, ncvreg 0.27(0.04) 0.271(0.079) 0.267(0.136)

SNR = 10, AG 0.915(0.048) 0.899(0.054) 0.789(0.097)

SNR = 10, ncvreg 0.29(0.05) 0.279(0.072) 0.26(0.123)

NPV τ = 0.1 0.5 0.9

SNR = 1, AG 0.982(0.001) 0.98(0.001) 0.978(0.001)

SNR = 1, ncvreg 0.987(0.002) 0.985(0.002) 0.98(0.001)

SNR = 3, AG 0.985(0.002) 0.982(0.001) 0.979(0.001)

SNR = 3, ncvreg 0.99(0.002) 0.987(0.002) 0.98(0.001)

SNR = 7, AG 0.987(0.002) 0.984(0.001) 0.979(0.001)

SNR = 7, ncvreg 0.992(0.001) 0.988(0.001) 0.98(0.001)

SNR = 10, AG 0.988(0.002) 0.984(0.001) 0.979(0.001)

SNR = 10, ncvreg 0.992(0.001) 0.988(0.001) 0.98(0.001)

|Â| τ = 0.1 0.5 0.9

SNR = 1, AG 17.07(3.91) 13.4(3.365) 7.62(2.134)

SNR = 1, ncvreg 120.14(28.882) 86.49(24.421) 39.41(19.448)

SNR = 3, AG 23.34(4.203) 16.59(3.459) 8.69(2.082)

SNR = 3, ncvreg 134.85(29.96) 98.48(28.434) 42.47(15.014)

SNR = 7, AG 26.98(4.58) 19.46(3.659) 9.79(2.246)

SNR = 7, ncvreg 130.33(22.255) 105.03(28.123) 48.81(19.059)

SNR = 10, AG 27.95(4.462) 19.57(3.141) 10.24(2.346)

SNR = 10, ncvreg 124.58(23.016) 103.49(27.66) 50.64(21.138)

learning with nonconvex penalties. An important issue con-
cerning this algorithm is the selection of its sequences of
hyperparameters. We present an explicit solution to this
problem by minimizing the algorithm’s complexity upper
bound, hence accelerating convergence of the algorithm. Our
simulation studies indicate that among first-order methods,
the AG method using our proposed hyperparameter set-
tings achieves a convergence rate considerably faster than
other first-order methods such as the AG method using the
original proposed hyperparameter settings or proximal gra-
dient. Our simulations also show that signal recovery using
our proposed method generally outperforms ncvreg, the

current state-of-the-art method. This performance gain is
muchmore pronounced for penalized linearmodels when the
signal-to-noise ratios are low. For penalized logistic regres-
sion, the performance gain observed is consistent across
various covariates correlation and signal-to-noise ratio set-
tings. Compared to coordinate-wise minimization methods,
our proposed method is less challenged by low signal-to-
noise ratios and is feasible to implement in parallel. Given
today’s computing facilities, parallel computing is partic-
ularly meaningful for large datasets (Parnell et al. 2020).
We also show this gain in parallel computing performance
by comparing computing time on a GPU. Furthermore, our
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Table 4 Signal recovery
performance (sample mean and
standard error of∥∥∥β true−β̂

∥∥∥2
2
/‖β true‖2

2,
positive/negative predictive
values (PPV, NPV), and active
set cardinality |Â| for signal
detection) for ncvreg and AG
with our proposed
hyperparameter settings on
MCP-penalized logistic model
over 100 simulation replications,
across varying values of SNRs
and covariates correlations (τ )

∥∥∥β true−β̂

∥∥∥2
2
/‖β true‖2

2 τ = 0.1 0.5 0.9

SNR = 1, AG 0.769(0.044) 0.808(0.041) 0.897(0.043)

SNR = 1, ncvreg 0.795(0.036) 0.829(0.032) 0.903(0.038)

SNR = 3, AG 0.555(0.058) 0.654(0.053) 0.834(0.054)

SNR = 3, ncvreg 0.605(0.049) 0.674(0.054) 0.825(0.057)

SNR = 7, AG 0.383(0.08) 0.521(0.069) 0.779(0.07)

SNR = 7, ncvreg 0.438(0.057) 0.533(0.07) 0.761(0.071)

SNR = 10, AG 0.31(0.079) 0.469(0.073) 0.753(0.076)

SNR = 10, ncvreg 0.381(0.061) 0.48(0.082) 0.737(0.077)

PPV τ = 0.1 0.5 0.9

SNR = 1, AG 0.879(0.06) 0.859(0.058) 0.779(0.087)

SNR = 1, ncvreg 0.372(0.068) 0.401(0.106) 0.375(0.157)

