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High-dimensional data (n << p)

Xn×p =

x11 x12 · · · · · · · · · · · · · · · · · · · · · x1p
...

...
...

...
...

...
...

...
...

...
xn1 x12 · · · · · · · · · · · · · · · · · · · · · xnp
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Motivating Example: The Cancer Genome Atlas (TCGA)

• The response variable in our analysis is expression of BRCA1, the
first gene identified to increase the risk of early onset breast cancer

• In the dataset, expression measurements of 17,322 additional genes
from 536 patients are available (and measured on the log scale)

• Because BRCA1 is likely to interact with many other genes, including
tumor suppressors and regulators of the cell division cycle, it is of
interest to find genes with expression levels related to that of
BRCA1
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# install.packages("pacman")
pacman::p_load_gh('sahirbhatnagar/mcgillHDA')
library(mcgillHDA)
data(TCGA)
# help(TCGA)
str(TCGA)

## List of 3
## $ X : num [1:536, 1:17322] -1.45 -2.3 -1.94 -2.1 -1.28 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : NULL
## .. ..$ : chr [1:17322] "15E1.2" "2'-PDE" "7A5" "A1BG" ...
## $ y : num [1:536] -1.661 -1.388 -1.925 -1.656 -0.358 ...
## $ fData:'data.frame':^^I17322 obs. of 2 variables:
## ..$ chromosome: chr [1:17322] NA NA NA "19" ...
## ..$ gene_name : chr [1:17322] NA NA NA "alpha-1-B glycoprotein" ...

hist(TCGA$y, col = 'lightblue', main = "Gene expression for BRCA1")
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Lasso Regression on TCGA

set.seed(101) # for reproducibility

# 80% training / 20% testing
sample <- sample.int(n = nrow(TCGA$X), size = floor(.80*nrow(TCGA$X)), replace = F)
X.train <- TCGA$X[sample, ]
X.test <- TCGA$X[-sample, ]
y.train <- TCGA$y[sample]
y.test <- TCGA$y[-sample]

# fit lasso regression on training
library(glmnet)
fit.lasso <- cv.glmnet(x = X.train, y = y.train, alpha = 1, nfolds = 5, intercept = FALSE)
beta_hat_lasso <- coef(fit.lasso)

# fit ridge regression on training
fit.ridge <- cv.glmnet(x = X.train, y = y.train, alpha = 0, nfolds = 5, intercept = FALSE)
beta_hat_ridge <- coef(fit.ridge)

# predict on test set and MSE
yhat.test.lasso <- predict(fit.lasso, newx = X.test)
(mse.lasso <- mean((yhat.test.lasso - y.test)^2)) # test set mean squared error

## [1] 0.3095205

yhat.test.ridge <- predict(fit.ridge, newx = X.test)
(mse.ridge <- mean((yhat.test.ridge - y.test)^2)) # test set mean squared error

## [1] 0.3182241
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Estimated Regression Coefficients β̂
lasso

vs. β̂
ridge

plot(beta_hat_lasso, pch = 19, ylab = "Estimated beta coefficients by Lasso regression",
xlab = "beta index", col = alpha("#E16A86",0.4))

plot(beta_hat_ridge, pch = 19, ylab = "Estimated beta coefficients by Ridge regression",
xlab = "beta index", col = alpha("#00AD9A", 0.4))
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(b) Ridge

Figure: Estimated regression coefficients
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LaSSo: Shrinkage and Selection

• Its name captures the essence of what the lasso penalty accomplishes
▶ Shrinkage: Like ridge regression, the lasso penalizes large regression

coefficients and shrinks estimates towards zero
▶ Selection: Unlike ridge regression, the lasso produces sparse solutions:

some coefficient estimates are exactly zero, effectively removing those
predictors from the model

• Sparsity has two very attractive properties
▶ Speed: Algorithms which take advantage of sparsity can scale up very

efficiently, offering considerable computational advantages
▶ Interpretability: In models with hundreds or thousands of predictors,

sparsity offers a helpful simplification of the model by allowing us to
focus only on the predictors with nonzero coefficient estimates
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The Lasso Objective
• Let y = (y1, · · · , yN) denote the N-vector of responses, and X be an

N× p matrix with xi ∈ Rp in its ith row
• Assume we have centered y and the columns of X beforehand, and

hence the intercept has been omitted.

