Statistical Inference vs. Machine Learning: Why can't we be friends?

Sahir Bhatnagar, Marie Forest, Julyan Keller-Baruch

July 20, 2017

LDI Journal Club

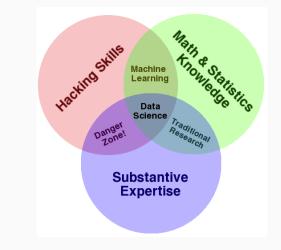
Motivation

Statistical Science 2001, Vol. 16, No. 3, 199–231

Statistical Modeling: The Two Cultures

Leo Breiman

Data Science Venn Diagram¹

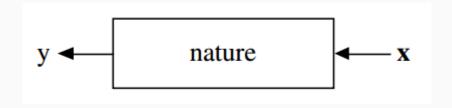


¹http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

Statistical Learning

Nature Functions to Associate X with y²

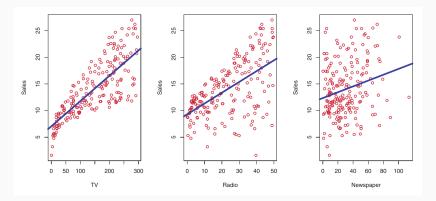
- A matrix of input variables X go in one side
- On the other side, response variable y comes out



²Breiman, Leo. *Statistical modeling: The two cultures*. Statistical science (2001)

Example: Advertising Data Set

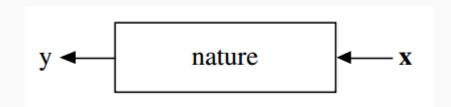
- y: **sales** of a product in 200 different markets (*response or dependent variable*)
- $X = (X_1, X_2, X_3)$: advertising budgets for TV, radio, newspaper (predictors, independent variables, features)

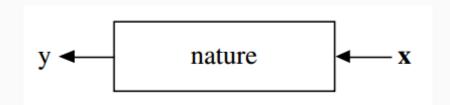


- We observe a quantitative response Y and p different predictors $X = (X_1, \dots, X_p)$
- + ε is an error term independent of X with mean 0
- We assume there is some relationship between Y and X:

- We observe a quantitative response Y and p different predictors $X = (X_1, \dots, X_p)$
- + ε is an error term independent of X with mean 0
- We assume there is some relationship between Y and X:

$$Y = f(X) + \varepsilon$$





• f is nature

 \cdot *f* is a function that connects *X* to *y* and is generally unknown

• f is a function that connects X to y and is generally unknown

• In this situation, one must estimate *f* based on observed points

 \cdot *f* is a function that connects *X* to *y* and is generally unknown

• In this situation, one must estimate *f* based on observed points

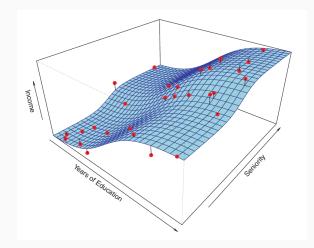
 $\cdot \hat{f}$ denotes our estimate to f

Exercise: Income dataset

• income is the response

Exercise: Income dataset

- income is the response
- $\hat{f}(x) = 1.4 \times \text{Years of Education} + 0.56 \times \text{Seniority}^2$



Statistical Learning refers to a set of approaches for estimating *f*

Two Cultures: Prediction and Inference

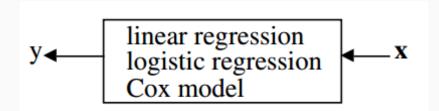
Statistical Science 2001, Vol. 16, No. 3, 199–231

Statistical Modeling: The Two Cultures

Leo Breiman

Data Modelling Culture³

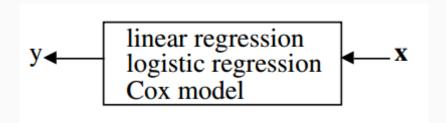
- Starts with assuming a stochastic data model for the inside of the box (e.g. normal, binomial)
- Values of the parameters are estimated from the data
- Information (ORs, HRs)



³Breiman, Leo. *Statistical modeling: The two cultures*. Statistical science (2001)

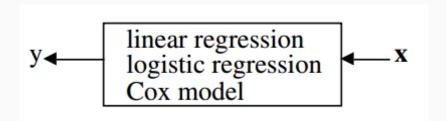
Data Modelling Culture Criticisms

• The belief that by imagination and by looking at the data, can invent a good parametric model for a complex mechanism devised by nature



Data Modelling Culture Criticisms

• The belief that by imagination and by looking at the data, can invent a good parametric model for a complex mechanism devised by nature