SNR = 3, AG 0.906(0.05) 0.889(0.05) 0.805(0.086)

SNR = 3, ncvreg 0.43(0.065) 0.445(0.106) 0.395(0.126)

SNR = 7, AG 0.919(0.044) 0.903(0.05) 0.809(0.102)

SNR = 7, ncvreg 0.463(0.063) 0.45(0.104) 0.417(0.145)

SNR = 10, AG 0.918(0.045) 0.911(0.038) 0.804(0.111)

SNR = 10, ncvreg 0.502(0.069) 0.468(0.095) 0.412(0.137)

NPV τ = 0.1 0.5 0.9

SNR = 1, AG 0.981(0.001) 0.98(0.001) 0.978(0.001)

SNR = 1, ncvreg 0.986(0.002) 0.983(0.001) 0.978(0.001)

SNR = 3, AG 0.985(0.002) 0.982(0.001) 0.979(0.001)

SNR = 3, ncvreg 0.989(0.002) 0.985(0.001) 0.979(0.001)

SNR = 7, AG 0.987(0.002) 0.984(0.001) 0.98(0.001)

SNR = 7, ncvreg 0.991(0.002) 0.986(0.001) 0.98(0.001)

SNR = 10, AG 0.988(0.002) 0.984(0.001) 0.98(0.001)

SNR = 10, ncvreg 0.991(0.001) 0.987(0.001) 0.98(0.001)

|Â| τ = 0.1 0.5 0.9

SNR = 1, AG 13.86(3.082) 11.42(2.776) 6.72(1.744)

SNR = 1, ncvreg 59.83(14.138) 42.1(12.546) 19.72(8.393)

SNR = 3, AG 21.86(4.313) 15.84(3.036) 8.84(1.938)

SNR = 3, ncvreg 66.57(13.203) 48.28(14.5) 22.81(9.784)

SNR = 7, AG 25.75(4.776) 18.78(3.189) 10.33(2.565)

SNR = 7, ncvreg 69.44(11.876) 52.54(13.638) 24.63(8.741)

SNR = 10, AG 27.53(4.649) 19.55(3.093) 11.06(2.877)

SNR = 10, ncvreg 65.38(10.776) 51.66(12.785) 25.59(9.428)

proposed method has weaker convergence conditions and
can be applied to a class of problems that do not have an
explicit solution to the coordinate-wise objective function.
For example, linear mixed models for grouped or longitudi-
nal data involve the inverse of a large covariance matrix.
Decomposition of this covariance matrix is necessary to
apply the coordinate descent method. However, such decom-
position can be computationally costly and numerically
unstable (Quarteron 2000). On the other hand,matrix decom-
position is not needed for first-order methods, as numerically
stable yet computationally efficient approaches such as con-
jugate gradient can be adapted when applying our proposed

method. The proposed nonconvex AGmethod can be applied
to a wide range of statistical learning problems, opening
various future research opportunities in statistical machine
learning and statistical genetics.

7 Disclaimer

All codes to reproduce the simulation results of this paper
and outputs from Calcul Quebec/Compute Canada can be
found on the following GitHub repository:

https://github.com/Kaiyangshi-Ito/nonconvexAG
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Fig. 7 Sample means for
Positive/Negative Predictive
Values (PPV, NPV) of signal
detection across different values
of covariates correlation (τ ) and
SNRs for AG with our proposed
hyperparameter settings and
ncvreg on SCAD-penalized
logistic model over 100
simulation replications. The
error bars represent the standard
error

Appendix A Proofs

We first establish the following Lemma needed for the proof
of Theorem 1.

A.1 Proof of Theorem 1

The following lemma is needed in the proof of Theorem 1.

Lemma 1 Assume that ∀k = 1, 2, . . . , N, the convergence
conditions (8) and (9) hold, then we have the following recur-
sive relation:

αk+1 ≤ 1

1 + δk/δk+1
αk

. (A1)

Proof The convergence conditions (8) and (9) gives that
∀k = 1, 2, . . . , N − 1,

αk+1δk+1 ≤ ωk+1 ⇔ αk+1 ≤ ωk+1

δk+1
, and

αk

δk�k
≥ αk+1

δk+1�k+1
⇔ αk

δk

≥ αk+1

δk+1 (1 − αk+1)
⇔ αk+1 ≤ αkδk+1

αkδk+1 + δk
.