• The lasso finds the solution β̂
lasso
t to the optimization problem

arg min
β∈Rp

{
1

2N
∥y− Xβ∥22

}
subject to ||β||1 ≤ t.

(1)

• By Lagrangian duality, there is a one-to-one correspondence
between (1) and the Lagrange version of the problem for some λ ≥ 0:

β̂
lasso
λ = argmin

β∈Rp

{
1

2N
∥y− Xβ∥22

}
+ λ ∥β∥1 (2)

• The solution β̂
lasso
λ in (2) solves the bound problem in (1) with

t =
∥∥∥β̂lasso

λ

∥∥∥
1
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Why does the ℓ1-norm induce sparsity?

Intuition about the sparsity-inducing effect of the ℓ1-norm may be obtained
from several viewpoints:

• Analytical point of view
• Geometrical point of view

Why does the ℓ1-norm induce sparsity? 13 / 36 .



Analytical point of view

• Consider a single predictor setting based on the observed data
{(xi, yi)}ni=1. The problem then is to solve

β̂lasso = argmin
β∈R

1

2

n∑
i=1

(yi − xiβ)
2
+ λ|β| (3)

• With a standardized predictor, the lasso solution (3) is a
soft-thresholded version of the least-squares (LS) estimate β̂LS

β̂lasso = Sλ
(
β̂LS

)
= sign

(
β̂LS

)(
|β̂LS| − λ

)
+

=


β̂LS − λ, β̂LS > λ

0 |β̂LS| ≤ λ

β̂LS + λ β̂LS ≤ −λ
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Analytical point of view

• Soft thresholding function Sλ(x) = sign(x)(|x| − λ)+ is shown in blue
(broken lines), along with the 45◦ line in black.

1Hastie et al. Statistical learning with sparsity: the lasso and generalizations
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Geometrical point of view
• Consider the following model with two centered predictors (y is centered)

y = β1x1 + β2x2 + ε

β1

β2

− (Y−Xβ̂)2

−12000
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−4000

−2000

0
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Contours of the least-squares regression surface
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Constraint region of the lasso

arg min
β∈Rp

{
1

2N
∥y− Xβ∥22

}
, ||β||1 ≤ 1.
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Effect of the Euclidean projection onto the ℓ1-ball

1Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.
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Effect of the Euclidean projection onto the ℓ2-ball

1Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.
Why does the ℓ1-norm induce sparsity? 22 / 36 .



Representation in three dimensions of the ℓ1- and ℓ2-balls

1Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.
Why does the ℓ1-norm induce sparsity? 23 / 36 .
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Coordinate descent1

• The idea behind coordinate descent is, simply, to optimize a target
function with respect to a single parameter at a time, iteratively
cycling through all parameters until convergence is reached

• Coordinate descent is particularly suitable for problems, like the lasso,
that have a simple closed form solution in a single dimension but lack
one in higher dimensions

1Fu (1998), Friedman et al. (2007), Wu and Lange (2008)
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Coordinate descent

• Let us consider minimizing Q with respect to βj, while temporarily treating
the other regression coefficients β−j as fixed:

Q(βj|β−j) =
1

2n

n∑
i=1

yi −
∑
k̸=j

xijβk − xijβj

2

+ λ|βj|+ λ
∑
k ̸=j

|βk|

β̃j = argmin
βj

Q(βj|β−j) = Sλ(z̃j) =


z̃j − λ, z̃j > λ

0 |z̃j| ≤ λ

z̃j + λ z̃j < −λ

• r̃ij = yi −
∑

k̸=j xikβ̃k z̃j = n−1 ∑n
i=1 xij r̃ij

• {̃rij}ni=1 are the partial residuals with respect to the jth predictor, and z̃j OLS
estimator based on {̃rij, xij}ni=1
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Why does this work?
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Convergence

• Numerical analysis of optimization problems of the form

Q(θ) = L(θ) + P(θ)

has shown that coordinate descent algorithms converge to a solution
of the penalized likelihood equations provided that:

▶ the function L(β) is differentiable and

▶ the penalty function Pλ(β) is separable → Pλ(β) =
∑

j Pλ(βj)

• Lasso-penalized linear regression satisfies both of these criteria

• Furthermore, because the lasso objective is a convex function, the

sequence of the objective functions
{
Q
(
β̃
(s)
)}

converges to the

global minimum

1Tseng and Yun (2009). A coordinate gradient descent method for nonsmooth separable minimization.
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Coordinate descent, pathwise optimization, warm starts