- · Conclusions are about the model's mechanisms, not nature's
- If the model is a poor emulation of nature, the conclusions maybe wrong

Data Modelling Culture Criticisms: Reliance on P-values

The ASA's Statement on p-Values: Context, Process, and Purpose

Ronald L. Wasserstein & Nicole A. Lazar

Data Modelling Culture Criticisms: Reliance on P-values

The ASA's Statement on p-Values: Context, Process, and Purpose

Ronald L. Wasserstein & Nicole A. Lazar

- *P*-values do not measure the probability that the studied hypothesis is true

Data Modelling Culture Criticisms: Reliance on P-values

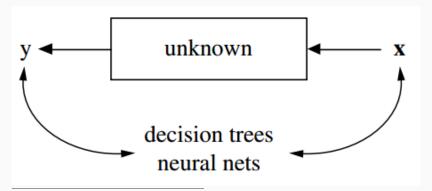
The ASA's Statement on p-Values: Context, Process, and Purpose

Ronald L. Wasserstein & Nicole A. Lazar

- *P*-values do not measure the probability that the studied hypothesis is true - *P*-values can indicate how incompatible the data are with a specified statistical model

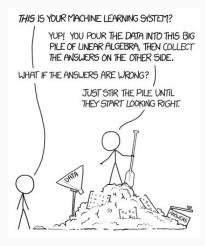
Algorithmic Modelling Culture⁴

- $\cdot\,$ Considers the inside of the box $\operatorname{complex}$ and $\operatorname{unknown}$
- Find an algorithm that operates on X to predict y
- Prediction



⁴Breiman, Leo. *Statistical modeling: The two cultures*. Statistical science (2001)

Algorithmic Modelling Culture Criticisms⁵



⁵XKCD comic

Why Estimate *f* ?

- Machine Learning, Neural Nets, Support Vector Machines, Random Forests

- Machine Learning, Neural Nets, Support Vector Machines, Random Forests

Inference

- Linear, Logistic, Cox Regression

- In many situations, a set of inputs *X* are readily available, but the output *Y* cannot easily be obtained
- We can predict Y using

- In many situations, a set of inputs *X* are readily available, but the output *Y* cannot easily be obtained
- We can predict Y using

 $\widehat{Y} = \widehat{f}(X)$

- In many situations, a set of inputs *X* are readily available, but the output Y cannot easily be obtained
- We can predict Y using

$$\widehat{Y} = \widehat{f}(X)$$

• \hat{f} is often treated as a black box \rightarrow not really concerned with the exact form of \hat{f} as long as it predicts well.

- In many situations, a set of inputs *X* are readily available, but the output Y cannot easily be obtained
- We can predict Y using

$$\widehat{Y} = \widehat{f}(X)$$

- \hat{f} is often treated as a black box \rightarrow not really concerned with the exact form of \hat{f} as long as it predicts well.
- Example: Refer to Brent's talk on deep neural networks and putting pathologists out of work

nature biotechnology

OPEN

Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues

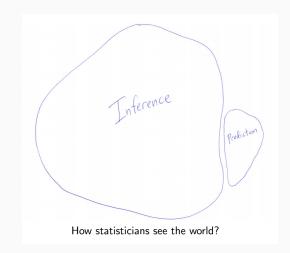
Jason Ernst¹⁻⁵ & Manolis Kellis^{6,7}

Typical imputation scenario												
	0	0	1	110	0	1	1	0 0	0	1 1	1	
HapMap or	0	0	0	001	1	1	0	1 1	1	0 0	1	Reference
1,000 Genomes	1	1	1	110	0	0	1	0 0	0	00	0	haplotypes
	1	0	1	100	0	1	1	1 1	1	00	1	
←	+	+						++		-++-		→
	1	?	?	? 2 ?	0	?	?	??	0	1 ?	1	
	1	?	?	? 1 ?	0	?	?	??	?	0 ?	0	
Constant	0	?	?	? 1 ?	1	?	?	??	1	0 ?	1	
Cases and	1	?	?	? 2 ?	0	?	?	??	0	1 ?	1	Study
controls typed on SNP chip	?	?	?	? 2 ?	0	?	?	??	0	0 ?	0	genotypes
on sive chip	1	?	?	? 1 ?	1	?	?	??	1	0 ?	?	
	0	?	?	? 2 ?	0	?	?	??	0	1 ?	1	
	1	?	?	? 1 ?	1	?	?	??	1	1 ?	2	