Following above two inequalities, we have that

αk+1 ≤ min

{
ωk+1

δk+1
,

αkδk+1

αkδk+1 + δk

}
. (A2)

We observe that in (A2), ωk+1
δk+1

is monotonically decreasing

with respect to δk+1 onR+; while αkδk+1
αkδk+1+δk

is monotonically
increasing with respect to δk+1 on R+. This suggests:

arg max
δk+1>0

(
min

{
ωk+1

δk+1
,

αkδk+1

αkδk+1 + δk

})

=
⎧⎨
⎩

ωk+1 +
√

ω2
k+1 + 4ωk+1δk

αk

2

⎫⎬
⎭ . (A3)

That is, the inequality constraints conditions (8) and (9) for
convergence are merely a lower bound on the vanishing rate
of {αk}. Therefore it follows from (8) and the (necessary)
optimality condition for (A3) that

αk+1 ≤ 2ωk+1

ωk+1 +
√

ω2
k+1 + 4ωk+1δk

αk

≤ 2

1 +
√
1 + 4δk

αkωk+1

= 2

1 +
√
1 + 4δk/δk+1

αkαk+1

. (A4)

By simplifying (A1), we have:

αk+1 ≤ 1

1 + δk/δk+1
αk

.

��
We now proceed with the proof of Theorem 1.
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Proof The complexity upper bound (10) under the given con-
ditions can be simplified as:

[
N∑

k=1

�−1
k ωk (1 − L�ωk)

]−1

[
‖x0 − x∗‖2

δ1
+ 2L f

�N

(∥∥x∗∥∥2 + M2
)]

=
[

N∑
k=1

�−1
k ωk (1 − L�ωk)

]−1

· ‖x0 − x∗‖2
δ1

= 1

ω (1 − L�ω)

(
N∑

k=1

�−1
k

)−1

· ‖x0 − x∗‖2
ω

=
(

N∑
k=1

�−1
k

)−1

· ‖x0 − x∗‖2
ω2 (1 − L�ω)

. (A5)

Observe that
(∑N

k=1 �−1
k

)−1
is monotonically decreasing

with respect to αk for all k = 1, 2, . . . , N . This property
implies that (A5) is minimized when αk attains its greatest
value for k = 1, 2, . . . , N .

Condition δ1 = ωk = ω gives that

ω1 = δ1 = α1δ1.

Since the upper bound for αk+1 presented in (A1) is mono-
tonically increasing with respect to αk , it then follows
inductively from the (necessary) optimality condition of (A2)
that

αk+1 ≤ 1

1 + δk/δk+1
αk

= 1

1 + αk+1

α2
k

,

which simplifies to

αk+1 ≤ 2

1 +
√
1 + 4

α2
k

.

While ω2 (1 − L�ω) should be maximized to minimize the
value of (A5), which implies the minimizer for ω is

ω̄ = 2

3L�

.

And λ̄k+1 = ω̄
ᾱk+1

follows directly form the necessary
optimality condition for (A2). It is trivial to check that({ᾱk} ,

{
δ̄k
}
, ω̄
)
is feasible under given constraints (8) and

(9). ��

A.2 Proof of Theorem 2

Proof Consider arbitrary k = 2, . . . , N , then αk ∈ (0, 1)
by definition. In the convergence conditions (8) and (9), this
gives us that

αk+1

αk
≤ 2

αk +
√

α2
k + 4

∈
(√

5 − 1

2
, 1

)
.

Thus, {αk} is a bounded monotonically decreasing sequence,

and α2 ≤ 2

1+
√
1+ 4

12

=
√
5−1
2 further implies that ∀k ≥

2, αk ∈ (0,
√
5−1
2 ].

For all k ≥ 2, αk ∈ (0, 1) implies that 1 − αk ∈ (0, 1).
Therefore, �−1

k = 1
(1−α2)(1−α3)···(1−αk )

is monotonically

increasing with respect to k. Thus,
∑N

k=1 �−1
k = O (N ),

which implies that
(∑N

k=1 �−1
k

)−1 · C1 = O (1/N ).

Observe that

0 <

(
�N

N∑
k=1

1

�k

)−1

= 1

N · �N
· N∑N

k=1
1
�k

≤ 1

N · �N
·
(

N∏
k=1

�k

) 1
N

= 1

N
·
(

N∏
k=1

�k

�N

) 1
N

= 1

N
·
(

N∏
k=1

�N

�k

)− 1
N

= 1

N
·
(

N∏
k=2

(1 − αk)
k

)− 1
N

= 1

N
·

N∏
k=2

(1 − αk)
− k

N , (A6)

where the inequality in (A6) follows from the harmonic
mean-geometric mean inequality.