• We are typically interested in determining β̂
Lasso

for a range of values
of λ, thereby obtaining the coefficient path

• In applying the coordinate descent algorithm to determine the lasso
path, an efficient strategy is to compute solutions for decreasing
values of λ, starting at λmax = max1≤j≤p

∣∣xTj y∣∣ /n, the point at which
all coefficients are 0

• Warm starts → By continuing along a decreasing grid of λ values, we
can use the solutions β̂ (λk) as initial values when solving for β̂ (λk+1)

Algorithms 29 / 36 .
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Sample Splitting

• As we have discussed, using the observed agreement between fitted
values and the data is too optimistic; we require independent data to
test predictive accuracy

• One solution we showed earlier, known as sample splitting, is to split
the data set into two fractions, a training set and test set, using one
portion to estimate β̂ (i.e., train the model) and the other to evaluate
how well Xtestβ̂ predicts the observations in the second portion (i.e.,
test the model)

• The problem with this solution is that we rarely have so much data
that we can freely part with half of it solely for the purpose of
choosing λ

Selecting the tuning parameter λ 31 / 36 .



Cross-Validation
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
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Cross-validation: Details

1. Specify a grid of regularization parameter values Λ = {λ1, . . . , λK}
2. Divide the data into V roughly equal parts D1, . . . ,DV

3. For each v = 1, . . . ,V, compute the lasso solution path using the
observations in {Du, u ̸= v}

4. For each λ ∈ Λ, compute the mean squared prediction error

MSPEv(λ) =
1

nv

∑
i∈Dv

{
yi − xTi β̂−v(λ)

}2

where nv is the number of observations in Dv, β̂−v are the estimated
regression coefficients trained on the observations in {Du, u ̸= v}, as
well as

CV(λ) =
1

V

V∑
v=1

MSPEv(λ)
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Cross-validation: Details

1. λ̂ is taken to be the value that minimizes CV(λ) and β̂ ≡ β̂(λ̂) the
estimator of the regression coefficients

2. Note that
▶ MSPEv(λ) is the mean squared prediction error for the model based on

the training data {Du, u ̸= v} in predicting the response variables in Dv
▶ CV(λ) is an estimate of the expected mean squared prediction error

3. Regardless of the number of cross-validation folds, each observation
in the data appears exactly once in a test set
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Lasso Solution Path on TCGA
set.seed(101) # for reproducibility
sample <- sample.int(n = nrow(TCGA$X), size = floor(.80*nrow(TCGA$X)), replace = F) # 80% training / 20% testing
X.train <- TCGA$X[sample, ]
X.test <- TCGA$X[-sample, ]
y.train <- TCGA$y[sample]
y.test <- TCGA$y[-sample]

# fit ridge regression on training
library(glmnet)
cvfit <- cv.glmnet(x = X.train, y = y.train, alpha = 1, nfolds = 5, intercept = FALSE)
fit <- cvfit$glmnet.fit
plot(fit, xvar = "lambda", label = TRUE)
abline(v = log(cvfit$lambda.min), lty = 2)
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Lasso Cross-Validation on TCGA
plot(cvfit)
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Backup Slides

Optimality Conditions
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Score functions and penalized score functions

• In classical statistical theory, the derivative of the log-likelihood
function L(θ) is called the score function, and maximum likelihood
estimators are found by setting this derivative equal to zero, thus
yielding the likelihood equations (or score equations):

0 =
∂

∂θ
L(θ)

• Extending this idea to penalized likelihoods involves taking the
derivatives of objective functions of the form:

Q(θ) = L(θ)︸︷︷︸
likelihood

+ P(θ)︸︷︷︸
penalty

yielding the penalized score function

Optimality Conditions 38 / 36



Score functions and penalized score functions

• In classical statistical theory, the derivative of the log-likelihood
function L(θ) is called the score function, and maximum likelihood
estimators are found by setting this derivative equal to zero, thus
yielding the likelihood equations (or score equations):

0 =
∂

∂θ
L(θ)

• Extending this idea to penalized likelihoods involves taking the
derivatives of objective functions of the form:

Q(θ) = L(θ)︸︷︷︸
likelihood

+ P(θ)︸︷︷︸
penalty

yielding the penalized score function

Optimality Conditions 38 / 36 .