Inference

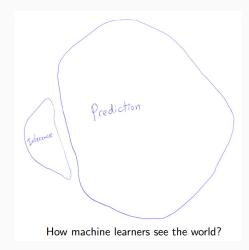
- We are often interested in understanding the way that Y is affected as X_1, \ldots, X_p change
- $\cdot\,$ Which predictors are associated with the response
- $\cdot \hat{f}$ can no longer be treated as a black box
- Examples: GWAS, EWAS

Statistics vs. Machine Learning⁶



⁶source: http://statweb.stanford.edu/ tibs/ftp/nips2015.pdf

Statistics vs. Machine Learning⁷



⁷source: http://statweb.stanford.edu/ tibs/ftp/nips2015.pdf

Case Study

The Data

- GWAS for Z-Score BMD conducted by John Morris et. al (*Nature Genetics 2017*)
- Covariates: Age, Sex, PC1, PC2, PC3, PC4
- GWAS Hits: 301 Conditionally Independent SNPs
- Control SNPs: 10k SNPs (LD < 0.10 with lead SNPs)
- Dosages were calculated from BGEN files using qctool
- + Training Data: \sim 115k Observations (80%)
- \cdot Test Data: \sim 30k Observations (20%)

The Data

- GWAS for Z-Score BMD conducted by John Morris et. al (*Nature Genetics 2017*)
- Covariates: Age, Sex, PC1, PC2, PC3, PC4
- GWAS Hits: 301 Conditionally Independent SNPs
- Control SNPs: 10k SNPs (LD < 0.10 with lead SNPs)
- Dosages were calculated from BGEN files using qctool
- \cdot Training Data: \sim 115k Observations (80%)
- \cdot Test Data: \sim 30k Observations (20%)

```
pryr::mem_used()
7.08 GB
```

- Not looking for tag SNPs.
- Used a plink function to find all genotyped SNPs with LD > 0.1 with at least one of the 301 lead SNPs.
- -r2 inter-chr -ld-window-r2 0.1 -ld-snp-list leadSNPs
- Randomly selected 10K SNPs from all available excluding the ones found in the previous step.

	ID_1 °	zbmd	PC1 °	PC2 [‡]	РСЗ 🔅	PC4 [‡]	agê	sex	rs139603701	rs2708632	rs75077113
1	2610781	-1.255	-7.42628	-3.3967600	-4.6292400	3.19530000	63	0	0.0000000	1.0000000	0.00000000
2	4114347	-0.339	-6.45636	-0.5157170	-0.3762300	-1.28798000	65	0	0.00000000	1.0000000	0.07400510
3	4399930	-0.600	-6.74236	-1.2213700	-2.5755200	4.34368000	66	1	0.0000000	1.0000000	0.00000000
4	2081319	0.809	-6.05389	-0.4911940	-2.0864600	5.37939000	48	0	0.0000000	1.0000000	0.0000000
5	1347380	0.279	-5.52867	-1.2864200	-3.2811600	0.45690000	53	0	0.0000000	2.0000000	1.00000000
6	3262449	-0.421	-6.67005	-0.9253650	-0.4240550	10.36690000	66	1	0.0000000	2.0000000	0.00100708
7	4870063	-0.454	-8.41719	-1.4366200	-1.6072600	-1.29085000	43	1	0.0000000	2.0000000	0.99700900
8	1141212	1.383	-8.73178	-1.6209500	-2.6827300	-2.02636000	65	1	0.0000000	2.0000000	0.02301030
9	2997954	-2.290	-5.55814	-0.4710770	-1.3477500	-0.09621100	68	1	0.0000000	1.0000000	0.00100708
10	5805218	2.289	-9.22547	-3.7621800	-1.2818900	2.37689000	63	1	0.04199220	1.0000000	0.02499390

Domain	Method	Interpretable	Feature		
Stat	lm	✓	No selection, p-values		
	ridge	\checkmark	No selection, shrinks coefficients		
	lasso	\checkmark	Variable selection and shrinkage		
	enet	\checkmark	Variable selection and shrinkage		
ML	Random Forest	1	Variable importance		
	Neural Net	×	Lots of choices to make		

1. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4

 zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4
 zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301 lead SNP

- 1. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4
- 2. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301 lead SNP
- 3. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301
 lead SNP + 300 Control

- 1. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4
- 2. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301
 lead SNP
- 3. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301
 lead SNP + 300 Control
- 4. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301
 lead SNP + 1k Control

- 1. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4
- 2. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301 lead SNP
- 3. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301
 lead SNP + 300 Control
- 4. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301
 lead SNP + 1k Control
- 5. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301
 lead SNP + 5k Control