Consider arbitrary N ∈ N, now we are to prove that ∀k =
1, 2, . . . , N , αk ≤ 2

k+1 . By definition, α1 = 1 ≤ 1. Assume

that αk ≤ 2
k+1 , then by the convergence conditions,

αk+1 ≤ 2

1 +
√
1 + 4

α2
k

≤ 2

1 +
√
1 + 4/

(
2

k+1

)2

= 2

1 + √
2 + 2k + k2

<
2

k + 2
.

Thus, by mathematical induction, ∀k = 1, 2, . . . , N , αk ≤
2

k+1 . Hence,
∑N

k=1
k
N αk <

∑N
k=1

k
N · 2

k = ∑N
k=1

2
N = 2 <

∞ as N → ∞.
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Furthermore, we have that ∀x ∈ (0,
√
5−1
2 ],

− log (1 − x) < x . Combined with the fact that ∀k ≥
2, αk ∈ (0,

√
5−1
2 ], we have that ∀k ≥ 2, − log (1 − αk) <

αk . Thus,

log

(
N∏

k=2

(1 − αk)
− k

N

)

= −
N∑

k=2

k

N
log (1 − αk) <

N∑
k=2

k

N
αk ≤ 2 < ∞.

Therefore,
∏N

k=2 (1 − αk)
− k

N is also upper bounded as
N → ∞, which implies that

(
N∑

k=1

�N

�k

)−1

≤ 1

N
·

N∏
k=2

(1 − αk)
− k

N = O (1/N ) .

Hence,
(∑N

k=1
�N
�k

)−1 · C2 = O (1/N ). Therefore,
(∑N

k=1 �−1
k

)−1 · C1 +
(∑N

k=1
�N
�k

)−1 · C2 = O (1/N ). ��

A.3 Proof of Theorem 3

Proof ᾱk ≤ 2
k+1 for k = 1, 2, . . . , N has already been

proved in the proof of Theorem 2. For the left inequality,
note that ᾱ1 = 1 ≥ 2

2+a for a > 0; for k ≥ 2, we are to
prove a stronger inequality:

ᾱk ≥ 2√(
1 + a · k−b

)
k
[(
1 + a · k−b

)
k + 2

] . (A7)

For k = 2, condition (17) implies that

a · 2−b ≥ 1

(1 − b) (4 − b)
>

1

4
>

√
5 − 2 for 0 < b < 1,

(A8)

which suggests ᾱ2 = 2
1+√

5
≥ 2√

(1+a·2−b)·2[(1+a·2−b)·2+2]
by simple algebra. Assume (A7) holds for k = t , then

ᾱt+1 = 2

1 +
√
1 + 4

ᾱ2
t

≥ 2

1 +
√
1 + 4/

(
2/
√(

1 + a · t−b
)
t
[(
1 + a · t−b

)
t + 2

])2

= 2

1 +
√
1 + (

1 + a · t−b
)
t
[(
1 + a · t−b

)
t + 2

]

= 2(
1 + a · t−b

)
t + 2

≥ 2√(
1 + a · (t + 1)−b) (t + 1)

[(
1 + a · (t + 1)−b) (t + 1) + 2

] ;

(A9)

and (A9) follows from

(
1 + a · (t + 1)−b

)
(t + 1)

[(
1 + a · (t + 1)−b

)
(t + 1) + 2

]

−
[(

1 + a · t−b
)
t + 2

]2

=a2
[
(t + 1)2−2b − t2−2b

]
+ 2at

[
(t + 1)1−b − t1−b

]

+ 4a
[
(t + 1)1−b − t1−b

]
− 1

≥2at
[
(t + 1)1−b − t1−b

]
− 1

=2at2−b

[(
1 + 1

t

)1−b
− 1

]
− 1

≥2at2−b
[
1 + (1 + b) t−1 − 1

2
b (1 − b) t−2 − 1

]
− 1 (A10)

=2a (1 − b) t1−b − ab (1 − b) t−b − 1 ≥ 0. (A11)

(A10) follows from binomial approximation inequality;
a > 0 and 0 < b < 1 suggest that 2a (1 − b) k1−b −
ab (1 − b) k−b − 1 is monotonically increasing with respect
to k for k > 0, condition (17) therefore implies that
2a (1 − b) k1−b − ab (1 − b) k−b − 1 ≥ 0 for all k ≥ 2,
which is (A11).

And proof of the left inequality for k ≥ 2 proceeds as the
following:

ᾱk ≥ 2√(
1 + a · k−b

)
k
[(
1 + a · k−b

)
k + 2

]

>
2√(

1 + a · k−b
)
k
[(
1 + a · k−b

)
k + 2

]+ 1

= 2(
1 + a · k−b

)
k + 1

.