Ridge vs. Lasso penalty

β

P
(β

)

Lasso Ridge
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Penalized likelihood equations

• For ridge regression, the penalized likelihood is everywhere differentiable,
and the extension to penalized score equations is straightforward

β̂
ridge

= argmin
β

1

2
||y− Xβ||22 + λ||β||22

• For the lasso, the penalized likelihood is not differentiable - specifically, not
differentiable at zero - and subdifferentials are needed to characterize them

β̂
lasso

= argmin
β

Q(θ) = argmin
β

1

2
||y− Xβ||22 + λ||β||1

• Letting ∂Q(θ) denote the subdifferential of Q, penalized likelihood equations
are:

0 ∈ ∂Q(θ)

http://myweb.uiowa.edu/pbreheny/7240/s19/notes/2-13.pdf
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Karush-Kuhn-Tucker (KKT) Conditions

• In the optimization literature, the resulting equations are known as
the Karush-Kuhn-Tucker (KKT) conditions

• For convex optimization problems such as the lasso, the KKT
conditions are both necessary and sufficient to characterize the
solution

• The idea is simple: to solve for β̂
lasso

, we simply replace the derivative
with the subderivative and the likelihood with the penalized likelihood
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Subgradients

1Mairal, Bach and Ponce (2012). Sparse Modeling for Image and Vision Processing.
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Subdifferential for |x|

The subdifferential for f(x) = |x| is:

∂|x| =

 −1 if x < 0
[−1, 1] if x = 0
1 if x > 0
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KKT conditions for the lasso
•

β̂
lasso

= argmin
β

Q(θ) = argmin
β

1

2
||y− Xβ||22 + λ||β||1

• Result: β̂
lasso

minimizes the lasso objective function if and only if it
satisfies the KKT conditions:

1

n
x⊤j (y− Xβ̂) = λsign(β̂j) β̂j ̸= 0

1

n
|x⊤j (y− Xβ̂)| ≤ λ β̂j = 0

• In other words, the correlation between a predictor and the residuals,
x⊤j (y− Xβ̂)/n, must exceed a certain minimum threshold λ before it
is included in the model

• When this correlation is below λ, β̂j = 0
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Some remarks

• If we set
λ = λmax ≡ max

1≤j≤p

∣∣xTj y∣∣ /n
then β̂ = 0 satisfies the KKT conditions

• That is, for any λ ≥ λmax, we have β̂(λ) = 0

• On the other hand, if we set λ = 0, the KKT conditions are simple the
normal equations for OLS

1

n
x⊤j (y− Xβ̂) = 0 · sign(β̂j) β̂j ̸= 0

• Thus, the coefficient path for the lasso starts at λmax and continues
until λ = 0 if X is full rank; otherwise the solution will fail to be
unique for λ values below some point λmin
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Recall the Lasso Solution in the Orthonormal Design

• When the design matrix X is orthonormal, i.e., n−1X⊤X = I, the lasso
estimate is a soft-thresholded version of the least-squares (LS)
estimate β̂LS

β̂lasso = Sλ
(
β̂LS

)
= sign

(
β̂LS

)(
|β̂LS| − λ

)
+

=


β̂LS − λ, β̂LS > λ

0 |β̂LS| ≤ λ

β̂LS + λ β̂LS ≤ −λ

• where β̂LS = x⊤j y/n
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Probability that β̂j = 0

• With soft thresholding, it is clear that the lasso has a positive
probability of yielding an estimate of exactly 0 - in other words, of
producing a sparse solution

• Specifically, the probability of dropping xj from the model is
P
(∣∣βLS

j

∣∣ ≤ λ
)

• Under the assumption that ϵi
⊥⊥∼ N

(
0, σ2

)
, we have βLS

j ∼ N (β, σ2/n)
and

P
(
β̂j(λ) = 0

)
= Φ

(
λ− β

σ/
√
n

)
− Φ

(
−λ− β

σ/
√
n

)
where Φ is the Gaussian CDF
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Sampling Distribution
For σ = 1, n = 10, and λ = 1/2:
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Why standard inference is invalid?

• This sampling distribution is very different from that of a classical
MLE:
▶ The distribution is mixed: a portion is continuously distributed, but

there is also a point mass at zero

▶ The continuous portion is not normally distributed

▶ The distribution is asymmetric (unless β = 0)

▶ The distribution is not centered at the true value of β
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