- 1. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4
- 2. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301 lead SNP
- 3. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301
 lead SNP + 300 Control
- 4. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301
 lead SNP + 1k Control
- 5. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301
 lead SNP + 5k Control
- 6. zbmd ~ age + sex + PC1 + PC2 + PC3 + PC4 + 301
 lead SNP + 10k Control

Linear Model

lm(lcavol ~ ., data=Prostate)

##		Estimate Std	. Error t	value	Pr(> t)	
##	(Intercept)	-2.260	1.260	-1.8	0.08	•
##	lweight	-0.073	0.174	-0.4	0.68	
##	age	0.023	0.011	2.1	0.04	*
##	lbph	-0.087	0.058	-1.5	0.14	
##	svi	-0.154	0.254	-0.6	0.55	
##	lcp	0.367	0.082	4.5	2e-05	***
##	gleason	0.191	0.154	1.2	0.22	
##	pgg45	-0.007	0.004	-1.7	0.10	
##	lpsa	0.573	0.086	6.7	2e-09	***
##	Signif. code	es: 0 '***'	0.001 '**'	0.01	'*' 0.05	′.′ ³⁸ (

0

```
cv.glmnet(X, Y)
```

```
## 9 x 1 sparse Matrix of class "dgCMatrix"
##
                         1
## (Intercept) 0.3708615
## lweight
                 •
## age
                 .
## lbph
                 •
## svi
                 •
## lcp
                0.2293733
## gleason
                 •
## pgg45
                 .
## lpsa
                0.4116749
```

Machine Learning Model: Random Forest

- Used the R package **ranger**, which allows parallel computing.
- Build 1000 trees (using 5,000 crashed with 10,000 control SNPs)
- Used the distribution of variable importance measures to perform variable selection.
- No need to normalize.

Random Forest: Output

> pred_rf_mod3	
Ranger prediction	
Type: Sample size: Number of independent variables: > rf_mod3 Ranger result	Regression 29139 607
Call: ranger(formula = mod3_fmla, data	= ukb_train, importance = "impurity")
Type:	Regression
Number of trees:	500
Sample size:	116571
Number of independent variables:	607
Mtry:	24
Target node size:	5
Variable importance mode:	impurity
OOB prediction error (MSE):	0.9209093
R squared (OOB):	0.08068676

Figure 1: Output

Random Forest: Variable Importance

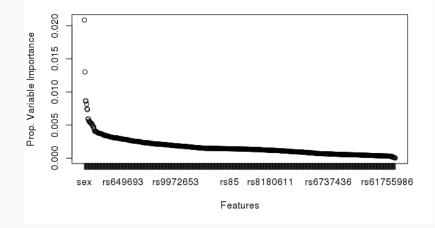


Figure 2: Variable importance

- Tried two R packages without success (e1071 with function svm, and parallelSVM).
- It seems that we have too many observations (svm might be more suited when $N \ll p$)

MLM: Deep Neural Network

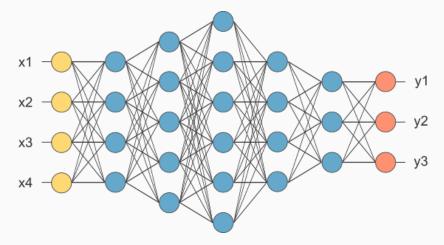
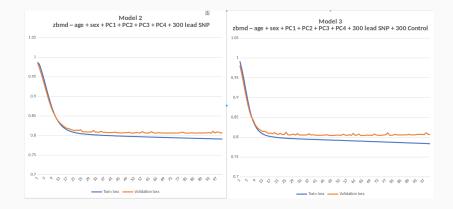
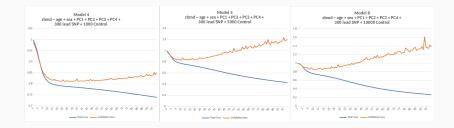


Figure 3: Deep Neural Network

Deep Neural Network (keras + Theano)



Deep Neural Network (keras + Theano)