��

A.4 Proof of Corollary 1

Proof Observe that the lower bound of (16) is monotoni-
cally decreasing with respect to a under given conditions.
Constraint (17) implies (A8), which further suggests that

a ≥ 2b

(1 − b) (4 − b)
> 0 for 0 < b < 1;

i.e., āk = (2/k)b̄k

(1−b̄k)(4−b̄k)
. Thus, maximizing the lower bound

of (16) is equivalent to minimize the convex function
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log (2/k)b

(1−b)(4−b) with respect to b over a open set (0, 1).
First-order sufficient optimality condition gives the unique
optimizer

b̄k = 2 + 5
(
log 2

k

)+
√
9
(
log 2

k

)2 + 4

2
(
log 2

k

) ∈ (0, 1)

for k ≥ 8. Simple algebra shows that limk→∞ āk k1−b̄k

log k = 2
3e.

Thus, the lower bound in Theorem 3 becomes k+1
2 − ᾱ−1

k =
O (log k). ��

Appendix B Further simulations

B.1 Penalized linear model

In Fig. 8 and 9, the red bar represents AG using our pro-
posed hyperparameter settings, blue bar represents proximal
gradient, and the purple bar represents AG using the orig-
inal hyperparameter settings (Ghadimi and Lan 2015). It
is evident that for penalized linear models, AG using our
hyperparameter settings outperforms proximal gradient or
AG using the original proposed hyperparameter settings con-
siderably.

In Fig. 10 and 11, the red bar represents AG using our pro-
posed hyperparameter settings, blue bar represents proximal
gradient, and the purple bar represents coordinate descent.

Fig. 8 Median for the number
of iterations required for the
iterative objective value to reach
g∗ + e3 on SCAD-penalized
linear model for AG with our
proposed hyperparameter
settings, AG with original
settings, and proximal gradient
over 100 simulation replications,
across varying covariates
correlation (τ ) and q/n values.
The error bars represent the 95%
CIs from 1000 bootstrap
replications, g∗ represents the
minimum per iterate found by
the three methods considered

Fig. 9 Median for the number
of iterations required for
iterative objective values to
reach g∗ + e3 on
MCP-penalized linear model for
AG with our proposed
hyperparameter settings, AG
with original settings, and
proximal gradient over 100
simulation replications, across
varying covariates correlation
(τ ) and q/n values. The error
bars represent the 95% CIs from
1000 bootstrap replications, g∗
represents the minimum per
iterate found by the three
methods considered

123



59 Page 18 of 20 Statistics and Computing (2024) 34 :59

Fig. 10 Median for the
computing time (in seconds)

required for
∥∥∥β(k+1) − β(k)

∥∥∥∞
to fall below 10−4 on
SCAD-penalized linear model
for AG with our proposed
hyperparameter settings,
proximal gradient, and
coordinate descent over 100
simulation replications, across
varying covariates correlation
(τ ) and q/n values. The error
bars represent the 95% CIs from
1000 bootstrap replications, g∗
represents the minimum per
iterate found by the three
methods considered

Fig. 11 Median for the
computing time (in seconds)

required for
∥∥∥β(k+1) − β(k)

∥∥∥∞
to fall below 10−4 on
MCP-penalized linear model for
AG with our proposed
hyperparameter settings,
proximal gradient, and
coordinate descent over 100
simulation replications, across
varying covariates correlation
(τ ) and q/n values. The error
bars represent the 95% CIs from
1000 bootstrap replications, g∗
represents the minimum per
iterate found by the three
methods considered

It is evident that for penalized linear models, AG using our
hyperparameter settings outperforms coordinate descent sig-
nificantly in terms of computing time.

B.2 Penalized logistic regression

Figure (12) and (13) suggest that much less iterations are
needed for ourmethod to achieve the same amount of descent
in comparison of AG with original proposed settings for
penalized logistic models.
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Fig. 12 Median for the number
of iterations required for the
iterative objective values to
reach g∗ + e2 on
SCAD-penalized logistic
regression for AG with our
proposed hyperparameter
settings, AG with original
settings, and proximal gradient
over 100 simulation replications,
across varying covariates
correlation (τ ) and q/n values.
The error bars represent the 95%
CIs from 1000 bootstrap
replications, g∗ represents the
minimum per iterate found by
the three methods considered

Fig. 13 Median for the number
of iterations required for
iterative objective values to
reach g∗ + e2 on
MCP-penalized logistic
regression for AG with our
proposed hyperparameter
settings, AG with original
settings, and proximal gradient
over 100 simulation replications,
across varying covariates
correlation (τ ) and q/n values.
The error bars represent the 95%
CIs from 1000 bootstrap
replications, g∗ represents the
minimum per iterate found by
the three methods considered
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