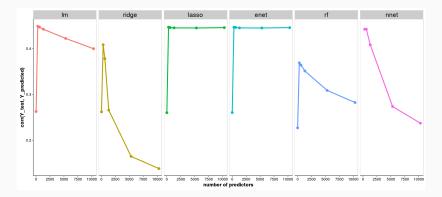


Figure 4: R2 vs. No. of Predictors

Results: Sensitivity vs. Specificity

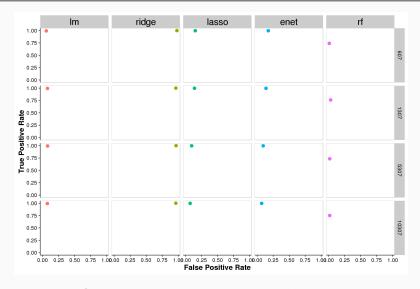


Figure 5: True Positive Rate vs. False Positive Rate

Results: Timings

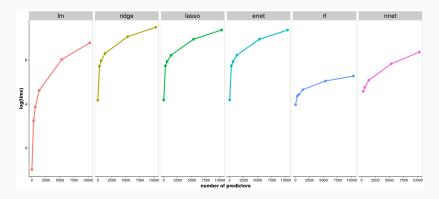
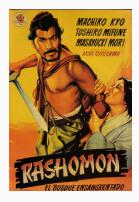


Figure 6: Time vs. No. of Predictors

Three Lessons to be Learned: Rashomon, Occam and Bellman

Rashomon

- Japanese movie (1950) in which four people, from different vantage points, witness a murder and a rape.
- When testifying, they all report the same facts, but their stories of what happened are very different



Rashomon: Many models give same \hat{y} , but tell different story

Model 1

$$y = 2.1 + 3.8x_3 - 0.6x_8 + 83.2x_{12}$$

Model 2

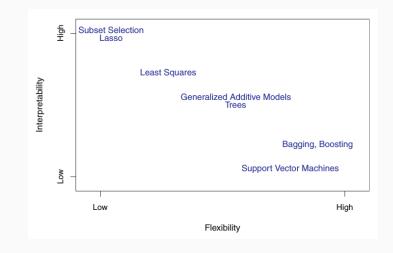
$$y = -8.9 + 4.6x_5 + 0.01x_6 + 12x_{15}$$

$$y = -76.7 + 9.3x_2 + 22x_7 - 13.2x_8$$

- All produce test set error within 1% of each other
- Which one is better?

 Unfortunately, in prediction, accuracy and simplicity (interpretability) are in conflict

Trade-off b/w Prediction Accuracy & Model Interpretability⁸



⁸Introduction to Statistical Learning

Bellman: Curse of Dimensionality

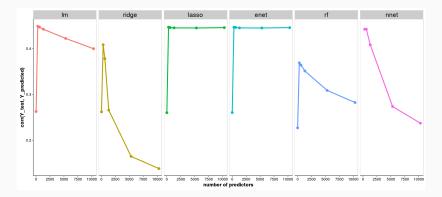


Figure 7: R2 vs. No. of Predictors

Final Thoughts

• Ignore these terms: Machine Learning, Big Data, Statistical Learning

- Ignore these terms: Machine Learning, Big Data, Statistical Learning
- Focus on the input and output of a method

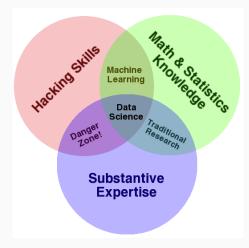
- Ignore these terms: Machine Learning, Big Data, Statistical Learning
- Focus on the input and output of a method
- Ignore the arbitrary classification it falls under

- Focus on the goal of the study
- Inference
- Prediction
- or Both

• Inference and Prediction are both very challenging

Take Home Message #3

• Stay away from the Danger Zone



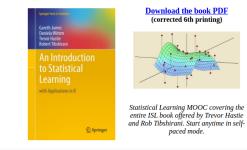
References

An Introduction to Statistical Learning

with Applications in R

Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani

Home About this Book R Code for Labs Data Sets and Figures ISLR Package Get the Book Author Bios Errata



Leo Breiman (1928 - 2005)

Appendix

 $\cdot\,$ The accuracy of \widehat{Y} depends on two quantities

$$mean(Y - \widehat{Y})^{2} = [f(X) - \widehat{f}(X)]^{2} + Variance(\varepsilon)$$

$$reducible$$

$$Irreducible$$

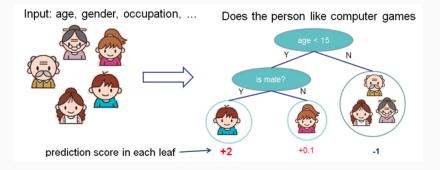
 $\cdot \,$ The accuracy of \widehat{Y} depends on two quantities

$$mean(Y - \hat{Y})^{2} = [f(X) - \hat{f}(X)]^{2} + Variance(\varepsilon)$$

$$reducible$$

$$Irreducible$$

• Goal of most learning techniques is to estimate *f* with the aim of minimizing the reducible error



• Linear model

$$f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Inference Techniques⁹

⁹source: http://statweb.stanford.edu/ tibs/ftp/nips2015.pdf